mmcdara

6279 Reputation

17 Badges

7 years, 325 days

MaplePrimes Activity


These are answers submitted by mmcdara

(works only is the pattern to search is numeric, if not adaptations have to be done)

restart

#M3 := Matrix(4, 3, [34, 67, 1, 35, 80, 1, 45, 78, 2, 56, 99, 2]):

M3 := LinearAlgebra:-RandomMatrix(10, 5, generator=0..10)

M3 := Matrix(10, 5, {(1, 1) = 0, (1, 2) = 2, (1, 3) = 6, (1, 4) = 5, (1, 5) = 4, (2, 1) = 6, (2, 2) = 10, (2, 3) = 10, (2, 4) = 0, (2, 5) = 3, (3, 1) = 10, (3, 2) = 5, (3, 3) = 5, (3, 4) = 1, (3, 5) = 6, (4, 1) = 2, (4, 2) = 6, (4, 3) = 1, (4, 4) = 0, (4, 5) = 9, (5, 1) = 8, (5, 2) = 5, (5, 3) = 3, (5, 4) = 3, (5, 5) = 5, (6, 1) = 3, (6, 2) = 10, (6, 3) = 4, (6, 4) = 9, (6, 5) = 4, (7, 1) = 10, (7, 2) = 1, (7, 3) = 6, (7, 4) = 8, (7, 5) = 7, (8, 1) = 4, (8, 2) = 2, (8, 3) = 5, (8, 4) = 3, (8, 5) = 8, (9, 1) = 2, (9, 2) = 0, (9, 3) = 3, (9, 4) = 1, (9, 5) = 3, (10, 1) = 7, (10, 2) = 6, (10, 3) = 6, (10, 4) = 2, (10, 5) = 4})

(1)

LookUp := proc(M::Matrix, cr, P, x)
  local S:
  if cr='column' then
    S := select((n -> is(M[n, P]=x)), [$1..numelems(M[..,1])]);
    if S <> [] then
      return M[S, ..];
    else
      error cat("Column ", P, " does not contain ", convert(x, string))
    end if:
  elif cr='row' then
    S := select((n -> is(M[P, n]=x)), [$1..numelems(M[1, ..])]);
    if S <> [] then
      return M[.., S];
    else
      error cat("Row ", P, " does not contain ", convert(x, string))
    end if:
  end if:
end proc:

# Submatrix made of rows whose column "P" contains value "x"

LookUp(M3, 'column', 5, 4);
LookUp(M3, 'column', 2, 1);

Matrix([[0, 2, 6, 5, 4], [3, 10, 4, 9, 4], [7, 6, 6, 2, 4]])

 

Matrix([[10, 1, 6, 8, 7]])

(2)

# Submatrix made of columns whose row "P" contains value "x"


LookUp(M3, 'row', 2, 10);
LookUp(M3, 'row', 1, 4);

Matrix([[2, 6], [10, 10], [5, 5], [6, 1], [5, 3], [10, 4], [1, 6], [2, 5], [0, 3], [6, 6]])

 

Matrix([[4], [3], [6], [9], [5], [4], [7], [8], [3], [4]])

(3)

type(LookUp(M3, 'row', 2, 31), numeric)

Error, (in LookUp) Row 2 does not contain 31

 

 

Download LookUp.mw

Note that I did not pay attention to performance and that the LookUp function may be inefficient for large matrices.

In case you would like to remove the columns/rows which contain the pattern to search, here is variant of the previous file LookUp_variant.mw

... here is a solution  I wonder what you mean by "The result will be a list of 56 models with 5 monomials."?)

It is efficient while the lengths of the two lists are not much larger:

restart:
with(combinat):
L1 := [x^2*y*alpha[1, 11], x*z^2*alpha[2, 15], y^2*z*alpha[3, 17] + y*z*alpha[3, 8]]:
         
L2 := [alpha[i, 0], alpha[i, 1]*x, alpha[i, 2]*y, alpha[i, 3]*z, alpha[i, 4]*x^2, alpha[i, 5]*y*x, alpha[i, 6]*z*x, alpha[i, 7]*y^2, alpha[i, 8]*z*y, alpha[i, 9]*z^2, alpha[i, 10]*x^3, alpha[i, 11]*y*x^2, alpha[i, 12]*z*x^2, alpha[i, 13]*y^2*x, alpha[i, 14]*z*y*x, alpha[i, 15]*z^2*x, alpha[i, 16]*y^3, alpha[i, 17]*z*y^2, alpha[i, 18]*z^2*y, alpha[i, 19]*z^3]:

#-----------------------------------------------------------------

# Build the cartesian product of the two lists

T:=cartprod([L1, L2]):
L1L2 := NULL:
while not T[finished] do 
  L1L2 := L1L2, T[nextvalue]() 
end do:
L1L2 := [L1L2]:

# Keep only the elements which do not have repeated alphas with the same second index.

map(u -> map2(op, 2, [select(type, indets(u), `indexed`)[]]), L1L2):
Keep := zip((u, v) -> if `not`(member(v[-1], {v[1..-2][]})) then add(u) end if, L1L2, %):

print~ (Keep): # to get Keep displayed one element per line

numelems(Keep)
                               56

A_solution.mw

If your matrix has the structure you give, that is +/- a given quantity at some positions and 0 elsewhere, here is a way=

kernelopts(version)

`Maple 2015.2, APPLE UNIVERSAL OSX, Dec 20 2015, Build ID 1097895`

(1)

b := Matrix(3, 6, [[-1/2, 0, 1/2, 0, 0, 0], [0, 0, 0, -1/2, 0, 1/2], [0, -1/2, -1/2, 1/2, 1/2, 0]]);

b := Matrix(3, 6, {(1, 1) = -1/2, (1, 2) = 0, (1, 3) = 1/2, (1, 4) = 0, (1, 5) = 0, (1, 6) = 0, (2, 1) = 0, (2, 2) = 0, (2, 3) = 0, (2, 4) = -1/2, (2, 5) = 0, (2, 6) = 1/2, (3, 1) = 0, (3, 2) = -1/2, (3, 3) = -1/2, (3, 4) = 1/2, (3, 5) = 1/2, (3, 6) = 0})

(2)

opb := op(b)[3];

{(1, 1) = -1/2, (1, 3) = 1/2, (2, 4) = -1/2, (2, 6) = 1/2, (3, 2) = -1/2, (3, 3) = -1/2, (3, 4) = 1/2, (3, 5) = 1/2}

(3)

ropb := rhs~(opb)

{-1/2, 1/2}

(4)

b1 := ropb[1] * ``(b / ropb[1])

b1 := -Typesetting[delayDotProduct](1/2, Matrix(3, 6, {(1, 1) = 1, (1, 2) = 0, (1, 3) = -1, (1, 4) = 0, (1, 5) = 0, (1, 6) = 0, (2, 1) = 0, (2, 2) = 0, (2, 3) = 0, (2, 4) = 1, (2, 5) = 0, (2, 6) = -1, (3, 1) = 0, (3, 2) = 1, (3, 3) = 1, (3, 4) = -1, (3, 5) = -1, (3, 6) = 0}), true)

(5)

b2 := ropb[2] * ``(b / ropb[2])

 

Typesetting[delayDotProduct](1/2, Matrix(3, 6, {(1, 1) = -1, (1, 2) = 0, (1, 3) = 1, (1, 4) = 0, (1, 5) = 0, (1, 6) = 0, (2, 1) = 0, (2, 2) = 0, (2, 3) = 0, (2, 4) = -1, (2, 5) = 0, (2, 6) = 1, (3, 1) = 0, (3, 2) = -1, (3, 3) = -1, (3, 4) = 1, (3, 5) = 1, (3, 6) = 0}), true)

(6)

 

Download For_instance.mw

For more complex matrices there are some ambiguities about what is the "common factor" to put outside of the matrix: For_instance_2.mw

restart

# list of small greek letters
seq(cat(`#mo("&#`, i, `;")`), i=945..969)



# A procedure to generate a random word of L letters
RandomGreekWord := proc(L)
  local r := rand(945..969);
  cat(
       `#mrow(`, 
       seq(cat(`mo("&#`, r(), `;"),`), i=1..L-1),
       cat(`mo("&#`, r(), `;"))`)
  )
end proc:

# an example
RandomGreekWord(10)

Download Greek.mw

Capital greek letters range from 913 to 937.
So all greek letters can be displayed by replacing

i=945..969

by 

i in GreekIndices

where 

GreekIndices := [$913..937, $945..969]

I didn(t clearly understood if you had only 3 set of parameters (your second question) or 27 (3x3x3).
Nevertheless the two cases are adressed in the attached file.

As you load the Statistics package I guessed you intended to use it somewhere. So you will find in this same file a very short illustration of what you could do.

restart; with(LinearAlgebra); with(Statistics)

NULL

Solving an ODE in maple is straigthforward

a1 := .150

.150

(1)

lambda1 := 284

284

(2)

P__b1 := 284

284

(3)

L__Last := 10

10

(4)

ODE1 := diff(P(x), x) = a1*(P__b1-P(x))/(1+lambda1(P(x)))^(2/3)

diff(P(x), x) = 0.5263157895e-3*(284-P(x))*285^(1/3)

