395 Reputation

6 Badges

7 years, 193 days

MaplePrimes Activity

These are questions asked by emendes


I have the following set of coefficients 

coef7 := [-1, 2, alpha[1, 2], alpha[2, 6], (17*RootOf(64*_Z^3+80*_Z^2+1104*_Z+561)+17)/(alpha[1, 2]*alpha[2, 6]), -17/alpha[2, 6], -33/(32*RootOf(64*_Z^3+80*_Z^2+1104*_Z+561)), -(163/32+RootOf(64*_Z^3+80*_Z^2+1104*_Z+561)^2+5*RootOf(64*_Z^3+80*_Z^2+1104*_Z+561)*(1/4))/(alpha[1, 2]*alpha[2, 6]), -RootOf(64*_Z^3+80*_Z^2+1104*_Z+561)-5/4, RootOf(64*_Z^3+80*_Z^2+1104*_Z+561)]


Considering that alpha[1,2] and alpha[2,6] are always real, how can I extract only the real solution from coef7?  

Many thanks.




I need to count and separate the nonlinear terms in a list.  Example:

w:=[[z, y, x, 1], [x*z, x*y, y, 1], [x*z, z, x*y]];

there are 4 nonlinear terms, x*z, x*y, x*z, and x*y.  

The terms can be any combination of the given variables, that is, x, y, and z.  

My solution to the problem of counting the nonlinear terms is 




It works but I wonder whether there is a better solution that includes showing the nonlinear terms themselves.

Many thanks



Although I am (remotely) running the following piece of code in a linux machine with 256 GB of ram, the error msg "Execution stopped: Stack limit reached" comes out 


NestList:= proc(f, x, n::nonnegint)
local R:= rtable(0..n, [x]), k;
   for k to n do R[k]:= simplify(f(R[k-1])) od:
end proc:
yreal:=NestList(y-> 4*y*(1-y),1/8,n):

I have tried to increase stacklimit issuing the command "kernelopts(stacklimit=256000)" but to no avail.  Is there anything else I can do?  A similar code run successfully in a mac with Mathematica. 

Many thanks 



PS. The default kernelopts(stacklimit) shows 8192 on the linux machine and  but 32736 on the mac pro.  I was expecting a higher number on the linux machine.  



I need to add a legend to a figure using dataplot (I am not even sure that is the right option).  In what follows I show what I did.


dataplot([28,28,28],[.6481496576, .648149657615473, .6512873548],style='point',colorscheme=["Blue","Orange","Red"],	
labels = ["k", "y(k)"], legend = ["10-digit precision", "15-digit precision", "Floating-point iteration"] ,legendstyle = [font = ["HELVETICA", 9], location = right]);

The outcome is

As can be seen some parts of the legend are missing.


How can I get this right? Do I have other ways to do the same thing?  


Many thanks





I wonder how integrate can be applied term by term to the following nonlinear differential equation

(diff(y(t), t))*(diff(y(t), t, t, t))-(diff(y(t), t))*y(t)^2-(diff(y(t), t))*(diff(y(t), t, t))-(diff(y(t), t))*A*y(t)

The expected output will be something like 

(diff(y(t), t))*(diff(y(t), t, t))-(1/3)*y(t)^3-(1/2)*A*y(t)^2-(1/2)*(diff(y(t), t))^2+C+int((diff(y(s), s, s))^2, s = 0 .. t)
map(x-> integrate(x,t),(diff(y(t), t))*(diff(y(t), t, t, t))-(diff(y(t), t))*y(t)^2-(diff(y(t), t))*(diff(y(t), t, t))-(diff(y(t), t))*A*y(t))

solves most of it but not the first part. 

Many thanks



First 6 7 8 9 10 11 12 Page 8 of 13