mmcdara

5269 Reputation

17 Badges

7 years, 116 days

MaplePrimes Activity


These are answers submitted by mmcdara

Be carefull, this method doesn't handle correctly all the situations.

restart
alias (U=U(xi)):
Balance := proc(EQ)
  local eq   := eval(EQ, Diff=diff);
  local HODD := degree(eval(eval(eq, U=exp(__k*xi)), xi=0), __k);
  local HNLD := degree(eval(eq, U=__C), __C);
  M = solve(HNLD*M = HODD+M)
end proc:

eq := a*U+b*U^2+diff(U, xi$2)+diff(U, xi):
Balance(eq)
                             M = 2

eq := a*U+b*U^2+Diff(U, xi$2)+Diff(U, xi):
Balance(eq)

                             M = 2

eq := a*U+b*U^(-2)+diff(U, xi$5)+diff(U, xi$3)+c*U^3:
Balance(eq);
                                 5
                             M = -
                                 2

Let 

f := a -> x^3+a*x+1

a third degree polynom wrt x, parameterized by some real a.
In this simple case solve(f(a), x) doesn't return a list, nor a set, but a sequence:

f := a -> x^3+a*x+1solve(f(a), x):
whattype(%);
                            exprseq


If one defines a procedure sol this way

sol := a -> {solve(f(a), x)}:

one can easily verify that repeted executions of sol(a), where a is now assigned a numeric value, alwys returns theroots in the same order (defined by set):

  1. If the three roots are real the order is defined by '<', that is the smallest root is the first oneand largest the last one.
  2. If only one root is real and the two others are of the form p-q*I and  p+q*I (with q > 0), then the order is:
    1. the real root is the first,
    2. root  p-q*I is the second one,
    3. root  p+q*I is the last (third) one.

To avoid mixing the roots define the variable sola  this way:

sola := sol(a):

Then sola contains roots sorted according to the order given in points 1, 2, 3. This is because the formal result sol(a) contains a real root and two a priori conjugate complex roots (whoch might happento be both real for some values of a).

If you make a to vary in some real range, the first root in sola, which is assumed to be real, will take indeed real values, but also complex values, which means that its rank can take values 1, 2 or 3 depending on the value of a.
The plots in the attached file show how the rank of the three roots evolve as a ranges from -5 to +5.

To answer your question:

  • The order of roots depends on their expression (real, p-q*Ip+q*I) and then a root who was ranked first for some value of a, can be ranked 2 or 3 for a close value of a, giving the false impression of a "random" order returned by solve.
  • To understand (and control it?) this phenomenon you must "stuck" the roots, for example by doing sol := a -> {solve(f(a), x)}, and assign the roots a name, for instance
    R1, R2, R3 := sola[]:
    
    # check
    R1;
    R2;
    R3;
    Doing this will help you to track a given root as a evolves.

root_order.mw

restart:

for i from 1 to 1000 do

  # your own lines are replaced by a sleep of 0.01 second
  Threads:-Sleep(.01);

  if i mod 100 = 0 then
    DocumentTools:-Tabulate(
      [sprintf("%d", i)],
      'alignment'='left',
      'widthmode'='percentage',
      'width'=10
    )
  end if
end do

Download Counter.mw

An alternative: search on this site for "progression bar" 

I suggest you to solve the pde without any boundary condition, which will givea solution that contains integration constants, and next to evaluate these constants given the boundary condition.

If I'm not mistaken thesolution should be this one: laplacian_mmcdara.mw

Here is an example of compartmental model (4 compartments) and a way to assess its transition coefficients given some observations.
As I do not have any observation for this hypothetical model I used the classical technique wich consists in creating "pseudo-observations" which correspond to the value of this model at some times.
More precisely for a N-compartments model M(x1(t), ..., xN(t), t ; K) with transition matrix K  (K numeric), the "pseudo-observations" are mape of P (N+1)-tuples { (t, x[1](t), ..., x[N](t)), t in {t1, ..., tP} }.
The goal is then to recover blindly estimations of K by exploting some prior domain Dom(K).
Without observation noise this estimation should be equal to K provided the model is identifiable (which depends on K and of the observations).

The attached file presents the case of noise free observations and a noisy case.

Hope this will give you some idea to go further.
An_example.mw
An_example_edited.mw

For a 9-compartment model you have potentially 90 coefficients to assess (9^2 compartment-to-compartment coefficients plus 9 compartment-to-exterior coefficients) which is almost impossible with usual methods unless the 9-by-9 matrix K is very parse (by "usual methods" I mean optimization methods by contrast to neural network methods for instance)
Even with specific estimation methods it's very unlikely that the solution you get will be "numerically unique": it often happens that the estimation which minimizes some discrepancy between model predictions and observations is not a point but a variety of higher dimension or, even if this is indeed a single point, that large deviations in some directions around it (think to this point as a point in dimension 90 for instance) do not change significantly the value if the discrepancy.

So be extremely carefull in applying a minimization algorithm.
A preliminary analysis may help. For instance, for large times, the behavior of some xn(t) is generally governed by the largest coefficient kn, m: this is a trick which can enable assessing the values of the leading coefficients of each equation?

Without knowing your model it's not possible to say more (see @Carl Love's reply).

I assume the histograms you refer two are those created by the package Statistics?
If they come from package ImageTools what I say doesn't apply.

restart

with(Statistics):

N := 100:
K := 5:
S := Sample(Uniform(0, 1), N):

H := Histogram(S, maxbins=K):
plots:-display(H);

 

# Structure of H

op(H);

POLYGONS([[HFloat(0.011902069501241395), 0], [HFloat(0.20364021195311627), 0], [HFloat(0.20364021195311627), HFloat(1.0430892750001413)], [HFloat(0.011902069501241395), HFloat(1.0430892750001413)]], [[HFloat(0.20364021195311627), 0], [HFloat(0.39537835440499114), 0], [HFloat(0.39537835440499114), HFloat(0.9387803475001271)], [HFloat(0.20364021195311627), HFloat(0.9387803475001271)]], [[HFloat(0.39537835440499114), 0], [HFloat(0.587116496856866), 0], [HFloat(0.587116496856866), HFloat(0.8866258837501201)], [HFloat(0.39537835440499114), HFloat(0.8866258837501201)]], [[HFloat(0.587116496856866), 0], [HFloat(0.7788546393087409), 0], [HFloat(0.7788546393087409), HFloat(0.9909348112501342)], [HFloat(0.587116496856866), HFloat(0.9909348112501342)]], [[HFloat(0.7788546393087409), 0], [HFloat(0.9705927817606158), 0], [HFloat(0.9705927817606158), HFloat(1.3560160575001836)], [HFloat(0.7788546393087409), HFloat(1.3560160575001836)]], COLOUR(RGB, .24313725, .34117647, .54117647)), AXESSTYLE(BOX)