(5)

ic1 := P(0) = 40.42

P(0) = 40.42

(6)

sol1 := dsolve({ODE1, ic1}, numeric)

proc (x_rkf45) local _res, _dat, _vars, _solnproc, _xout, _ndsol, _pars, _n, _i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; if 1 < nargs then error "invalid input: too many arguments" end if; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then _xout := evalf[_EnvDSNumericSaveDigits](x_rkf45) else _xout := evalf(x_rkf45) end if; _dat := Array(1..4, {(1) = proc (_xin) local _xout, _dtbl, _dat, _vmap, _x0, _y0, _val, _dig, _n, _ne, _nd, _nv, _pars, _ini, _par, _i, _j, _k, _src; option `Copyright (c) 2002 by Waterloo Maple Inc. All rights reserved.`; table( [( "complex" ) = false ] ) _xout := _xin; _pars := []; _dtbl := array( 1 .. 4, [( 1 ) = (array( 1 .. 24, [( 1 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 2 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 3 ) = ([0, 0, 0, Array(1..0, 1..2, {}, datatype = float[8], order = C_order)]), ( 4 ) = (Array(1..54, {(1) = 1, (2) = 1, (3) = 0, (4) = 0, (5) = 0, (6) = 0, (7) = 1, (8) = 0, (9) = 0, (10) = 0, (11) = 0, (12) = 0, (13) = 0, (14) = 0, (15) = 0, (16) = 0, (17) = 0, (18) = 37, (19) = 30000, (20) = 0, (21) = 0, (22) = 1, (23) = 4, (24) = 0, (25) = 1, (26) = 15, (27) = 1, (28) = 0, (29) = 1, (30) = 3, (31) = 3, (32) = 0, (33) = 1, (34) = 0, (35) = 0, (36) = 0, (37) = 0, (38) = 0, (39) = 0, (40) = 0, (41) = 0, (42) = 0, (43) = 1, (44) = 0, (45) = 0, (46) = 0, (47) = 0, (48) = 0, (49) = 0, (50) = 50, (51) = 1, (52) = 0, (53) = 0, (54) = 0}, datatype = integer[8])), ( 5 ) = (Array(1..28, {(1) = .0, (2) = 0.10e-5, (3) = .0, (4) = 0.500001e-14, (5) = .0, (6) = 1.0489820656983686, (7) = .0, (8) = 0.10e-5, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = 1.0, (14) = .0, (15) = .49999999999999, (16) = .0, (17) = 1.0, (18) = 1.0, (19) = .0, (20) = .0, (21) = 1.0, (22) = 1.0, (23) = .0, (24) = .0, (25) = 0.10e-14, (26) = .0, (27) = .0, (28) = .0}, datatype = float[8], order = C_order)), ( 6 ) = (Array(1..1, {(1) = 40.42}, datatype = float[8], order = C_order)), ( 7 ) = ([Array(1..4, 1..7, {(1, 1) = .0, (1, 2) = .203125, (1, 3) = .3046875, (1, 4) = .75, (1, 5) = .8125, (1, 6) = .40625, (1, 7) = .8125, (2, 1) = 0.6378173828125e-1, (2, 2) = .0, (2, 3) = .279296875, (2, 4) = .27237892150878906, (2, 5) = -0.9686851501464844e-1, (2, 6) = 0.1956939697265625e-1, (2, 7) = .5381584167480469, (3, 1) = 0.31890869140625e-1, (3, 2) = .0, (3, 3) = -.34375, (3, 4) = -.335235595703125, (3, 5) = .2296142578125, (3, 6) = .41748046875, (3, 7) = 11.480712890625, (4, 1) = 0.9710520505905151e-1, (4, 2) = .0, (4, 3) = .40350341796875, (4, 4) = 0.20297467708587646e-1, (4, 5) = -0.6054282188415527e-2, (4, 6) = -0.4770040512084961e-1, (4, 7) = .77858567237854}, datatype = float[8], order = C_order), Array(1..6, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = 1.0, (2, 1) = .25, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = 1.0, (3, 1) = .1875, (3, 2) = .5625, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = 2.0, (4, 1) = .23583984375, (4, 2) = -.87890625, (4, 3) = .890625, (4, 4) = .0, (4, 5) = .0, (4, 6) = .2681884765625, (5, 1) = .1272735595703125, (5, 2) = -.5009765625, (5, 3) = .44921875, (5, 4) = -0.128936767578125e-1, (5, 5) = .0, (5, 6) = 0.626220703125e-1, (6, 1) = -0.927734375e-1, (6, 2) = .626220703125, (6, 3) = -.4326171875, (6, 4) = .1418304443359375, (6, 5) = -0.861053466796875e-1, (6, 6) = .3131103515625}, datatype = float[8], order = C_order), Array(1..6, {(1) = .0, (2) = .386, (3) = .21, (4) = .63, (5) = 1.0, (6) = 1.0}, datatype = float[8], order = C_order), Array(1..6, {(1) = .25, (2) = -.1043, (3) = .1035, (4) = -0.362e-1, (5) = .0, (6) = .0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 1.544, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = .9466785280815533, (3, 2) = .25570116989825814, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = 3.3148251870684886, (4, 2) = 2.896124015972123, (4, 3) = .9986419139977808, (4, 4) = .0, (4, 5) = .0, (5, 1) = 1.2212245092262748, (5, 2) = 6.019134481287752, (5, 3) = 12.537083329320874, (5, 4) = -.687886036105895, (5, 5) = .0, (6, 1) = 1.2212245092262748, (6, 2) = 6.019134481287752, (6, 3) = 12.537083329320874, (6, 4) = -.687886036105895, (6, 5) = 1.0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = -5.6688, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = -2.4300933568337584, (3, 2) = -.20635991570891224, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = -.10735290581452621, (4, 2) = -9.594562251021896, (4, 3) = -20.470286148096154, (4, 4) = .0, (4, 5) = .0, (5, 1) = 7.496443313968615, (5, 2) = -10.246804314641219, (5, 3) = -33.99990352819906, (5, 4) = 11.708908932061595, (5, 5) = .0, (6, 1) = 8.083246795922411, (6, 2) = -7.981132988062785, (6, 3) = -31.52159432874373, (6, 4) = 16.319305431231363, (6, 5) = -6.0588182388340535}, datatype = float[8], order = C_order), Array(1..3, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 10.126235083446911, (2, 2) = -7.487995877607633, (2, 3) = -34.800918615557414, (2, 4) = -7.9927717075687275, (2, 5) = 1.0251377232956207, (3, 1) = -.6762803392806898, (3, 2) = 6.087714651678606, (3, 3) = 16.43084320892463, (3, 4) = 24.767225114183653, (3, 5) = -6.5943891257167815}, datatype = float[8], order = C_order)]), ( 9 ) = ([Array(1..1, {(1) = .1}, datatype = float[8], order = C_order), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), Array(1..1, 1..1, {(1, 1) = .0}, datatype = float[8], order = C_order), Array(1..1, 1..1, {(1, 1) = .0}, datatype = float[8], order = C_order), Array(1..1, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = 0}, datatype = integer[8]), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order)]), ( 8 ) = ([Array(1..1, {(1) = 40.42}, datatype = float[8], order = C_order), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = .8436642476661271}, datatype = float[8], order = C_order), 0, 0]), ( 11 ) = (Array(1..6, 0..1, {(1, 1) = .0, (2, 0) = .0, (2, 1) = .0, (3, 0) = .0, (3, 1) = .0, (4, 0) = .0, (4, 1) = .0, (5, 0) = .0, (5, 1) = .0, (6, 0) = .0, (6, 1) = .0}, datatype = float[8], order = C_order)), ( 10 ) = ([proc (N, X, Y, YP) option `[Y[1] = P(x)]`; YP[1] := .983663052537894-0.346360229766865e-2*Y[1]; 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 13 ) = (), ( 12 ) = (), ( 15 ) = ("rkf45"), ( 14 ) = ([0, 0]), ( 18 ) = ([]), ( 19 ) = (0), ( 16 ) = ([0, 0, 0, []]), ( 17 ) = ([proc (N, X, Y, YP) option `[Y[1] = P(x)]`; YP[1] := .983663052537894-0.346360229766865e-2*Y[1]; 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 22 ) = (0), ( 23 ) = (0), ( 20 ) = ([]), ( 21 ) = (0), ( 24 ) = (0)  ] ))  ] ); _y0 := Array(0..1, {(1) = 0.}); _vmap := array( 1 .. 1, [( 1 ) = (1)  ] ); _x0 := _dtbl[1][5][5]; _n := _dtbl[1][4][1]; _ne := _dtbl[1][4][3]; _nd := _dtbl[1][4][4]; _nv := _dtbl[1][4][16]; if not type(_xout, 'numeric') then if member(_xout, ["start", "left", "right"]) then if _Env_smart_dsolve_numeric = true or _dtbl[1][4][10] = 1 then if _xout = "left" then if type(_dtbl[2], 'table') then return _dtbl[2][5][1] end if elif _xout = "right" then if type(_dtbl[3], 'table') then return _dtbl[3][5][1] end if end if end if; return _dtbl[1][5][5] elif _xout = "method" then return _dtbl[1][15] elif _xout = "storage" then return evalb(_dtbl[1][4][10] = 1) elif _xout = "leftdata" then if not type(_dtbl[2], 'array') then return NULL else return eval(_dtbl[2]) end if elif _xout = "rightdata" then if not type(_dtbl[3], 'array') then return NULL else return eval(_dtbl[3]) end if elif _xout = "enginedata" then return eval(_dtbl[1]) elif _xout = "enginereset" then _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); return NULL elif _xout = "initial" then return procname(_y0[0]) elif _xout = "laxtol" then return _dtbl[`if`(member(_dtbl[4], {2, 3}), _dtbl[4], 1)][5][18] elif _xout = "numfun" then return `if`(member(_dtbl[4], {2, 3}), _dtbl[_dtbl[4]][4][18], 0) elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return procname(_y0[0]), [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "last" then if _dtbl[4] <> 2 and _dtbl[4] <> 3 or _x0-_dtbl[_dtbl[4]][5][1] = 0. then error "no information is available on last computed point" else _xout := _dtbl[_dtbl[4]][5][1] end if elif _xout = "function" then if _dtbl[1][4][33]-2. = 0 then return eval(_dtbl[1][10], 1) else return eval(_dtbl[1][10][1], 1) end if elif _xout = "map" then return copy(_vmap) elif type(_xin, `=`) and type(rhs(_xin), 'list') and member(lhs(_xin), {"initial", "parameters", "initial_and_parameters"}) then _ini, _par := [], []; if lhs(_xin) = "initial" then _ini := rhs(_xin) elif lhs(_xin) = "parameters" then _par := rhs(_xin) elif select(type, rhs(_xin), `=`) <> [] then _par, _ini := selectremove(type, rhs(_xin), `=`) elif nops(rhs(_xin)) < nops(_pars)+1 then error "insufficient data for specification of initial and parameters" else _par := rhs(_xin)[-nops(_pars) .. -1]; _ini := rhs(_xin)[1 .. -nops(_pars)-1] end if; _xout := lhs(_xout); if _par <> [] then `dsolve/numeric/process_parameters`(_n, _pars, _par, _y0) end if; if _ini <> [] then `dsolve/numeric/process_initial`(_n-_ne, _ini, _y0, _pars, _vmap) end if; `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars); if _Env_smart_dsolve_numeric = true and type(_y0[0], 'numeric') and _dtbl[1][4][10] <> 1 then procname("right") := _y0[0]; procname("left") := _y0[0] end if; if _xout = "initial" then return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)] elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] else return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)], [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] end if elif _xin = "eventstop" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then return 0 end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 100 and 100 <= _dtbl[5-_i][4][9] then _i := 5-_i; _dtbl[4] := _i; _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) elif 100 <= _dtbl[_i][4][9] then _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) else return 0 end if elif _xin = "eventstatus" then if _nv = 0 then error "this solution has no events" end if; _i := [selectremove(proc (a) options operator, arrow; _dtbl[1][3][1][a, 7] = 1 end proc, {seq(_j, _j = 1 .. round(_dtbl[1][3][1][_nv+1, 1]))})]; return ':-enabled' = _i[1], ':-disabled' = _i[2] elif _xin = "eventclear" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then error "no events to clear" end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 100 and 100 < _dtbl[5-_i][4][9] then _dtbl[4] := 5-_i; _i := 5-_i end if; if _dtbl[_i][4][9] < 100 then error "no events to clear" elif _nv < _dtbl[_i][4][9]-100 then error "event error condition cannot be cleared" else _j := _dtbl[_i][4][9]-100; if irem(round(_dtbl[_i][3][1][_j, 4]), 2) = 1 then error "retriggerable events cannot be cleared" end if; _j := round(_dtbl[_i][3][1][_j, 1]); for _k to _nv do if _dtbl[_i][3][1][_k, 1] = _j then if _dtbl[_i][3][1][_k, 2] = 3 then error "range events cannot be cleared" end if; _dtbl[_i][3][1][_k, 8] := _dtbl[_i][3][1][_nv+1, 8] end if end do; _dtbl[_i][4][17] := 0; _dtbl[_i][4][9] := 0; if _dtbl[1][4][10] = 1 then if _i = 2 then try procname(procname("left")) catch:  end try else try procname(procname("right")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and