(1)

# H is made of K polygons (the K vertical bars)

g := [plottools:-getdata(H)];

g := [["polygon", [0.119020695012413951e-1 .. .203640211953116268, 0. .. 1.04308927500014126], Matrix(4, 2, {(1, 1) = 0.11902069501241395e-1, (1, 2) = .0, (2, 1) = .20364021195311627, (2, 2) = .0, (3, 1) = .20364021195311627, (3, 2) = 1.0430892750001413, (4, 1) = 0.11902069501241395e-1, (4, 2) = 1.0430892750001413}, datatype = float[8])], ["polygon", [.203640211953116268 .. .395378354404991139, 0. .. .938780347500127066], Matrix(4, 2, {(1, 1) = .20364021195311627, (1, 2) = .0, (2, 1) = .39537835440499114, (2, 2) = .0, (3, 1) = .39537835440499114, (3, 2) = .9387803475001271, (4, 1) = .20364021195311627, (4, 2) = .9387803475001271}, datatype = float[8])], ["polygon", [.395378354404991139 .. .587116496856865955, 0. .. .886625883750120081], Matrix(4, 2, {(1, 1) = .39537835440499114, (1, 2) = .0, (2, 1) = .587116496856866, (2, 2) = .0, (3, 1) = .587116496856866, (3, 2) = .8866258837501201, (4, 1) = .39537835440499114, (4, 2) = .8866258837501201}, datatype = float[8])], ["polygon", [.587116496856865955 .. .778854639308740881, 0. .. .990934811250134162], Matrix(4, 2, {(1, 1) = .587116496856866, (1, 2) = .0, (2, 1) = .7788546393087409, (2, 2) = .0, (3, 1) = .7788546393087409, (3, 2) = .9909348112501342, (4, 1) = .587116496856866, (4, 2) = .9909348112501342}, datatype = float[8])], ["polygon", [.778854639308740881 .. .970592781760615808, 0. .. 1.35601605750018361], Matrix(4, 2, {(1, 1) = .7788546393087409, (1, 2) = .0, (2, 1) = .9705927817606158, (2, 2) = .0, (3, 1) = .9705927817606158, (3, 2) = 1.3560160575001836, (4, 1) = .7788546393087409, (4, 2) = 1.3560160575001836}, datatype = float[8])]]

(2)

# to get the "bins" you can
# (1) extract the K matrices from the list above

bins := map2(op, 3, g);

bins := [Matrix(4, 2, {(1, 1) = 0.11902069501241395e-1, (1, 2) = .0, (2, 1) = .20364021195311627, (2, 2) = .0, (3, 1) = .20364021195311627, (3, 2) = 1.0430892750001413, (4, 1) = 0.11902069501241395e-1, (4, 2) = 1.0430892750001413}, datatype = float[8]), Matrix(4, 2, {(1, 1) = .20364021195311627, (1, 2) = .0, (2, 1) = .39537835440499114, (2, 2) = .0, (3, 1) = .39537835440499114, (3, 2) = .9387803475001271, (4, 1) = .20364021195311627, (4, 2) = .9387803475001271}, datatype = float[8]), Matrix(4, 2, {(1, 1) = .39537835440499114, (1, 2) = .0, (2, 1) = .587116496856866, (2, 2) = .0, (3, 1) = .587116496856866, (3, 2) = .8866258837501201, (4, 1) = .39537835440499114, (4, 2) = .8866258837501201}, datatype = float[8]), Matrix(4, 2, {(1, 1) = .587116496856866, (1, 2) = .0, (2, 1) = .7788546393087409, (2, 2) = .0, (3, 1) = .7788546393087409, (3, 2) = .9909348112501342, (4, 1) = .587116496856866, (4, 2) = .9909348112501342}, datatype = float[8]), Matrix(4, 2, {(1, 1) = .7788546393087409, (1, 2) = .0, (2, 1) = .9705927817606158, (2, 2) = .0, (3, 1) = .9705927817606158, (3, 2) = 1.3560160575001836, (4, 1) = .7788546393087409, (4, 2) = 1.3560160575001836}, datatype = float[8])]

(3)

# (2) extract only the ranges
bins := map2(op, 2, g);

[[0.119020695012413951e-1 .. .203640211953116268, 0. .. 1.04308927500014126], [.203640211953116268 .. .395378354404991139, 0. .. .938780347500127066], [.395378354404991139 .. .587116496856865955, 0. .. .886625883750120081], [.587116496856865955 .. .778854639308740881, 0. .. .990934811250134162], [.778854639308740881 .. .970592781760615808, 0. .. 1.35601605750018361]]

(4)

# An other way is to use TallyInto:
# (note this method gives the counts)

epsilon := 1e-9:  # to catch the right end point

r := [seq((min..max+epsilon)(S), (max-min)(S)/K)]:
R := [seq(r[i]..r[i+1], i=1..K)]:

T := TallyInto(S, R)

[HFloat(0.011902069501241397) .. HFloat(0.203640212) = 20, HFloat(0.203640212) .. HFloat(0.3953783545) = 18, HFloat(0.3953783545) .. HFloat(0.587116497) = 17, HFloat(0.587116497) .. HFloat(0.7788546395) = 19, HFloat(0.7788546395) .. HFloat(0.970592782) = 26]

(5)

# If you want the frequencies do this

lhs~(T) =~ (rhs/N)~(T)
 

[HFloat(0.011902069501241397) .. HFloat(0.203640212) = 1/5, HFloat(0.203640212) .. HFloat(0.3953783545) = 9/50, HFloat(0.3953783545) .. HFloat(0.587116497) = 17/100, HFloat(0.587116497) .. HFloat(0.7788546395) = 19/100, HFloat(0.7788546395) .. HFloat(0.970592782) = 13/50]

(6)

 

Download HowToCatchTheBins.mw

In this kind of problem  the causality principle must hold: the Delta pulse is the cause of y(t), meaning that y(t) doesn't exist before Delta is applied.
So it doesn't matter to consider the limit of y(t) when t goes to 0 from the left.
The Laplace transform, for instance, is perfectly suited tosolve this (linear) problem:

restart
de := D(y)(t) + y(t)/tau = Dirac(t)/tau;
                             y(t)   Dirac(t)
                   D(y)(t) + ---- = --------
                             tau      tau   
with(inttrans):
lde := laplace(de, t, p)
                                   laplace(y(t), t, p)    1 
    p laplace(y(t), t, p) - y(0) + ------------------- = ---
                                           tau           tau
lde0 := eval(lde, y(0)=0):
ly := rhs(isolate(lde0, laplace(y(t), t, p))):
Y := unapply(invlaplace(ly, p, t), t)
        /   t \
     exp|- ---|
        \  tau/
t -> ----------
        tau    

Download laplace.mw

Two solutions:

restart:
with(LinearAlgebra):

sanity := proc()
  local A, __U, __S, __Vt;
  A :=RandomMatrix(3,10);
  __U, __S, __Vt := SingularValues(A, output=['U','S','Vt']);
end proc:

sanity():

or (IMO better for future use)

restart:
with(LinearAlgebra):

sanity := proc()
  local A;
  A :=RandomMatrix(3,10);
  SingularValues(A, output=['U','S','Vt']);
end proc:

U, VS, Vt := sanity():

The (A?) key to get a solution up to xi=0.25 is to use a continuation method (see here help(dsolve, numeric_bvp, advanced) ).
I wasn't capable to get a solution for higher values of xi.

Does this "critical" value of 0.25 means something to you?
If not you can try, as suggested by the error messages, to change the continuation strategy... but this likely require a lot of time that I have not to help you further.

secod_code_mmcdara.mw

in exponentials:

restart; with(plots); Digits := 10; L := 1; TT := 0.1e-2; l := 1/5; b[1] := .18; b[2] := 2*10^(-9); k[1] := 1.3*10^(-7); k[-1] := 24; k[2] := 7.2; p := .9997; d[1] := 0.412e-1; f := .2988*10^8; g := 2.02*10^7; s := 1.36*10^4; E[0] := 3.3*10^5; T1[0] := .5*10^9; C1[0] := 3.3*10^5; alpha[0] := 10^(-10); D1 := 10^(-6); D2 := 10^(-2); D3 := 10^(-6); d[4] := 1.155*10^(-2); t[0] := 1/D1; kappa := 10^4; k[3] := 300*(24*60); chi := 0; sigma := d[1]*t[0]; rho := f*t[0]*C1[0]/(E[0]*T1[0]); mu := k[1]*t[0]*T1[0]; eta := g/T1[0]; `&epsilon;` := t[0]*C1[0]*(p*k[2]+k[-1])/E[0]; omega := D3/D1; beta1 := b[1]*t[0]; beta2 := b[2]*T1[0]; phi := k[1]*t[0]*E[0]; lambda := t[0]*C1[0]*(k[-1]+k[2]*(1-p))/T1[0]; psi := t[0]*(k[-1]+k[2]); gamma1 := chi*alpha[0]/D1; delta := D2/D1; kappa := k[3]*t[0]*C1[0]/alpha[0]; xi := d[4]*t[0]; PDE1 := diff(u(y, t), t) = diff(u(y, t), y, y)-gamma1*(u(y, t)*(diff(theta(y, t), y, y))+(diff(u(y, t), y))*(diff(theta(y, t), y)))+sigma*piecewise(y <= l, 0, 1.)+rho*C(y, t)/(eta+T(y, t))-sigma*u(y, t)-mu*u(y, t)*T(y, t)+`&epsilon;`*C(y, t); PDE2 := diff(theta(y, t), t) = delta*(diff(theta(y, t), y, y))+kappa*C(y, t)-xi*theta(y, t); PDE3 := diff(T(y, t), t) = omega*(diff(T(y, t), y, y))+beta1*(1-beta2*T(y, t))*T(y, t)-phi*u(y, t)*T(y, t)+lambda*C(y, t); PDE4 := diff(C(y, t), t) = mu*u(y, t)*T(y, t)-psi*C(y, t); ICs := u(y, 0) = piecewise(0 <= y and y <= l, 0, 1-exp(-0.1e-2*(y-l)^2)), T(y, 0) = piecewise(0 <= y and y <= l, 1-exp(-0.1e-2*(y-l)^2), 0), C(y, 0) = piecewise(l-`&epsilon;` <= y and y <= l+`&epsilon;`, exp(-0.1e-2*(y-l)^2), 0), theta(y, 0) = 0; BCs := {(D[1](T))(0, t) = 0, (D[1](T))(1, t) = 0, (D[1](theta))(0, t) = 0, (D[1](theta))(1, t) = 0, (D[1](u))(0, t) = 0, (D[1](u))(1, t) = 0}; HA1 := [0]; AA := [red, green, blue, cyan, purple, black]

 

PDE := {PDE1, PDE2, PDE3, PDE4}; pds := pdsolve(PDE, {ICs, BCs[]}, numeric, spacestep = 1/50, timestep = 1/50)

{diff(C(y, t), t) = 65000000.00*u(y, t)*T(y, t)-31200000.0*C(y, t), diff(T(y, t), t) = diff(diff(T(y, t), y), y)+180000.00*(1-1.000000000*T(y, t))*T(y, t)-42900.00000*u(y, t)*T(y, t)+15841.42560*C(y, t), diff(theta(y, t), t) = 10000*(diff(diff(theta(y, t), y), y))+0.1425600000e28*C(y, t)-11550.00000*theta(y, t), diff(u(y, t), t) = diff(diff(u(y, t), y), y)+41200.0000*piecewise(y <= 1/5, 0, 1.)+59760.00000*C(y, t)/(0.4040000000e-1+T(y, t))-41200.0000*u(y, t)-65000000.00*u(y, t)*T(y, t)+31197840.00*C(y, t)}

 

_m4725937312

(1)

Plotsu := pds:-plot[plots:-display](u(y, t), t = TT, linestyle = "solid", labels = ["y", "u"], color = red, numpoints = 800); -1; plots:-display(Plotsu)

 

NULL

Download Num_PDE_mmcdara.mw

I agree with Rouben.
You can easily find (on the web or in your math books) the equation of the tangent plane to a sphere and try to code them in Maple.
Maybe this is what you have been asked for?