member(lhs(_xin), {"eventdisable", "eventenable"}) then if _nv = 0 then error "this solution has no events" end if; if type(rhs(_xin), {('list')('posint'), ('set')('posint')}) then _i := {op(rhs(_xin))} elif type(rhs(_xin), 'posint') then _i := {rhs(_xin)} else error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; if select(proc (a) options operator, arrow; _nv < a end proc, _i) <> {} then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _k := {}; for _j to _nv do if member(round(_dtbl[1][3][1][_j, 1]), _i) then _k := `union`(_k, {_j}) end if end do; _i := _k; if lhs(_xin) = "eventdisable" then _dtbl[4] := 0; _j := [evalb(assigned(_dtbl[2]) and member(_dtbl[2][4][17], _i)), evalb(assigned(_dtbl[3]) and member(_dtbl[3][4][17], _i))]; for _k in _i do _dtbl[1][3][1][_k, 7] := 0; if assigned(_dtbl[2]) then _dtbl[2][3][1][_k, 7] := 0 end if; if assigned(_dtbl[3]) then _dtbl[3][3][1][_k, 7] := 0 end if end do; if _j[1] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[2][3][4][_k, 1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to defined init `, _dtbl[2][3][4][_k, 1]); _dtbl[2][3][1][_k, 8] := _dtbl[2][3][4][_k, 1] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to rate hysteresis init `, _dtbl[2][5][24]); _dtbl[2][3][1][_k, 8] := _dtbl[2][5][24] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to initial init `, _x0); _dtbl[2][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to fireinitial init `, _x0-1); _dtbl[2][3][1][_k, 8] := _x0-1 end if end do; _dtbl[2][4][17] := 0; _dtbl[2][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("left")) end if end if; if _j[2] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[3][3][4][_k, 2], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to defined init `, _dtbl[3][3][4][_k, 2]); _dtbl[3][3][1][_k, 8] := _dtbl[3][3][4][_k, 2] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to rate hysteresis init `, _dtbl[3][5][24]); _dtbl[3][3][1][_k, 8] := _dtbl[3][5][24] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to initial init `, _x0); _dtbl[3][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to fireinitial init `, _x0+1); _dtbl[3][3][1][_k, 8] := _x0+1 end if end do; _dtbl[3][4][17] := 0; _dtbl[3][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("right")) end if end if else for _k in _i do _dtbl[1][3][1][_k, 7] := 1 end do; _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); _dtbl[4] := 0; if _dtbl[1][4][10] = 1 then if _x0 <= procname("right") then try procname(procname("right")) catch:  end try end if; if procname("left") <= _x0 then try procname(procname("left")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and lhs(_xin) = "eventfired" then if not type(rhs(_xin), 'list') then error "'eventfired' must be specified as a list" end if; if _nv = 0 then error "this solution has no events" end if; if _dtbl[4] <> 2 and _dtbl[4] <> 3 then error "'direction' must be set prior to calling/setting 'eventfired'" end if; _i := _dtbl[4]; _val := NULL; if not assigned(_EnvEventRetriggerWarned) then _EnvEventRetriggerWarned := false end if; for _k in rhs(_xin) do if type(_k, 'integer') then _src := _k elif type(_k, 'integer' = 'anything') and type(evalf(rhs(_k)), 'numeric') then _k := lhs(_k) = evalf[max(Digits, 18)](rhs(_k)); _src := lhs(_k) else error "'eventfired' entry is not valid: %1", _k end if; if _src < 1 or round(_dtbl[1][3][1][_nv+1, 1]) < _src then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _src := {seq(`if`(_dtbl[1][3][1][_j, 1]-_src = 0., _j, NULL), _j = 1 .. _nv)}; if nops(_src) <> 1 then error "'eventfired' can only be set/queried for root-finding events and time/interval events" end if; _src := _src[1]; if _dtbl[1][3][1][_src, 2] <> 0. and _dtbl[1][3][1][_src, 2]-2. <> 0. then error "'eventfired' can only be set/queried for root-finding events and time/interval events" elif irem(round(_dtbl[1][3][1][_src, 4]), 2) = 1 then if _EnvEventRetriggerWarned = false then WARNING(`'eventfired' has no effect on events that retrigger`) end if; _EnvEventRetriggerWarned := true end if; if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then _val := _val, undefined elif type(_dtbl[_i][3][4][_src, _i-1], 'undefined') or _i = 2 and _dtbl[2][3][1][_src, 8] < _dtbl[2][3][4][_src, 1] or _i = 3 and _dtbl[3][3][4][_src, 2] < _dtbl[3][3][1][_src, 8] then _val := _val, _dtbl[_i][3][1][_src, 8] else _val := _val, _dtbl[_i][3][4][_src, _i-1] end if; if type(_k, `=`) then if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then error "cannot set event code for a rate hysteresis event" end if; userinfo(3, {'events', 'eventreset'}, `manual set event code `, _src, ` to value `, rhs(_k)); _dtbl[_i][3][1][_src, 8] := rhs(_k); _dtbl[_i][3][4][_src, _i-1] := rhs(_k) end if end do; return [_val] elif type(_xin, `=`) and lhs(_xin) = "direction" then if not member(rhs(_xin), {-1, 1, ':-left', ':-right'}) then error "'direction' must be specified as either '1' or 'right' (positive) or '-1' or 'left' (negative)" end if; _src := `if`(_dtbl[4] = 2, -1, `if`(_dtbl[4] = 3, 1, undefined)); _i := `if`(member(rhs(_xin), {1, ':-right'}), 3, 2); _dtbl[4] := _i; _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if; return _src elif _xin = "eventcount" then if _dtbl[1][3][1] = 0 or _dtbl[4] <> 2 and _dtbl[4] <> 3 then return 0 else return round(_dtbl[_dtbl[4]][3][1][_nv+1, 12]) end if else return "procname" end if end if; if _xout = _x0 then return [_x0, seq(evalf(_dtbl[1][6][_vmap[_i]]), _i = 1 .. _n-_ne)] end if; _i := `if`(_x0 <= _xout, 3, 2); if _xin = "last" and 0 < _dtbl[_i][4][9] and _dtbl[_i][4][9] < 100 then _dat := eval(_dtbl[_i], 2); _j := _dat[4][20]; return [_dat[11][_j, 0], seq(_dat[11][_j, _vmap[_i]], _i = 1 .. _n-_ne-_nd), seq(_dat[8][1][_vmap[_i]], _i = _n-_ne-_nd+1 .. _n-_ne)] end if; if not type(_dtbl[_i], 'array') then _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if end if; if _xin <> "last" then if 0 < 0 then if `dsolve/numeric/checkglobals`(op(_dtbl[1][14]), _pars, _n, _y0) then `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars, _i) end if end if; if _dtbl[1][4][7] = 0 then error "parameters must be initialized before solution can be computed" end if end if; _dat := eval(_dtbl[_i], 2); _dtbl[4] := _i; try _src := `dsolve/numeric/SC/IVPrun`(_dat, _xout) catch: userinfo(2, `dsolve/debug`, print(`Exception in solnproc:`, [lastexception][2 .. -1])); error  end try; if _src = 0 and 100 < _dat[4][9] then _val := _dat[3][1][_nv+1, 8] else _val := _dat[11][_dat[4][20], 0] end if; if _src <> 0 or _dat[4][9] <= 0 then _dtbl[1][5][1] := _xout else _dtbl[1][5][1] := _val end if; if _i = 3 and _val < _xout then Rounding := -infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further right of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further right of %1, maxfun limit exceeded (see ?dsolve,maxfun for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further right of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further right of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif _dat[4][9] = 6 then error "cannot evaluate the solution further right of %1, cannot downgrade delay storage for problems with delay derivative order > 1, try increasing delaypts", evalf[8](_val) elif _dat[4][9] = 10 then error "cannot evaluate the solution further right of %1, interrupt requested", evalf[8](_val) elif 100 < _dat[4][9] then if _dat[4][9]-100 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further right of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-100, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further right of %1", evalf[8](_val) end if elif _i = 2 and _xout < _val then Rounding := infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further left of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further left of %1, maxfun limit exceeded (see ?dsolve,maxfun for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further left of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further left of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif _dat[4][9] = 6 then error "cannot evaluate the solution further left of %1, cannot downgrade delay storage for problems with delay derivative order > 1, try increasing delaypts", evalf[8](_val) elif _dat[4][9] = 10 then error "cannot evaluate the solution further right of %1, interrupt requested", evalf[8](_val) elif 100 < _dat[4][9] then if _dat[4][9]-100 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further left of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-100, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further left of %1", evalf[8](_val) end if end if; if _EnvInFsolve = true then _dig := _dat[4][26]; _dat[4][26] := _EnvDSNumericSaveDigits; _Env_dsolve_SC_native := true; if _dat[4][25] = 1 then _i := 1; _dat[4][25] := 2 else _i := _dat[4][25] end if; _val := `dsolve/numeric/SC/IVPval`(_dat, _xout, _src); _dat[4][25] := _i; _dat[4][26] := _dig; [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] else Digits := _dat[4][26]; _val := `dsolve/numeric/SC/IVPval`(eval(_dat, 2), _xout, _src); [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] end if end proc, (2) = Array(0..0, {}), (3) = [x, P(x)], (4) = []}); _vars := _dat[3]; _pars := map(rhs, _dat[4]); _n := nops(_vars)-1; _solnproc := _dat[1]; if not type(_xout, 'numeric') then if member(x_rkf45, ["start", 'start', "method", 'method', "left", 'left', "right", 'right', "leftdata", "rightdata", "enginedata", "eventstop", 'eventstop', "eventclear", 'eventclear', "eventstatus", 'eventstatus', "eventcount", 'eventcount', "laxtol", 'laxtol', "numfun", 'numfun', NULL]) then _res := _solnproc(convert(x_rkf45, 'string')); if 1 < nops([_res]) then return _res elif type(_res, 'array') then return eval(_res, 1) elif _res <> "procname" then return _res end if elif member(x_rkf45, ["last", 'last', "initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(x_rkf45, 'string'); _res := _solnproc(_xout); if _xout = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return [seq(_vars[_i+1] = [_res][1][_i+1], _i = 0 .. _n), seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] else return [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] end if elif type(_xout, `=`) and member(lhs(_xout), ["initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(lhs(x_rkf45), 'string') = rhs(x_rkf45); if type(rhs(_xout), 'list') then _res := _solnproc(_xout) else error "initial and/or parameter values must be specified in a list" end if; if lhs(_xout) = "initial" then return [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] elif lhs(_xout) = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [seq(_vars[_i+1] = [_res][1][_i+1], _i = 0 .. _n), seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["eventdisable", 'eventdisable', "eventenable", 'eventenable', "eventfired", 'eventfired', "direction", 'direction', NULL]) then return _solnproc(convert(lhs(x_rkf45), 'string') = rhs(x_rkf45)) elif _xout = "solnprocedure" then return eval(_solnproc) elif _xout = "sysvars" then return _vars end if; if procname <> unknown then return ('procname')(x_rkf45) else _ndsol; _ndsol := pointto(_dat[2][0]); return ('_ndsol')(x_rkf45) end if end if; try _res := _solnproc(_xout); [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] catch: error  end try end proc