If you are not comfortable with maths and need to solve this problem quickly, you can use the geom3d package:
With_geom3d.mw
This will answer your question, but it won't help you understand how the equations were constructed.

Maybe reading carefully the three procedures TangentPlane, IsOnObject and onobjl could help you understand how to derive the equations.


here is an extremely simple way do draw random triangles
 

restart

with(plots):
with(plottools):
with(Statistics):

interface(version);

`Standard Worksheet Interface, Maple 2015.2, Mac OS X, December 21 2015 Build ID 1097895`

(1)

randomize();

c := rand(0. .. 1):
r := rand(0. .. 2.*Pi):
p := [seq(r(), k=1..3)]:
display(
  plottools:-circle([0, 0], 1, color=gray),
  seq(
    PLOT(
      CURVES(
        [sin,cos]~([seq(r(), k=1..3)])[[$1..3, 1]]
        , COLOR(RGB, c(), c(), c())
        , THICKNESS(2)
      )
    )
    , n=1..3
  )
)

169245464804467

 

 

 

 

Download RandomTriangles.mw

Let me know if you have some constraints on the triangles.
For instance here is a simple way to generate triangles which contain the center of the circle:

 

restart

with(plots):
with(plottools):
with(Statistics):

interface(version);

`Standard Worksheet Interface, Maple 2015.2, Mac OS X, December 21 2015 Build ID 1097895`

(1)

randomize();

c := rand(0. .. 1):
p := 0, rand(0. .. 1.*Pi)():
q := rand(1.*Pi.. p[2]+1.*Pi)():
p := [p[], q]:

T := PLOT(
       CURVES(
         [cos, sin]~(p)[[$1..3, 1]]
         , COLOR(RGB, c(), c(), c())
         , THICKNESS(2)
       )
     ):

display(
  plottools:-circle([0, 0], 1, color=gray),
  rotate(T, rand(0. .. 2.*Pi)())
)

169246137904467

 

 

 

 

Download RandomTriangle_2.mw

Note that the procedure in RandomTriangle_2.mw doesn't produce uniformly distributed triangles in the following sense: while p[2] is obviously uniformly distributed over [0, Pi], one can see that q (the third point p[3]) is not uniformly distributed over [Pi, 2*Pi]

# Do this to convince you
K := 10000:
P := Matrix(K, 2):
for k from 1 to K do
  p := rand(0. .. 1.*Pi)():
  q := rand(1.*Pi.. p+1.*Pi)():
  P[k, 1] := p:
  P[k, 2] := q:
end do:
Histogram(P[..,1]);
Histogram(P[..,2]);

Here is the exact expression of the PDF of q:

p2 := RandomVariable(Uniform(0, Pi));
q  := Pi + RandomVariable(Uniform(0, 1)) * p2;

# and thus 
combine(PDF(Y, y), ln);
             /                                 /  -y + Pi\  
             |                               ln|- -------|  
             |                                 \    Pi   /  
    piecewise|y - Pi < 0, 0, y - Pi <= Pi, - -------------, 
             \                                    Pi        

                    \
                    |
                    |
      Pi < y - Pi, 0|
                    /


 

(it's likely that using the remember option would be more astute)

I used a predator velocity equal to the prey velocivy divided by the eccentricity of the ellipses (see me reply under the login sand15)

restart

with(plots):

# Outer ellipse

OuterEllipse := (x/a)^2+(y/b)^2-1;

# Abscissa of the left focus

F1 := -sqrt(a^2-b^2)

x^2/a^2+y^2/b^2-1

 

-(a^2-b^2)^(1/2)

(1)

# Movement equations

interface(warnlevel=0):


{
  diff(X__T(t), t) = V__T,
  diff(X__P(t), t) = V__P*(X__P(t)-X__T(t))/sqrt((X__P(t)-X__T(t))^2+Y__P(t)^2),
  diff(Y__P(t), t) = V__P*Y__P(t)/sqrt((X__P(t)-X__T(t))^2+Y__P(t)^2),
  X__T(0) = F1,
  X__P(0) = x__0,
  Y__P(0) = b*surd(1-(x__0/a)^2, 2)
};


sol := dsolve(%, numeric, parameters=[V__T, a, b, x__0, V__P], events=[[Y__P(t)=0, halt]]);

data := [V__T = 1, a = 2, b = 1, x__0 = 0]:
pars := [rhs~(data)[], eval(V__T*a/F1, data)]:

sol(parameters=pars);
sol(abs(pars[-1])*2);
CaptureTime := sol(eventfired=[1])[1];


anim := proc(s)
plots:-odeplot(
  sol
  , [[X__T(t), 0], [X__P(t), Y__P(t)]]
  , t=0..s
  , color=[blue, red]
  , thickness=[3, 3]
  , labels=["", ""]
  , legend=[Prey,Predator]
);
end proc:

animate(anim, [s], s=1e-6..CaptureTime)

{X__P(0) = x__0, X__T(0) = -(a^2-b^2)^(1/2), Y__P(0) = b*(1-x__0^2/a^2)^(1/2), diff(X__P(t), t) = V__P*(X__P(t)-X__T(t))/((X__P(t)-X__T(t))^2+Y__P(t)^2)^(1/2), diff(X__T(t), t) = V__T, diff(Y__P(t), t) = V__P*Y__P(t)/((X__P(t)-X__T(t))^2+Y__P(t)^2)^(1/2)}