(7)

Z := sol1(L__Last)

[x = 10., P(x) = HFloat(48.71221165797189)]

(8)

First question how can I get only the value of P(x) at LLast?

eval(P(x), sol1(L__Last));

select(has, sol1(L__Last), P(x));

select(has, sol1(L__Last), P(x))[];

HFloat(48.71221165797189)

 

[P(x) = HFloat(48.71221165797189)]

 

P(x) = HFloat(48.71221165797189)

(9)

 

Second question how can I solve this ODE for multiple input and finally obtain a vector with all results?

# my prefered way is this one

restart:


ODE1 := diff(P(x), x) = a1*(P__b1-P(x))/(1+lambda1*(P(x)))^(2/3);

params := convert(indets(ODE1, name) minus {x}, list);

sol1 := dsolve({ODE1, P(0) = 40.42}, numeric, parameters=params);

diff(P(x), x) = a1*(P__b1-P(x))/(1+lambda1*P(x))^(2/3)

 

[P__b1, a1, lambda1]

 

proc (x_rkf45) local _res, _dat, _vars, _solnproc, _xout, _ndsol, _pars, _n, _i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; if 1 < nargs then error "invalid input: too many arguments" end if; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then _xout := evalf[_EnvDSNumericSaveDigits](x_rkf45) else _xout := evalf(x_rkf45) end if; _dat := Array(1..4, {(1) = proc (_xin) local _xout, _dtbl, _dat, _vmap, _x0, _y0, _val, _dig, _n, _ne, _nd, _nv, _pars, _ini, _par, _i, _j, _k, _src; option `Copyright (c) 2002 by Waterloo Maple Inc. All rights reserved.`; table( [( "complex" ) = false ] ) _xout := _xin; _pars := [P__b1 = P__b1, a1 = a1, lambda1 = lambda1]; _dtbl := array( 1 .. 4, [( 1 ) = (array( 1 .. 24, [( 1 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 2 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 3 ) = ([0, 0, 0, Array(1..0, 1..2, {}, datatype = float[8], order = C_order)]), ( 4 ) = (Array(1..54, {(1) = 1, (2) = 1, (3) = 0, (4) = 0, (5) = 3, (6) = 0, (7) = 0, (8) = 0, (9) = 0, (10) = 0, (11) = 0, (12) = 0, (13) = 0, (14) = 0, (15) = 0, (16) = 0, (17) = 0, (18) = 0, (19) = 30000, (20) = 0, (21) = 0, (22) = 1, (23) = 4, (24) = 0, (25) = 1, (26) = 15, (27) = 1, (28) = 0, (29) = 1, (30) = 3, (31) = 3, (32) = 0, (33) = 1, (34) = 0, (35) = 0, (36) = 0, (37) = 0, (38) = 0, (39) = 0, (40) = 0, (41) = 0, (42) = 0, (43) = 1, (44) = 0, (45) = 0, (46) = 0, (47) = 0, (48) = 0, (49) = 0, (50) = 50, (51) = 1, (52) = 0, (53) = 0, (54) = 0}, datatype = integer[8])), ( 5 ) = (Array(1..28, {(1) = .0, (2) = 0.10e-5, (3) = .0, (4) = 0.500001e-14, (5) = .0, (6) = .0, (7) = .0, (8) = 0.10e-5, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = 1.0, (14) = .0, (15) = .49999999999999, (16) = .0, (17) = 1.0, (18) = 1.0, (19) = .0, (20) = .0, (21) = 1.0, (22) = 1.0, (23) = .0, (24) = .0, (25) = 0.10e-14, (26) = .0, (27) = .0, (28) = .0}, datatype = float[8], order = C_order)), ( 6 ) = (Array(1..4, {(1) = 40.42, (2) = Float(undefined), (3) = Float(undefined), (4) = Float(undefined)})), ( 7 ) = ([Array(1..4, 1..7, {(1, 1) = .0, (1, 2) = .203125, (1, 3) = .3046875, (1, 4) = .75, (1, 5) = .8125, (1, 6) = .40625, (1, 7) = .8125, (2, 1) = 0.6378173828125e-1, (2, 2) = .0, (2, 3) = .279296875, (2, 4) = .27237892150878906, (2, 5) = -0.9686851501464844e-1, (2, 6) = 0.1956939697265625e-1, (2, 7) = .5381584167480469, (3, 1) = 0.31890869140625e-1, (3, 2) = .0, (3, 3) = -.34375, (3, 4) = -.335235595703125, (3, 5) = .2296142578125, (3, 6) = .41748046875, (3, 7) = 11.480712890625, (4, 1) = 0.9710520505905151e-1, (4, 2) = .0, (4, 3) = .40350341796875, (4, 4) = 0.20297467708587646e-1, (4, 5) = -0.6054282188415527e-2, (4, 6) = -0.4770040512084961e-1, (4, 7) = .77858567237854}, datatype = float[8], order = C_order), Array(1..6, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = 1.0, (2, 1) = .25, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = 1.0, (3, 1) = .1875, (3, 2) = .5625, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = 2.0, (4, 1) = .23583984375, (4, 2) = -.87890625, (4, 3) = .890625, (4, 4) = .0, (4, 5) = .0, (4, 6) = .2681884765625, (5, 1) = .1272735595703125, (5, 2) = -.5009765625, (5, 3) = .44921875, (5, 4) = -0.128936767578125e-1, (5, 5) = .0, (5, 6) = 0.626220703125e-1, (6, 1) = -0.927734375e-1, (6, 2) = .626220703125, (6, 3) = -.4326171875, (6, 4) = .1418304443359375, (6, 5) = -0.861053466796875e-1, (6, 6) = .3131103515625}, datatype = float[8], order = C_order), Array(1..6, {(1) = .0, (2) = .386, (3) = .21, (4) = .63, (5) = 1.0, (6) = 1.0}, datatype = float[8], order = C_order), Array(1..6, {(1) = .25, (2) = -.1043, (3) = .1035, (4) = -0.362e-1, (5) = .0, (6) = .0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 1.544, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = .9466785280815533, (3, 2) = .25570116989825814, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = 3.3148251870684886, (4, 2) = 2.896124015972123, (4, 3) = .9986419139977808, (4, 4) = .0, (4, 5) = .0, (5, 1) = 1.2212245092262748, (5, 2) = 6.019134481287752, (5, 3) = 12.537083329320874, (5, 4) = -.687886036105895, (5, 5) = .0, (6, 1) = 1.2212245092262748, (6, 2) = 6.019134481287752, (6, 3) = 12.537083329320874, (6, 4) = -.687886036105895, (6, 5) = 1.0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = -5.6688, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = -2.4300933568337584, (3, 2) = -.20635991570891224, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = -.10735290581452621, (4, 2) = -9.594562251021896, (4, 3) = -20.470286148096154, (4, 4) = .0, (4, 5) = .0, (5, 1) = 7.496443313968615, (5, 2) = -10.246804314641219, (5, 3) = -33.99990352819906, (5, 4) = 11.708908932061595, (5, 5) = .0, (6, 1) = 8.083246795922411, (6, 2) = -7.981132988062785, (6, 3) = -31.52159432874373, (6, 4) = 16.319305431231363, (6, 5) = -6.0588182388340535}, datatype = float[8], order = C_order), Array(1..3, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 10.126235083446911, (2, 2) = -7.487995877607633, (2, 3) = -34.800918615557414, (2, 4) = -7.9927717075687275, (2, 5) = 1.0251377232956207, (3, 1) = -.6762803392806898, (3, 2) = 6.087714651678606, (3, 3) = 16.43084320892463, (3, 4) = 24.767225114183653, (3, 5) = -6.5943891257167815}, datatype = float[8], order = C_order)]), ( 9 ) = ([Array(1..1, {(1) = .1}, datatype = float[8], order = C_order), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), Array(1..1, 1..1, {(1, 1) = .0}, datatype = float[8], order = C_order), Array(1..1, 1..1, {(1, 1) = .0}, datatype = float[8], order = C_order), Array(1..1, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = 0}, datatype = integer[8]), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order)]), ( 8 ) = ([Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..1, {(1) = .0}, datatype = float[8], order = C_order), 0, 0]), ( 11 ) = (Array(1..6, 0..1, {(1, 1) = .0, (2, 0) = .0, (2, 1) = .0, (3, 0) = .0, (3, 1) = .0, (4, 0) = .0, (4, 1) = .0, (5, 0) = .0, (5, 1) = .0, (6, 0) = .0, (6, 1) = .0}, datatype = float[8], order = C_order)), ( 10 ) = ([proc (N, X, Y, YP) option `[Y[1] = P(x)]`; if Y[1]*Y[4] < -1 then YP[1] := undefined; return 0 end if; YP[1] := Y[3]*(Y[2]-Y[1])*evalf(1/(Y[1]*Y[4]+1)^(2/3)); 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 13 ) = (), ( 12 ) = (), ( 15 ) = ("rkf45"), ( 14 ) = ([0, 0]), ( 18 ) = ([]), ( 19 ) = (0), ( 16 ) = ([0, 0, 0, []]), ( 17 ) = ([proc (N, X, Y, YP) option `[Y[1] = P(x)]`; if Y[1]*Y[4] < -1 then YP[1] := undefined; return 0 end if; YP[1] := Y[3]*(Y[2]-Y[1])*evalf(1/(Y[1]*Y[4]+1)^(2/3)); 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 22 ) = (0), ( 23 ) = (0), ( 20 ) = ([]), ( 21 ) = (0), ( 24 ) = (0)  ] ))  ] ); _y0 := Array(0..4, {(1) = 0., (2) = 40.42, (3) = undefined, (4) = undefined}); _vmap := array( 1 .. 1, [( 1 ) = (1)  ] ); _x0 := _dtbl[1][5][5]; _n := _dtbl[1][4][1]; _ne := _dtbl[1][4][3]; _nd := _dtbl[1][4][4]; _nv := _dtbl[1][4][16]; if not type(_xout, 'numeric') then if member(_xout, ["start", "left", "right"]) then if _Env_smart_dsolve_numeric = true or _dtbl[1][4][10] = 1 then if _xout = "left" then if type(_dtbl[2], 'table') then return _dtbl[2][5][1] end if elif _xout = "right" then if type(_dtbl[3], 'table') then return _dtbl[3][5][1] end if end if end if; return _dtbl[1][5][5] elif _xout = "method" then return _dtbl[1][15] elif _xout = "storage" then return evalb(_dtbl[1][4][10] = 1) elif _xout = "leftdata" then if not type(_dtbl[2], 'array') then return NULL else return eval(_dtbl[2]) end if elif _xout = "rightdata" then if not type(_dtbl[3], 'array') then return NULL else return eval(_dtbl[3]) end if elif _xout = "enginedata" then return eval(_dtbl[1]) elif _xout = "enginereset" then _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); return NULL elif _xout = "initial" then return procname(_y0[0]) elif _xout = "laxtol" then return _dtbl[`if`(member(_dtbl[4], {2, 3}), _dtbl[4], 1)][5][18] elif _xout = "numfun" then return `if`(member(_dtbl[4], {2, 3}), _dtbl[_dtbl[4]][4][18], 0) elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return procname(_y0[0]), [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "last" then if _dtbl[4] <> 2 and _dtbl[4] <> 3 or _x0-_dtbl[_dtbl[4]][5][1] = 0. then error "no information is available on last computed point" else _xout := _dtbl[_dtbl[4]][5][1] end if elif _xout = "function" then if _dtbl[1][4][33]-2. = 0 then return eval(_dtbl[1][10], 1) else return eval(_dtbl[1][10][1], 1) end if elif _xout = "map" then return copy(_vmap) elif type(_xin, `=`) and type(rhs(_xin), 'list') and member(lhs(_xin), {"initial", "parameters", "initial_and_parameters"}) then _ini, _par := [], []; if lhs(_xin) = "initial" then _ini := rhs(_xin) elif lhs(_xin) = "parameters" then _par := rhs(_xin) elif select(type, rhs(_xin), `=`) <> [] then _par, _ini := selectremove(type, rhs(_xin), `=`) elif nops(rhs(_xin)) < nops(_pars)+1 then error "insufficient data for specification of initial and parameters" else _par := rhs(_xin)[-nops(_pars) .. -1]; _ini := rhs(_xin)[1 .. -nops(_pars)-1] end if; _xout := lhs(_xout); if _par <> [] then `dsolve/numeric/process_parameters`(_n, _pars, _par, _y0) end if; if _ini <> [] then `dsolve/numeric/process_initial`(_n-_ne, _ini, _y0, _pars, _vmap) end if; `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars); if _Env_smart_dsolve_numeric = true and type(_y0[0], 'numeric') and _dtbl[1][4][10] <> 1 then procname("right") := _y0[0]; procname("left") := _y0[0] end if; if _xout = "initial" then return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)] elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] else return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)], [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] end if elif _xin = "eventstop" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then return 0 end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 100 and 100 <= _dtbl[5-_i][4][9] then _i := 5-_i; _dtbl[4] := _i; _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) elif 100 <= _dtbl[_i][4][9] then _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) else return 0 end if elif _xin = "eventstatus" then if _nv = 0 then error "this solution has no events" end if; _i := [selectremove(proc (a) options operator, arrow; _dtbl[1][3][1][a, 7] = 1 end proc, {seq(_j, _j = 1 .. round(_dtbl[1][3][1][_nv+1, 1]))})]; return ':-enabled' = _i[1], ':-disabled' = _i[2] elif _xin = "eventclear" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then error "no events to clear" end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 100 and 100 < _dtbl[5-_i][4][9] then _dtbl[4] := 5-_i; _i := 5-_i end if; if _dtbl[_i][4][9] < 100 then error "no events to clear" elif _nv < _dtbl[_i][4][9]-100 then error "event error condition cannot be cleared" else _j := _dtbl[_i][4][9]-100; if irem(round(_dtbl[_i][3][1][_j, 4]), 2) = 1 then error "retriggerable events cannot be cleared" end if; _j := round(_dtbl[_i][3][1][_j, 1]); for _k to _nv do if _dtbl[_i][3][1][_k, 1] = _j then if _dtbl[_i][3][1][_k, 2] = 3 then error "range events cannot be cleared" end if; _dtbl[_i][3][1][_k, 8] := _dtbl[_i][3][1][_nv+1, 8] end if end do; _dtbl[_i][4][17] := 0; _dtbl[_i][4][9] := 0; if _dtbl[1][4][10] = 1 then if _i = 2 then try procname(procname("left")) catch:  end try else try procname(procname("right")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and member(lhs(_xin), {"eventdisable", "eventenable"}) then if _nv = 0 then error "this solution has no events" end if; if type(rhs(_xin), {('list')('posint'), ('set')('posint')}) then _i := {op(rhs(_xin))} elif type(rhs(_xin), 'posint') then _i := {rhs(_xin)} else error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; if select(proc (a) options operator, arrow; _nv < a end proc, _i) <> {} then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _k := {}; for _j to _nv do if member(round(_dtbl[1][3][1][_j, 1]), _i) then _k := `union`(_k, {_j}) end if end do; _i := _k; if lhs(_xin) = "eventdisable" then _dtbl[4] := 0; _j := [evalb(assigned(_dtbl[2]) and member(_dtbl[2][4][17], _i)), evalb(assigned(_dtbl[3]) and member(_dtbl[3][4][17], _i))]; for _k in _i do _dtbl[1][3][1][_k, 7] := 0; if assigned(_dtbl[2]) then _dtbl[2][3][1][_k, 7] := 0 end if; if assigned(_dtbl[3]) then _dtbl[3][3][1][_k, 7] := 0 end if end do; if _j[1] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[2][3][4][_k, 1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to defined init `, _dtbl[2][3][4][_k, 1]); _dtbl[2][3][1][_k, 8] := _dtbl[2][3][4][_k, 1] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to rate hysteresis init `, _dtbl[2][5][24]); _dtbl[2][3][1][_k, 8] := _dtbl[2][5][24] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to initial init `, _x0); _dtbl[2][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to fireinitial init `, _x0-1); _dtbl[2][3][1][_k, 8] := _x0-1 end if end do; _dtbl[2][4][17] := 0; _dtbl[2][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("left")) end if end if; if _j[2] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[3][3][4][_k, 2], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to defined init `, _dtbl[3][3][4][_k, 2]); _dtbl[3][3][1][_k, 8] := _dtbl[3][3][4][_k, 2] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to rate hysteresis init `, _dtbl[3][5][24]); _dtbl[3][3][1][_k, 8] := _dtbl[3][5][24] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to initial init `, _x0); _dtbl[3][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to fireinitial init `, _x0+1); _dtbl[3][3][1][_k, 8] := _x0+1 end if end do; _dtbl[3][4][17] := 0; _dtbl[3][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("right")) end if end if else for _k in _i do _dtbl[1][3][1][_k, 7] := 1 end do; _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); _dtbl[4] := 0; if _dtbl[1][4][10] = 1 then if _x0 <= procname("right") then try procname(procname("right")) catch:  end try end if; if procname("left") <= _x0 then try procname(procname("left")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and lhs(_xin) = "eventfired" then if not type(rhs(_xin), 'list') then error "'eventfired' must be specified as a list" end if; if _nv = 0 then error "this solution has no events" end if; if _dtbl[4] <> 2 and _dtbl[4] <> 3 then error "'direction' must be set prior to calling/setting 'eventfired'" end if; _i := _dtbl[4]; _val := NULL; if not assigned(_EnvEventRetriggerWarned) then _EnvEventRetriggerWarned := false end if; for _k in rhs(_xin) do if type(_k, 'integer') then _src := _k elif type(_k, 'integer' = 'anything') and type(evalf(rhs(_k)), 'numeric') then _k := lhs(_k) = evalf[max(Digits, 18)](rhs(_k)); _src := lhs(_k) else error "'eventfired' entry is not valid: %1", _k end if; if _src < 1 or round(_dtbl[1][3][1][_nv+1, 1]) < _src then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _src := {seq(`if`(_dtbl[1][3][1][_j, 1]-_src = 0., _j, NULL), _j = 1 .. _nv)}; if nops(_src) <> 1 then error "'eventfired' can only be set/queried for root-finding events and time/interval events" end if; _src := _src[1]; if _dtbl[1][3][1][_src, 2] <> 0. and _dtbl[1][3][1][_src, 2]-2. <> 0. then error "'eventfired' can only be set/queried for root-finding events and time/interval events" elif irem(round(_dtbl[1][3][1][_src, 4]), 2) = 1 then if _EnvEventRetriggerWarned = false then WARNING(`'eventfired' has no effect on events that retrigger`) end if; _EnvEventRetriggerWarned := true end if; if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then _val := _val, undefined elif type(_dtbl[_i][3][4][_src, _i-1], 'undefined') or _i = 2 and _dtbl[2][3][1][_src, 8] < _dtbl[2][3][4][_src, 1] or _i = 3 and _dtbl[3][3][4][_src, 2] < _dtbl[3][3][1][_src, 8] then _val := _val, _dtbl[_i][3][1][_src, 8] else _val := _val, _dtbl[_i][3][4][_src, _i-1] end if; if type(_k, `=`) then if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then error "cannot set event code for a rate hysteresis event" end if; userinfo(3, {'events', 'eventreset'}, `manual set event code `, _src, ` to value `, rhs(_k)); _dtbl[_i][3][1][_src, 8] := rhs(_k); _dtbl[_i][3][4][_src, _i-1] := rhs(_k) end if end do; return [_val] elif type(_xin, `=`) and lhs(_xin) = "direction" then if not member(rhs(_xin), {-1, 1, ':-left', ':-right'}) then error "'direction' must be specified as either '1' or 'right' (positive) or '-1' or 'left' (negative)" end if; _src := `if`(_dtbl[4] = 2, -1, `if`(_dtbl[4] = 3, 1, undefined)); _i := `if`(member(rhs(_xin), {1, ':-right'}), 3, 2); _dtbl[4] := _i; _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if; return _src elif _xin = "eventcount" then if _dtbl[1][3][1] = 0 or _dtbl[4] <> 2 and _dtbl[4] <> 3 then return 0 else return round(_dtbl[_dtbl[4]][3][1][_nv+1, 12]) end if else return "procname" end if end if; if _xout = _x0 then return [_x0, seq(evalf(_dtbl[1][6][_vmap[_i]]), _i = 1 .. _n-_ne)] end if; _i := `if`(_x0 <= _xout, 3, 2); if _xin = "last" and 0 < _dtbl[_i][4][9] and _dtbl[_i][4][9] < 100 then _dat := eval(_dtbl[_i], 2); _j := _dat[4][20]; return [_dat[11][_j, 0], seq(_dat[11][_j, _vmap[_i]], _i = 1 .. _n-_ne-_nd), seq(_dat[8][1][_vmap[_i]], _i = _n-_ne-_nd+1 .. _n-_ne)] end if; if not type(_dtbl[_i], 'array') then _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if end if; if _xin <> "last" then if 0 < 0 then if `dsolve/numeric/checkglobals`(op(_dtbl[1][14]), _pars, _n, _y0) then `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars, _i) end if end if; if _dtbl[1][4][7] = 0 then error "parameters must be initialized before solution can be computed" end if end if; _dat := eval(_dtbl[_i], 2); _dtbl[4] := _i; try _src := `dsolve/numeric/SC/IVPrun`(_dat, _xout) catch: userinfo(2, `dsolve/debug`, print(`Exception in solnproc:`, [lastexception][2 .. -1])); error  end try; if _src = 0 and 100 < _dat[4][9] then _val := _dat[3][1][_nv+1, 8] else _val := _dat[11][_dat[4][20], 0] end if; if _src <> 0 or _dat[4][9] <= 0 then _dtbl[1][5][1] := _xout else _dtbl[1][5][1] := _val end if; if _i = 3 and _val < _xout then Rounding := -infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further right of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further right of %1, maxfun limit exceeded (see ?dsolve,maxfun for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further right of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further right of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif _dat[4][9] = 6 then error "cannot evaluate the solution further right of %1, cannot downgrade delay storage for problems with delay derivative order > 1, try increasing delaypts", evalf[8](_val) elif _dat[4][9] = 10 then error "cannot evaluate the solution further right of %1, interrupt requested", evalf[8](_val) elif 100 < _dat[4][9] then if _dat[4][9]-100 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further right of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-100, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further right of %1", evalf[8](_val) end if elif _i = 2 and _xout < _val then Rounding := infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further left of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further left of %1, maxfun limit exceeded (see ?dsolve,maxfun for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further left of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further left of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif _dat[4][9] = 6 then error "cannot evaluate the solution further left of %1, cannot downgrade delay storage for problems with delay derivative order > 1, try increasing delaypts", evalf[8](_val) elif _dat[4][9] = 10 then error "cannot evaluate the solution further right of %1, interrupt requested", evalf[8](_val) elif 100 < _dat[4][9] then if _dat[4][9]-100 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further left of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-100, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further left of %1", evalf[8](_val) end if end if; if _EnvInFsolve = true then _dig := _dat[4][26]; _dat[4][26] := _EnvDSNumericSaveDigits; _Env_dsolve_SC_native := true; if _dat[4][25] = 1 then _i := 1; _dat[4][25] := 2 else _i := _dat[4][25] end if; _val := `dsolve/numeric/SC/IVPval`(_dat, _xout, _src); _dat[4][25] := _i; _dat[4][26] := _dig; [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] else Digits := _dat[4][26]; _val := `dsolve/numeric/SC/IVPval`(eval(_dat, 2), _xout, _src); [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] end if end proc, (2) = Array(0..0, {}), (3) = [x, P(x)], (4) = [P__b1 = P__b1, a1 = a1, lambda1 = lambda1]}); _vars := _dat[3]; _pars := map(rhs, _dat[4]); _n := nops(_vars)-1; _solnproc := _dat[1]; if not type(_xout, 'numeric') then if member(x_rkf45, ["start", 'start', "method", 'method', "left", 'left', "right", 'right', "leftdata", "rightdata", "enginedata", "eventstop", 'eventstop', "eventclear", 'eventclear', "eventstatus", 'eventstatus', "eventcount", 'eventcount', "laxtol", 'laxtol', "numfun", 'numfun', NULL]) then _res := _solnproc(convert(x_rkf45, 'string')); if 1 < nops([_res]) then return _res elif type(_res, 'array') then return eval(_res, 1) elif _res <> "procname" then return _res end if elif member(x_rkf45, ["last", 'last', "initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(x_rkf45, 'string'); _res := _solnproc(_xout); if _xout = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return [seq(_vars[_i+1] = [_res][1][_i+1], _i = 0 .. _n), seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] else return [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] end if elif type(_xout, `=`) and member(lhs(_xout), ["initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(lhs(x_rkf45), 'string') = rhs(x_rkf45); if type(rhs(_xout), 'list') then _res := _solnproc(_xout) else error "initial and/or parameter values must be specified in a list" end if; if lhs(_xout) = "initial" then return [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] elif lhs(_xout) = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [seq(_vars[_i+1] = [_res][1][_i+1], _i = 0 .. _n), seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["eventdisable", 'eventdisable', "eventenable", 'eventenable', "eventfired", 'eventfired', "direction", 'direction', NULL]) then return _solnproc(convert(lhs(x_rkf45), 'string') = rhs(x_rkf45)) elif _xout = "solnprocedure" then return eval(_solnproc) elif _xout = "sysvars" then return _vars end if; if procname <> unknown then return ('procname')(x_rkf45) else _ndsol; _ndsol := pointto(_dat[2][0]); return ('_ndsol')(x_rkf45) end if end if; try _res := _solnproc(_xout); [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] catch: error  end try end proc