 

proc (x_rkf45) local _res, _dat, _vars, _solnproc, _xout, _ndsol, _pars, _n, _i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; if 1 < nargs then error "invalid input: too many arguments" end if; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then _xout := evalf[_EnvDSNumericSaveDigits](x_rkf45) else _xout := evalf(x_rkf45) end if; _dat := Array(1..4, {(1) = proc (_xin) local _xout, _dtbl, _dat, _vmap, _x0, _y0, _val, _dig, _n, _ne, _nd, _nv, _pars, _ini, _par, _i, _j, _k, _src; option `Copyright (c) 2002 by Waterloo Maple Inc. All rights reserved.`; table( [( "complex" ) = false ] ) _xout := _xin; _pars := [V__T = V__T, a = a, b = b, x__0 = x__0, V__P = V__P]; _dtbl := array( 1 .. 4, [( 1 ) = (array( 1 .. 24, [( 1 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 2 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 3 ) = ([Array(1..2, 1..21, {(1, 1) = 1.0, (1, 2) = .0, (1, 3) = 1.0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = 1.0, (1, 8) = undefined, (1, 9) = undefined, (1, 10) = undefined, (1, 11) = undefined, (1, 12) = undefined, (1, 13) = undefined, (1, 14) = undefined, (1, 15) = undefined, (1, 16) = undefined, (1, 17) = undefined, (1, 18) = undefined, (1, 19) = undefined, (1, 20) = undefined, (1, 21) = undefined, (2, 1) = 1.0, (2, 2) = .0, (2, 3) = 100.0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (2, 8) = undefined, (2, 9) = undefined, (2, 10) = 0.10e-6, (2, 11) = undefined, (2, 12) = .0, (2, 13) = undefined, (2, 14) = .0, (2, 15) = .0, (2, 16) = undefined, (2, 17) = undefined, (2, 18) = undefined, (2, 19) = undefined, (2, 20) = undefined, (2, 21) = undefined}, datatype = float[8], order = C_order), proc (t, Y, Ypre, n, EA) EA[1, 7+2*n] := Y[3]; EA[1, 8+2*n] := 1; 0 end proc, proc (e, t, Y, Ypre) return 0 end proc, Array(1..1, 1..2, {(1, 1) = undefined, (1, 2) = undefined}, datatype = float[8], order = C_order)]), ( 4 ) = (Array(1..54, {(1) = 3, (2) = 3, (3) = 0, (4) = 0, (5) = 5, (6) = 0, (7) = 0, (8) = 0, (9) = 0, (10) = 0, (11) = 0, (12) = 0, (13) = 0, (14) = 0, (15) = 0, (16) = 1, (17) = 0, (18) = 0, (19) = 30000, (20) = 0, (21) = 0, (22) = 1, (23) = 4, (24) = 0, (25) = 1, (26) = 15, (27) = 1, (28) = 0, (29) = 1, (30) = 3, (31) = 3, (32) = 0, (33) = 1, (34) = 0, (35) = 0, (36) = 0, (37) = 0, (38) = 0, (39) = 0, (40) = 0, (41) = 0, (42) = 0, (43) = 1, (44) = 0, (45) = 0, (46) = 0, (47) = 0, (48) = 0, (49) = 0, (50) = 50, (51) = 1, (52) = 0, (53) = 0, (54) = 0}, datatype = integer[8])), ( 5 ) = (Array(1..28, {(1) = .0, (2) = 0.10e-5, (3) = .0, (4) = 0.500001e-14, (5) = .0, (6) = .0, (7) = .0, (8) = 0.10e-5, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = 1.0, (14) = .0, (15) = .49999999999999, (16) = .0, (17) = 1.0, (18) = 1.0, (19) = .0, (20) = .0, (21) = 1.0, (22) = 1.0, (23) = .0, (24) = .0, (25) = 0.10e-14, (26) = .0, (27) = .0, (28) = .0}, datatype = float[8], order = C_order)), ( 6 ) = (Array(1..8, {(1) = x__0, (2) = -1.*(a^2-1.*b^2)^(1/2), (3) = b*(1.-1.*x__0^2/a^2)^(1/2), (4) = Float(undefined), (5) = Float(undefined), (6) = Float(undefined), (7) = Float(undefined), (8) = Float(undefined)})), ( 7 ) = ([Array(1..4, 1..7, {(1, 1) = .0, (1, 2) = .203125, (1, 3) = .3046875, (1, 4) = .75, (1, 5) = .8125, (1, 6) = .40625, (1, 7) = .8125, (2, 1) = 0.6378173828125e-1, (2, 2) = .0, (2, 3) = .279296875, (2, 4) = .27237892150878906, (2, 5) = -0.9686851501464844e-1, (2, 6) = 0.1956939697265625e-1, (2, 7) = .5381584167480469, (3, 1) = 0.31890869140625e-1, (3, 2) = .0, (3, 3) = -.34375, (3, 4) = -.335235595703125, (3, 5) = .2296142578125, (3, 6) = .41748046875, (3, 7) = 11.480712890625, (4, 1) = 0.9710520505905151e-1, (4, 2) = .0, (4, 3) = .40350341796875, (4, 4) = 0.20297467708587646e-1, (4, 5) = -0.6054282188415527e-2, (4, 6) = -0.4770040512084961e-1, (4, 7) = .77858567237854}, datatype = float[8], order = C_order), Array(1..6, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = 1.0, (2, 1) = .25, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = 1.0, (3, 1) = .1875, (3, 2) = .5625, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = 2.0, (4, 1) = .23583984375, (4, 2) = -.87890625, (4, 3) = .890625, (4, 4) = .0, (4, 5) = .0, (4, 6) = .2681884765625, (5, 1) = .1272735595703125, (5, 2) = -.5009765625, (5, 3) = .44921875, (5, 4) = -0.128936767578125e-1, (5, 5) = .0, (5, 6) = 0.626220703125e-1, (6, 1) = -0.927734375e-1, (6, 2) = .626220703125, (6, 3) = -.4326171875, (6, 4) = .1418304443359375, (6, 5) = -0.861053466796875e-1, (6, 6) = .3131103515625}, datatype = float[8], order = C_order), Array(1..6, {(1) = .0, (2) = .386, (3) = .21, (4) = .63, (5) = 1.0, (6) = 1.0}, datatype = float[8], order = C_order), Array(1..6, {(1) = .25, (2) = -.1043, (3) = .1035, (4) = -0.362e-1, (5) = .0, (6) = .0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 1.544, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = .9466785280815533, (3, 2) = .25570116989825814, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = 3.3148251870684886, (4, 2) = 2.896124015972123, (4, 3) = .9986419139977808, (4, 4) = .0, (4, 5) = .0, (5, 1) = 1.2212245092262748, (5, 2) = 6.019134481287752, (5, 3) = 12.537083329320874, (5, 4) = -.687886036105895, (5, 5) = .0, (6, 1) = 1.2212245092262748, (6, 2) = 6.019134481287752, (6, 3) = 12.537083329320874, (6, 4) = -.687886036105895, (6, 5) = 1.0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = -5.6688, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = -2.4300933568337584, (3, 2) = -.20635991570891224, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = -.10735290581452621, (4, 2) = -9.594562251021896, (4, 3) = -20.470286148096154, (4, 4) = .0, (4, 5) = .0, (5, 1) = 7.496443313968615, (5, 