(10)

data_Pb1 := [284, 283, 352]:
data_a1  := [0.150, 0.152, 0.145]:
data_lam := [38.57, 50.22, 39.83]:

data := [ data_Pb1, data_a1, data_lam ]

[[284, 283, 352], [.150, .152, .145], [38.57, 50.22, 39.83]]

(11)

# To get the 3x3x3=27 different combinations of the three parameters:

use combinat in
  C := cartprod(data):  
  combs := NULL:
  while not C[finished] do
    combs := combs, C[nextvalue]()
  end do:
end use:

combs := [combs]:

# To get the 27 corrresponding values:

L__Last := 10:

RES := table([]):  # a suggestion
for c in combs do
  sol1(parameters = c):
  RES[c] := eval(P(x), sol1(L__Last));
end do:

eval(RES):
  

# Visualizations.
#
# For instance, to plot P(L__last) as a "function" of P__b1 and a1
# "parameterized" by λ1

# Indices of table RES such that λ1 = 38.57
Indices_1 := select((i -> is(op(3, i)=data_lam[1])), [indices(RES, nolist)]):

# Indices of table RES such that λ1 = 50.22
Indices_2 := select((i -> is(op(3, i)=data_lam[2])), [indices(RES, nolist)]):

# Indices of table RES such that λ1 = 39.83
Indices_3 := select((i -> is(op(3, i)=data_lam[3])), [indices(RES, nolist)]):

# Results for λ1 = 39.83
N_1   := numelems(Indices_1):
pts_1 := Matrix(N_1, 3, (i, j) -> `if`(j=3, RES[Indices_1[i]], Indices_1[i][j])):

# Results for λ1 = 39.83
pts_2 := Matrix(N_1, 3, (i, j) -> `if`(j=3, RES[Indices_2[i]], Indices_2[i][j])):
# Results for λ1 = 39.83
pts_3 := Matrix(N_1, 3, (i, j) -> `if`(j=3, RES[Indices_3[i]], Indices_3[i][j])):

plots:-display(
  Statistics:-ScatterPlot3D(pts_1, symbol=solidcircle, symbolsize=25, color=red),
  Statistics:-ScatterPlot3D(pts_2, symbol=solidcircle, symbolsize=25, color=green),
  Statistics:-ScatterPlot3D(pts_3, symbol=solidcircle, symbolsize=25, color=blue)
);

 

ResIndices := [indices(RES, nolist)]:
ResMatrix  := convert(ResIndices, Matrix):
ResMatrix  := `<|>`(ResMatrix, Vector(numelems(combs), i -> RES[ResIndices[i]]));



fit := unapply(Statistics:-LinearFit([1, u, v, w], ResMatrix, [u, v, w]), [u, v, w]):

fit(params[]);

plots:-display(
  Statistics:-ScatterPlot3D(pts_1, symbol=solidcircle, symbolsize=25, color=red),
  Statistics:-ScatterPlot3D(pts_2, symbol=solidcircle, symbolsize=25, color=green),
  Statistics:-ScatterPlot3D(pts_3, symbol=solidcircle, symbolsize=25, color=blue),

  plot3d(fit(P__b1, a1, data_lam[1]), P__b1=(min..max)(data_Pb1), a1=(min..max)(data_a1), style=wireframe, color=red),
  plot3d(fit(P__b1, a1, data_lam[2]), P__b1=(min..max)(data_Pb1), a1=(min..max)(data_a1), style=wireframe, color=green),

  plot3d(fit(P__b1, a1, data_lam[3]), P__b1=(min..max)(data_Pb1), a1=(min..max)(data_a1), style=wireframe, color=blue)
);

ResMatrix := Vector(4, {(1) = ` 27 x 4 `*Matrix, (2) = `Data Type: `*anything, (3) = `Storage: `*rectangular, (4) = `Order: `*Fortran_order})

 

HFloat(39.10075362545055)+HFloat(0.009896105486091737)*P__b1+HFloat(17.595438201866976)*a1-HFloat(0.03830292313118778)*lambda1

 

 

# In case you have just 3 configurations:

ThreeRes  := convert([data_Pb1, data_a1, data_lam], Matrix)^+:
ThreeConf := convert(ThreeRes, listlist):

ResVector := Vector(numelems(ThreeConf)):
for i from 1 to numelems(ThreeConf) do
  sol1(parameters = ThreeConf[i]):
  ResVector[i] := eval(P(x), sol1(L__Last));
end do:

VectorTitle := Vector[row]([params[], P(L__Last)]):

ThreeRes := `<,>`(VectorTitle, < ThreeRes | ResVector >)

ThreeRes := Matrix(4, 4, {(1, 1) = `#msub(mi("P"),mi("b1"))`, (1, 2) = a1, (1, 3) = lambda1, (1, 4) = P(10), (2, 1) = 284, (2, 2) = .150, (2, 3) = 38.57, (2, 4) = 43.0642521778387, (3, 1) = 283, (3, 2) = .152, (3, 3) = 50.22, (3, 4) = 42.6670938150578, (4, 1) = 352, (4, 2) = .145, (4, 3) = 39.83, (4, 4) = 43.6076477820810})

(12)

``

Download SeveralPossibilities.mw

@sursumCorda

Basically you have four elements and each is associated to a frame: to satisfy your requirement the red line must be set behind the blue rectangle, the blue rectangle behind the blue line, finally the blue line behind the red rectangle... which implies the red line is behind the red rectangle.
So it is impossible to do what you asked without cheating

Here are two ways to cheat (is the first way what you name "breaking segments"?)

restart

with(ColorTools):
with(plottools):

lr := rectangle([2, 0], [3, 6], 'color' = Color([.6, .7, .9])):

rr := rectangle([4, 0], [5, 6], 'color' = Color([.95, .7, .6])):

h  := 0.1:
al := [[1, 0], [6, 5]]:
al := [al[], (al[[2, 1]] +~ [[0, h]$2])[]]:
pl := PLOT(POLYGONS(al, COLOR(RGB, HexToRGB24("#0072BD")[]), STYLE(PATCHNOGRID))):

ar := [[1, 1], [6, 6]]:
ar := [ar[], (ar[[2, 1]] +~ [[0, h]$2])[]]:
pr := PLOT(POLYGONS(ar, COLOR(RGB, 1, 0, 0), STYLE(PATCHNOGRID))):

h  := 0.1:
al := [[1, 0], [6, 5]]:
al := [al[], (al[[2, 1]] +~ [[0, h]$2])[]]:
lp := PLOT(POLYGONS(al, COLOR(RGB, HexToRGB24("#0072BD")[]), STYLE(PATCHNOGRID))):

ar := [[1, 1], [6, 6]]:
ar := [ar[], (ar[[2, 1]] +~ [[0, 2*h]$2])[]]:
rp := PLOT(POLYGONS(ar, COLOR(RGB, 1, 0, 0), STYLE(PATCHNOGRID))):

half_rp := transform((x, y) -> [(x+1)/2, y/2])(rp):
plots:-display(
  translate(half_rp, 5/2, 5/2),
  rr,
  lp,
  lr,
  rr,
  half_rp
)

 

 

While_cheating.mw

Another solution is to build 3D elements in different planes and project the result onto the appropriate plane. For instance:

bl := plot([[1, 0], [6, 5]], color="#0072BD", thickness=3): 

rl := PLOT3D(
        CURVES(
          [[1, 1, -1], [7/2, 7/2, -1], [7/2, 7/2, 1],  [6, 6, 1]]
          , COLOR(RGB, 1, 0, 0)
          , THICKNESS(3)
        )
      ): 

lr3D := transform((x, y) -> [x, y, -1/2])(lr):
rr3D := transform((x, y) -> [x, y, 1/2])(rr):
bl3D := transform((x, y) -> [x, y, 0])(bl):

plots:-display(lr3D, rr3D, bl3D, rl, lightmodel=none, orientation=[-90, 0, 0], labels=[x, y, z])



Even if you get rid of 0.*I you will face some other problems (for instance eq1 and eq2 are complex, so my STEP 2 in the attached file)

Look to the attached file to see how I fixed them successively (yellow highlighted text)  while leaving to you the last one (uou are the one who can fix it).

(I did the things quite rapidly and didn't spend time to arrange your code)

 

Download Capillarity_mmcdara.mw

The attached file adresses your two questions.
For the first one you have to use the translation and scaling properties of FT/FFT/DFT transforms.
For the second one you cannot keep a formal N and you must use the scaling property above.

For whatever reason the content of the attached file can't be displayed

FT_mmcdara.mw

A few details.mw here 

You could do this

NULL

restart

with(LinearAlgebra):

prel := {p1 = (1/2)*exp(I*a*x*(1/2)+I*b*t*(1/2))*(I*a*g[1](t, x)+2*(diff(g[1](t, x), x))), p2 = -(1/2)*exp(-I*a*x*(1/2)-I*b*t*(1/2))*(I*a*g[2](t, x)-2*(diff(g[2](t, x), x))), p3 = -(1/2)*exp(-I*a*x*(1/2)-I*b*t*(1/2))*(I*a*g[3](t, x)-2*(diff(g[3](t, x), x)))}:

A := Matrix([[rhs(prel[1]), rhs(prel[2]), rhs(prel[3])]]):

A1 := Transpose(A):

prel1 := {p4 = exp((1/2*I)*a*x+(1/2*I)*b*t)*(-I*lambda*g[1](t, x)+c[1]*g[2](t, x)+c[2]*g[3](t, x)), p5 = exp(-(1/2*I)*a*x-(1/2*I)*b*t)*(I*lambda*g[2](t, x)-c[1]*g[1](t, x)), p6 = exp(-(1/2*I)*a*x-(1/2*I)*b*t)*(I*lambda*g[3](t, x)-c[2]*g[1](t, x))}:

A2 := Matrix([[rhs(prel1[1]), rhs(prel1[2]), rhs(prel1[3])]]):

kernelopts(version);  # Newer versions ebable a better rendering while avoiding &.

`Maple 2015.2, APPLE UNIVERSAL OSX, Dec 20 2015, Build ID 1097895`

(1)

# A1

A1_rel   := map(a -> isolate(a, select(has, indets(a, function), diff)[]), [entries(A1, nolist)]):
Unknowns := lhs~(%):

mat, vec := LinearAlgebra:-GenerateMatrix(A1_rel, Unknowns):

# This

mat &. vec = < Unknowns >:

# or this
mat . LinearAlgebra:-DiagonalMatrix(vec) = < Unknowns >;
 

(Matrix(3, 3, {(1, 1) = -((1/2)*I)*a*g[1](t, x), (1, 2) = 0, (1, 3) = 0, (2, 1) = 0, (2, 2) = ((1/2)*I)*a*g[2](t, x), (2, 3) = 0, (3, 1) = 0, (3, 2) = 0, (3, 3) = ((1/2)*I)*a*g[3](t, x)})) = (Vector(3, {(1) = diff(g[1](t, x), x), (2) = diff(g[2](t, x), x), (3) = diff(g[3](t, x), x)}))

(2)

# A3

Unknowns := convert(select(has, indets(A3), g), list);
mat, vec := LinearAlgebra:-GenerateMatrix([entries(A3, nolist)], Unknowns):

'A3' = mat &. < Unknowns >;

Unknowns := [g[1](t, x), g[2](t, x), g[3](t, x)]

 

A3 = `&.`(Matrix(%id = 18446744078317334390), Vector[column](%id = 18446744078317326334))

(3)

# Verify that lhs = rhs

eval(%, `&.` = `.`):
simplify([entries(lhs(%), nolist)] -~ [entries(rhs(%), nolist)]);

[0, 0, 0]

(4)

 

Download One_way_to_get_matrix_form.mw

restart
with(Units):
UnitFactors_1 := proc(F)
  local U, M, u, d:
  U := [op(parse(convert(op(F), string)))];
  M := 1:
  for u in U do
    if u::`^` then
      d := ldegree(u):
      if d < 0 then 
        M := M / Unit(op(1, u))^(-d):
      else 
        M := M * Unit(op(1, u))^(d):
      end if:
    else 
      M := M*Unit(u):
    end if;
  end do:
  M; 
end proc:


Newton := Unit('kg'*'m'/'s'^2):

lprint(Newton = UnitFactors_1(Newton));
     Units:-Unit(kg*m/s^2) = Units:-Unit(kg)*Units:-Unit(m)/Units:-Unit(s)^2

Download Maybe_this.mw

Based upon

GetUnit(some_compound_unit, conversion)

this file gives some hints to answer your second question but it is Far_from_perfect.mw


 

r1 := -1 <= x and x <= 0:
r2 := 0 <= x and x <= 1:
x  := solve({convert(r1, 'relation') or convert(r2, 'relation')})
                       {-1 <= x, x <= 1}

`and`(s[])
                       -1 <= x and x <= 1


 


In Excel the decimal separator is only a matter of display.
If you only want to display Maple integers with a comma (and not do calculus, see @Thomas Richard's answer) you can do this

restart

# Comma Separated Integer

CSI := proc(x)
  StringTools:-Substitute(convert(x, string), ".", ","):
  nprintf("%s", %)
end proc:
 

rand(-10.0 .. 10.0)();
CSI(%);

-3.51727964

 

`-3,51727964`

(1)

# two equivalent forms

V  := LinearAlgebra:-RandomVector(5, generator=-100.0 .. 100.0):
VC := Vector(5, i -> CSI(V[i])):

V, VC , `or`, CSI~(V)

"RTABLE(18446744074195580510,MATRIX([[93.5389863813118154], [99.2922663165458061], [98.5762610398334687], [-62.3236051993347502], [9.44411945119234986]]),Vector[column]),RTABLE(18446744074196708134,MATRIX([[`93,5389863813118154`], [`99,2922663165458061`], [`98,5762610398334687`], [`-62,3236051993347502`], [`9,44411945119234986`]]),Vector[column]),or,RTABLE(18446744074196708542,MATRIX([[`93,5389863813118154`], [`99,2922663165458061`], [`98,5762610398334687`], [`-62,3236051993347502`], [`9,44411945119234986`]]),Vector[column])"

(2)

# With a control of the number of digits

CSI := proc(x, n)
  local s, sl, sr:
  uses StringTools:
  s := convert(x, string):
  if x::integer then
    s := nprintf("%s", s)
  else
    s := Split(s, "."):
    nprintf("%s,%s", %[1], substring(%[2], 1..n)):
  end if:
end proc:

rand(-10.0 .. 10.0)();
CSI( %, 8);
CSI(%%, 3);

3.99720953

 

`3,99720953`

 

`3,997`

(3)

 


 

Download CSI.mw



Read carefully the attached file to understand where your errors are and how to correct them.
red texts explain where the previous errors come from.