2) = -10.246804314641219, (5, 3) = -33.99990352819906, (5, 4) = 11.708908932061595, (5, 5) = .0, (6, 1) = 8.083246795922411, (6, 2) = -7.981132988062785, (6, 3) = -31.52159432874373, (6, 4) = 16.319305431231363, (6, 5) = -6.0588182388340535}, datatype = float[8], order = C_order), Array(1..3, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 10.126235083446911, (2, 2) = -7.487995877607633, (2, 3) = -34.800918615557414, (2, 4) = -7.9927717075687275, (2, 5) = 1.0251377232956207, (3, 1) = -.6762803392806898, (3, 2) = 6.087714651678606, (3, 3) = 16.43084320892463, (3, 4) = 24.767225114183653, (3, 5) = -6.5943891257167815}, datatype = float[8], order = C_order)]), ( 9 ) = ([Array(1..3, {(1) = .1, (2) = .1, (3) = .1}, datatype = float[8], order = C_order), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order), Array(1..3, 1..3, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0}, datatype = float[8], order = C_order), Array(1..3, 1..3, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0}, datatype = float[8], order = C_order), Array(1..3, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = 0, (2) = 0, (3) = 0}, datatype = integer[8]), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order)]), ( 8 ) = ([Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order), Array(1..3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8], order = C_order), 0, 0]), ( 11 ) = (Array(1..6, 0..3, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (2, 0) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (3, 0) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (4, 0) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (5, 0) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (6, 0) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0}, datatype = float[8], order = C_order)), ( 10 ) = ([proc (N, X, Y, YP) option `[Y[1] = X__P(t), Y[2] = X__T(t), Y[3] = Y__P(t)]`; if (Y[1]-Y[2])^2+Y[3]^2 < 0 then YP[1] := undefined; return 0 end if; YP[1] := Y[8]*(Y[1]-Y[2])*evalf(1/((Y[1]-Y[2])^2+Y[3]^2)^(1/2)); YP[3] := Y[8]*Y[3]*evalf(1/((Y[1]-Y[2])^2+Y[3]^2)^(1/2)); YP[2] := Y[4]; 0 end proc, -1, 0, 0, proc (t, Y, Ypre, n, EA) EA[1, 7+2*n] := Y[3]; EA[1, 8+2*n] := 1; 0 end proc, proc (e, t, Y, Ypre) return 0 end proc, 0, 0]), ( 13 ) = (), ( 12 ) = (), ( 15 ) = ("rkf45"), ( 14 ) = ([0, 0]), ( 18 ) = ([]), ( 19 ) = (0), ( 16 ) = ([0, 0, 0, []]), ( 17 ) = ([proc (N, X, Y, YP) option `[Y[1] = X__P(t), Y[2] = X__T(t), Y[3] = Y__P(t)]`; if (Y[1]-Y[2])^2+Y[3]^2 < 0 then YP[1] := undefined; return 0 end if; YP[1] := Y[8]*(Y[1]-Y[2])*evalf(1/((Y[1]-Y[2])^2+Y[3]^2)^(1/2)); YP[3] := Y[8]*Y[3]*evalf(1/((Y[1]-Y[2])^2+Y[3]^2)^(1/2)); YP[2] := Y[4]; 0 end proc, -1, 0, 0, proc (t, Y, Ypre, n, EA) EA[1, 7+2*n] := Y[3]; EA[1, 8+2*n] := 1; 0 end proc, proc (e, t, Y, Ypre) return 0 end proc, 0, 0]), ( 22 ) = (0), ( 23 ) = (0), ( 20 ) = ([]), ( 21 ) = (0), ( 24 ) = (0)  ] ))  ] ); _y0 := Array(0..8, {(1) = 0., (2) = x__0, (3) = -1.*(a^2-1.*b^2)^(1/2), (4) = b*(1.-1.*x__0^2/a^2)^(1/2), (5) = undefined, (6) = undefined, (7) = undefined, (8) = undefined}); _vmap := array( 1 .. 3, [( 1 ) = (1), ( 2 ) = (2), ( 3 ) = (3)  ] ); _x0 := _dtbl[1][5][5]; _n := _dtbl[1][4][1]; _ne := _dtbl[1][4][3]; _nd := _dtbl[1][4][4]; _nv := _dtbl[1][4][16]; if not type(_xout, 'numeric') then if member(_xout, ["start", "left", "right"]) then if _Env_smart_dsolve_numeric = true or _dtbl[1][4][10] = 1 then if _xout = "left" then if type(_dtbl[2], 'table') then return _dtbl[2][5][1] end if elif _xout = "right" then if type(_dtbl[3], 'table') then return _dtbl[3][5][1] end if end if end if; return _dtbl[1][5][5] elif _xout = "method" then return _dtbl[1][15] elif _xout = "storage" then return evalb(_dtbl[1][4][10] = 1) elif _xout = "leftdata" then if not type(_dtbl[2], 'array') then return NULL else return eval(_dtbl[2]) end if elif _xout = "rightdata" then if not type(_dtbl[3], 'array') then return NULL else return eval(_dtbl[3]) end if elif _xout = "enginedata" then return eval(_dtbl[1]) elif _xout = "enginereset" then _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); return NULL elif _xout = "initial" then return procname(_y0[0]) elif _xout = "laxtol" then return _dtbl[`if`(member(_dtbl[4], {2, 3}), _dtbl[4], 1)][5][18] elif _xout = "numfun" then return `if`(member(_dtbl[4], {2, 3}), _dtbl[_dtbl[4]][4][18], 0) elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return procname(_y0[0]), [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "last" then if _dtbl[4] <> 2 and _dtbl[4] <> 3 or _x0-_dtbl[_dtbl[4]][5][1] = 0. then error "no information is available on last computed point" else _xout := _dtbl[_dtbl[4]][5][1] end if elif _xout = "function" then if _dtbl[1][4][33]-2. = 0 then return eval(_dtbl[1][10], 1) else return eval(_dtbl[1][10][1], 1) end if elif _xout = "map" then return copy(_vmap) elif type(_xin, `=`) and type(rhs(_xin), 'list') and member(lhs(_xin), {"initial", "parameters", "initial_and_parameters"}) then _ini, _par := [], []; if lhs(_xin) = "initial" then _ini := rhs(_xin) elif lhs(_xin) = "parameters" then _par := rhs(_xin) elif select(type, rhs(_xin), `=`) <> [] then _par, _ini := selectremove(type, rhs(_xin), `=`) elif nops(rhs(_xin)) < nops(_pars)+1 then error "insufficient data for specification of initial and parameters" else _par := rhs(_xin)[-nops(_pars) .. -1]; _ini := rhs(_xin)[1 .. -nops(_pars)-1] end if; _xout := lhs(_xout); if _par <> [] then `dsolve/numeric/process_parameters`(_n, _pars, _par, _y0) end if; if _ini <> [] then `dsolve/numeric/process_initial`(_n-_ne, _ini, _y0, _pars, _vmap) end if; `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars); if _Env_smart_dsolve_numeric = true and