 

restart

 

Successive errors and how to get rid of them

 

Graph := NULL;
for i from 0 to N-1 do
  for j from 0 to 10 do
    if j <= finite_element_xi[i] and finite_element_xi[i] <= j+1 then
      finite_element_sigma[i] := evalf(finite_element_epsilon[i]*R(j));
      p := plot(finite_element_sigma[i](x), x = finite_element_xi[i] .. finite_element_xi[i+1]);
      Graph := display(Graph, p)
    end if
  end do:
end do:

Error, final value in for loop must be numeric or character

 

# In the outer loop N is undefined

N := 10:  # it's up to you to provide the good value

Graph := NULL;
for i from 0 to N-1 do
  for j from 0 to 10 do
    if j <= finite_element_xi[i] and finite_element_xi[i] <= j+1 then
      finite_element_sigma[i] := evalf(finite_element_epsilon[i]*R(j));
      p := plot(finite_element_sigma[i](x), x = finite_element_xi[i] .. finite_element_xi[i+1]);
      Graph := display(Graph, p)
    end if
  end do:
end do:

Error, cannot determine if this expression is true or false: 0 <= finite_element_xi[0] and finite_element_xi[0] <= 1

 

# finite_element_xi is undefined

finite_element_xi := Array(0..10, [seq(rand(0. .. 10.)(), k=1..11)]):   # it's up to you to provide the good values

Graph := NULL;
for i from 0 to N-1 do
  for j from 0 to 10 do
    if j <= finite_element_xi[i] and finite_element_xi[i] <= j+1 then
      finite_element_sigma[i] := evalf(finite_element_epsilon[i]*R(j));
      p := plot(finite_element_sigma[i](x), x = finite_element_xi[i] .. finite_element_xi[i+1]);
      Graph := display(Graph, p)
    end if
  end do:
end do:

Error, (in plot) incorrect first argument finite_element_epsilon[0](x)*(R(7))(x)

 

# finite_element_epsilon is undefined

finite_element_epsilon := Array(0..10, [seq(rand(0. .. 10.)(), k=1..11)]):   # it's up to you to provide the good values

Graph := NULL;
for i from 0 to N-1 do
  for j from 0 to 10 do
    if j <= finite_element_xi[i] and finite_element_xi[i] <= j+1 then
      finite_element_sigma[i] := evalf(finite_element_epsilon[i]*R(j));
      p := plot(finite_element_sigma[i](x), x = finite_element_xi[i] .. finite_element_xi[i+1]);
      Graph := display(Graph, p)
    end if
  end do:
end do:

Error, (in plot) incorrect first argument 5.378582700*(R(7))(x)

 

# R(7)(x) is undefined

R(7)(x)

(R(7))(x)

(1)

# You gave the expression of the R sunction, so why didn't use it?

R := i -> E0*Heaviside(i+x0-x) + E1*Heaviside(i-(x+x0)):

# example

R(7);


# But this likely won't give what you expect to get

R(7)(x)

E0*Heaviside(7+x0-x)+E1*Heaviside(7-x-x0)

 

E0(x)*(Heaviside(7+x0-x))(x)+E1(x)*(Heaviside(7-x-x0))(x)

(2)


First definition of  R

R := i -> E0*Heaviside(i+x0-x) + E1*Heaviside(i-(x+x0)):

Graph := NULL;
for i from 0 to N-1 do
  for j from 0 to 10 do
    if j <= finite_element_xi[i] and finite_element_xi[i] <= j+1 then
      finite_element_sigma[i] := evalf(finite_element_epsilon[i]*R(j));
      p := plot(finite_element_sigma[i](x), x = finite_element_xi[i] .. finite_element_xi[i+1]);
      Graph := Graph, p
    end if
  end do:
end do:

plots:-display(Graph);

Error, (in plot) incorrect first argument 5.378582700*E0(x)*(Heaviside(7.+x0-1.*x))(x)+5.378582700*E1(x)*(Heaviside(7.-1.*x-1.*x0))(x)

 

Error, (in plots:-display) invalid input: `plots/display` uses a 1st argument, F, which is missing

 

# do not write finite_element_sigma[i](x)

Graph := NULL;
for i from 0 to N-1 do
  for j from 0 to 10 do
    if j <= finite_element_xi[i] and finite_element_xi[i] <= j+1 then
      finite_element_sigma[i] := evalf(finite_element_epsilon[i]*R(j));
      p := plot(finite_element_sigma[i], x = finite_element_xi[i] .. finite_element_xi[i+1]);
      Graph := Graph, p
    end if
  end do:
end do:

plots:-display(Graph);

Warning, expecting only range variable x in expression 5.378582700*E0*Heaviside(7.+x0-1.*x)+5.378582700*E1*Heaviside(7.-1.*x-1.*x0) to be plotted but found names [E0, E1, x0]

 

Warning, expecting only range variable x in expression 3.465092938*E0*Heaviside(2.+x0-1.*x)+3.465092938*E1*Heaviside(2.-1.*x-1.*x0) to be plotted but found names [E0, E1, x0]

 

Warning, expecting only range variable x in expression 1.209628080*E0*Heaviside(9.+x0-1.*x)+1.209628080*E1*Heaviside(9.-1.*x-1.*x0) to be plotted but found names [E0, E1, x0]

 

Warning, expecting only range variable x in expression 9.101611067*E0*Heaviside(5.+x0-1.*x)+9.101611067*E1*Heaviside(5.-1.*x-1.*x0) to be plotted but found names [E0, E1, x0]

 

Warning, expecting only range variable x in expression 6.269565965*E0*Heaviside(7.+x0-1.*x)+6.269565965*E1*Heaviside(7.-1.*x-1.*x0) to be plotted but found names [E0, E1, x0]

 

Warning, expecting only range variable x in expression 5.849806928*E0*Heaviside(1.+x0-1.*x)+5.849806928*E1*Heaviside(1.-1.*x-1.*x0) to be plotted but found names [E0, E1, x0]

 

Warning, expecting only range variable x in expression .5108327385*E0*Heaviside(3.+x0-1.*x)+.5108327385*E1*Heaviside(3.-1.*x-1.*x0) to be plotted but found names [E0, E1, x0]

 

Warning, expecting only range variable x in expression 7.653764366*E0*Heaviside(3.+x0-1.*x)+7.653764366*E1*Heaviside(3.-1.*x-1.*x0) to be plotted but found names [E0, E1, x0]

 

Warning, expecting only range variable x in expression 3.363685982*E0*Heaviside(3.+x0-1.*x)+3.363685982*E1*Heaviside(3.-1.*x-1.*x0) to be plotted but found names [E0, E1, x0]

 

Warning, expecting only range variable x in expression 2.075595849*E0*Heaviside(3.+x0-1.*x)+2.075595849*E1*Heaviside(3.-1.*x-1.*x0) to be plotted but found names [E0, E1, x0]

 

 

# E10, E1, x0 are undefined

E0 := 2:    # it's up to you to provide the good values
E1 := 1:    # it's up to you to provide the good values
x0 := 3:    # it's up to you to provide the good values

Graph := NULL;
for i from 0 to N-1 do
  for j from 0 to 10 do
    if j <= finite_element_xi[i] and finite_element_xi[i] <= j+1 then
      finite_element_sigma[i] := evalf(finite_element_epsilon[i]*R(j));
      p := plot(finite_element_sigma[i], x = finite_element_xi[i] .. finite_element_xi[i+1]);
      Graph := Graph, p
    end if
  end do:
end do:

plots:-display(Graph);

 


Second definition of  R

R := i -> x -> E0*Heaviside(i+x0-x) + E1*Heaviside(i-(x+x0)):

# example

R(7)(x);

2*Heaviside(10-x)+Heaviside(4-x)

(3)

Graph := NULL;
for i from 0 to N-1 do
  for j from 0 to 10 do
    if j <= finite_element_xi[i] and finite_element_xi[i] <= j+1 then
      finite_element_sigma[i] := evalf(finite_element_epsilon[i]*R(j)(x));
      p := plot(finite_element_sigma[i], x = finite_element_xi[i] .. finite_element_xi[i+1]);
      Graph := Graph, p
    end if
  end do:
end do:

plots:-display(Graph);

 

 


 

Download A_pattern.mw



Here is a Download Suggestion.mw based on the use of Explore Follow_me 

A screen capture of what you get:

 

Leading idea: find the zeroes of diff(s, phi):

restart;
W:=f*mu*M**2*(1-sqrt(1+2*phi/(mu*M**2)))+(1-f)*(1+3*beta-(1+3*beta-3*beta*phi+beta*phi**2)*exp(phi))+g*nu*M**2*(1-sqrt(1-2*phi/(nu*M**2)))+(1-g)*(1+3*beta-(1+3*beta+3*beta*phi+beta*phi**2)*exp(-phi)):

s:= subs(g=0.95,mu=1,beta=0.19,nu=0.5,M=2.277, f=0.4490, W):

plot(s,phi=-2.3..0.6);

# As it is seen for beta=0.19 and f=0.449 we have three consecutive local extrema. How can I find these critical values of (beta,f)?

 

ds    := diff(s, phi):
omega := -2.3..0.6:
plot(ds, phi=omega);

 

# Using solve: one solution is missing

fnormal~({solve(ds)});
Locations := select((x -> verify(x, omega, 'interval')), %);

Warning, solutions may have been lost

 

{-1.476544548, -.7758246505, -0., .8514078882}

 

{-1.476544548, -.7758246505, -0.}

(1)

# simplify(convert(ds, rational), size):
# solve(%):
# allvalues(%):

# Using fsolve: the method is governed by what you see on the plot above

loc_1 := fsolve(ds, phi=omega);
loc_2 := fsolve(ds, phi=loc_1..op(2, omega));
loc_3 := fsolve(ds, phi=op(1, omega)..loc_1);
loc_4 := fsolve(ds, phi=op(1, omega)..loc_3-1e-6);

Locations := fnormal~({loc_1, loc_2, loc_3, loc_4})

-.7758246505

 

-0.2963076064e-8

 

-1.476544548

 

-2.062009298

 

{-2.062009298, -1.476544548, -.7758246505, -0.}

(2)

# Using RootFinding:-NextZero: a safer and clever way than using fsolve

fds := unapply(ds, phi):

KeepSearching := true:
start         := -2.3:
RightBound    := 0.6:
Locations     := NULL:

while KeepSearching do
  loc := RootFinding:-NextZero(phi -> fds(phi), start);
  if loc < RightBound then
    Locations     := Locations, loc:
    start         := loc:
  else
    KeepSearching := false:
  end if
end do:

Locations := fnormal~([Locations])

[-2.062009299, -1.476544548, -.7758246505, -0.]

(3)

 

Download plot_mmcdara.mw

2 3 4 5 6 7 8 Last Page 4 of 53