type(_y0[0], 'numeric') and _dtbl[1][4][10] <> 1 then procname("right") := _y0[0]; procname("left") := _y0[0] end if; if _xout = "initial" then return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)] elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] else return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)], [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] end if elif _xin = "eventstop" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then return 0 end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 100 and 100 <= _dtbl[5-_i][4][9] then _i := 5-_i; _dtbl[4] := _i; _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) elif 100 <= _dtbl[_i][4][9] then _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) else return 0 end if elif _xin = "eventstatus" then if _nv = 0 then error "this solution has no events" end if; _i := [selectremove(proc (a) options operator, arrow; _dtbl[1][3][1][a, 7] = 1 end proc, {seq(_j, _j = 1 .. round(_dtbl[1][3][1][_nv+1, 1]))})]; return ':-enabled' = _i[1], ':-disabled' = _i[2] elif _xin = "eventclear" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then error "no events to clear" end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 100 and 100 < _dtbl[5-_i][4][9] then _dtbl[4] := 5-_i; _i := 5-_i end if; if _dtbl[_i][4][9] < 100 then error "no events to clear" elif _nv < _dtbl[_i][4][9]-100 then error "event error condition cannot be cleared" else _j := _dtbl[_i][4][9]-100; if irem(round(_dtbl[_i][3][1][_j, 4]), 2) = 1 then error "retriggerable events cannot be cleared" end if; _j := round(_dtbl[_i][3][1][_j, 1]); for _k to _nv do if _dtbl[_i][3][1][_k, 1] = _j then if _dtbl[_i][3][1][_k, 2] = 3 then error "range events cannot be cleared" end if; _dtbl[_i][3][1][_k, 8] := _dtbl[_i][3][1][_nv+1, 8] end if end do; _dtbl[_i][4][17] := 0; _dtbl[_i][4][9] := 0; if _dtbl[1][4][10] = 1 then if _i = 2 then try procname(procname("left")) catch:  end try else try procname(procname("right")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and member(lhs(_xin), {"eventdisable", "eventenable"}) then if _nv = 0 then error "this solution has no events" end if; if type(rhs(_xin), {('list')('posint'), ('set')('posint')}) then _i := {op(rhs(_xin))} elif type(rhs(_xin), 'posint') then _i := {rhs(_xin)} else error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; if select(proc (a) options operator, arrow; _nv < a end proc, _i) <> {} then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _k := {}; for _j to _nv do if member(round(_dtbl[1][3][1][_j, 1]), _i) then _k := `union`(_k, {_j}) end if end do; _i := _k; if lhs(_xin) = "eventdisable" then _dtbl[4] := 0; _j := [evalb(assigned(_dtbl[2]) and member(_dtbl[2][4][17], _i)), evalb(assigned(_dtbl[3]) and member(_dtbl[3][4][17], _i))]; for _k in _i do _dtbl[1][3][1][_k, 7] := 0; if assigned(_dtbl[2]) then _dtbl[2][3][1][_k, 7] := 0 end if; if assigned(_dtbl[3]) then _dtbl[3][3][1][_k, 7] := 0 end if end do; if _j[1] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[2][3][4][_k, 1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to defined init `, _dtbl[2][3][4][_k, 1]); _dtbl[2][3][1][_k, 8] := _dtbl[2][3][4][_k, 1] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to rate hysteresis init `, _dtbl[2][5][24]); _dtbl[2][3][1][_k, 8] := _dtbl[2][5][24] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to initial init `, _x0); _dtbl[2][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to fireinitial init `, _x0-1); _dtbl[2][3][1][_k, 8] := _x0-1 end if end do; _dtbl[2][4][17] := 0; _dtbl[2][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("left")) end if end if; if _j[2] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[3][3][4][_k, 2], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to defined init `, _dtbl[3][3][4][_k, 2]); _dtbl[3][3][1][_k, 8] := _dtbl[3][3][4][_k, 2] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to rate hysteresis init `, _dtbl[3][5][24]); _dtbl[3][3][1][_k, 8] := _dtbl[3][5][24] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to initial init `, _x0); _dtbl[3][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to fireinitial init `, _x0+1); _dtbl[3][3][1][_k, 8] := _x0+1 end if end do; _dtbl[3][4][17] := 0; _dtbl[3][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("right")) end if end if else for _k in _i do _dtbl[1][3][1][_k, 7] := 1 end do; _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); _dtbl[4] := 0; if _dtbl[1][4][10] = 1 then if _x0 <= procname("right") then try procname(procname("right")) catch:  end try end if; if procname("left") <= _x0 then try procname(procname("left")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and lhs(_xin) = "eventfired" then if not type(rhs(_xin), 'list') then error "'eventfired' must be specified as a list" end if; if _nv = 0 then error "this solution has no events" end if; if _dtbl[4] <> 2 and _dtbl[4] <> 3 then error "'direction' must be set prior to calling/setting 'eventfired'" end if; _i := _dtbl[4]; _val := NULL; if not assigned(_EnvEventRetriggerWarned) then _EnvEventRetriggerWarned := false end if; for _k in rhs(_xin) do if type(_k, 'integer') then _src := _k elif type(_k, 'integer' = 'anything') and type(evalf(rhs(_k)), 'numeric') then _k := lhs(_k) = evalf[max(Digits, 18)](rhs(_k)); _src := lhs(_k) else error "'eventfired' entry is not valid: %1", _k end if; if _src < 1 or round(_dtbl[1][3][1][_nv+1, 1]) < _src then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _src := {seq(`if`(_dtbl[1][3][1][_j, 1]-_src = 0., _j, NULL), _j = 1 .. _nv)}; if nops(_src) <> 1 then error "'eventfired' can only be set/queried for root-finding events and time/interval events" end if; _src := _src[1]; if _dtbl[1][3][1][_src, 2] <> 0. and _dtbl[1][3][1][_src, 2]-2. <> 0. then error "'eventfired' can only be set/queried for root-finding events and time/interval events" elif irem(round(_dtbl[1][3][1][_src, 4]), 2) = 1 then if _EnvEventRetriggerWarned = false then WARNING(`'eventfired' has no effect on events that retrigger`) end if; _EnvEventRetriggerWarned := true end if; if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then _val := _val, undefined elif type(_dtbl[_i][3][4][_src, _i-1], 'undefined') or _i = 2 and _dtbl[2][3][1][_src, 8] < _dtbl[2][3][4][_src, 1] or _i = 3 and _dtbl[3][3][4][_src, 2] < _dtbl[3][3][1][_src, 8] then _val := _val, _dtbl[_i][3][1][_src, 8] else _val := _val, _dtbl[_i][3][4][_src, _i-1] end if; if type(_k, `=`) then if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then error "cannot set event code for a rate hysteresis event" end if; userinfo(3, {'events', 'eventreset'}, `manual set event code `, _src, ` to value `, rhs(_k)); _dtbl[_i][3][1][_src, 8] := rhs(_k); _dtbl[_i][3][4][_src, _i-1] := rhs(_k) end if end do; return [_val] elif type(_xin, `=`) and lhs(_xin) = "direction" then if not member(rhs(_xin), {-1, 1, ':-left', ':-right'}) then error "'direction' must be specified as either '1' or 'right' (positive) or '-1' or 'left' (negative)" end if; _src := `if`(_dtbl[4] = 2, -1, `if`(_dtbl[4] = 3, 1, undefined)); _i := `if`(member(rhs(_xin), {1, ':-right'}), 3, 2); _dtbl[4] := _i; _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if; return _src elif _xin = "eventcount" then if _dtbl[1][3][1] = 0 or _dtbl[4] <> 2 and _dtbl[4] <> 3 then return 0 else return round(_dtbl[_dtbl[4]][3][1][_nv+1, 12]) end if else return "procname" end if end if; if _xout = _x0 then return [_x0, seq(evalf(_dtbl[1][6][_vmap[_i]]), _i = 1 .. _n-_ne)] end if; _i := `if`(_x0 <= _xout, 3, 2); if _xin = "last" and 0 < _dtbl[_i][4][9] and _dtbl[_i][4][9] < 100 then _dat := eval(_dtbl[_i], 2); _j := _dat[4][20]; return [_dat[11][_j, 0], seq(_dat[11][_j, _vmap[_i]], _i = 1 .. _n-_ne-_nd), seq(_dat[8][1][_vmap[_i]], _i = _n-_ne-_nd+1 .. _n-_ne)] end if; if not type(_dtbl[_i], 'array') then _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if end if; if _xin <> "last" then if 0 < 0 then if `dsolve/numeric/checkglobals`(op(_dtbl[1][14]), _pars, _n, _y0) then `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars, _i) end if end if; if _dtbl[1][4][7] = 0 then error "parameters must be initialized before solution can be computed" end if end if; _dat := eval(_dtbl[_i], 2); _dtbl[4] := _i; try _src := `dsolve/numeric/SC/IVPrun`(_dat, _xout) catch: userinfo(2, `dsolve/debug`, print(`Exception in solnproc:`, [lastexception][2 .. -1])); error  end try; if _src = 0 and 100 < _dat[4][9] then _val := _dat[3][1][_nv+1, 8] else _val := _dat[11][_dat[4][20], 0] end if; if _src <> 0 or _dat[4][9] <= 0 then _dtbl[1][5][1] := _xout else _dtbl[1][5][1] := _val end if; if _i = 3 and _val < _xout then Rounding := -infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further right of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further right of %1, maxfun limit exceeded (see ?dsolve,maxfun for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further right of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further right of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif _dat[4][9] = 6 then error "cannot evaluate the solution further right of %1, cannot downgrade delay storage for problems with delay derivative order > 1, try increasing delaypts", evalf[8](_val) elif _dat[4][9] = 10 then error "cannot evaluate the solution further right of %1, interrupt requested", evalf[8](_val) elif 100 < _dat[4][9] then if _dat[4][9]-100 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further right of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-100, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further right of %1", evalf[8](_val) end if elif _i = 2 and _xout < _val then Rounding := infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further left of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further left of %1, maxfun limit exceeded (see ?dsolve,maxfun for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further left of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further left of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif _dat[4][9] = 6 then error "cannot evaluate the solution further left of %1, cannot downgrade delay storage for problems with delay derivative order > 1, try increasing delaypts", evalf[8](_val) elif _dat[4][9] = 10 then error "cannot evaluate the solution further right of %1, interrupt requested", evalf[8](_val) elif 100 < _dat[4][9] then if _dat[4][9]-100 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further left of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-100, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further left of %1", evalf[8](_val) end if end if; if _EnvInFsolve = true then _dig := _dat[4][26]; _dat[4][26] := _EnvDSNumericSaveDigits; _Env_dsolve_SC_native := true; if _dat[4][25] = 1 then _i := 1; _dat[4][25] := 2 else _i := _dat[4][25] end if; _val := `dsolve/numeric/SC/IVPval`(_dat, _xout, _src); _dat[4][25] := _i; _dat[4][26] := _dig; [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] else Digits := _dat[4][26]; _val := `dsolve/numeric/SC/IVPval`(eval(_dat, 2), _xout, _src); [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] end if end proc, (2) = Array(0..0, {}), (3) = [t, X__P(t), X__T(t), Y__P(t)], (4) = [V__T = V__T, a = a, b = b, x__0 = x__0, V__P = V__P]}); _vars := _dat[3]; _pars := map(rhs, _dat[4]); _n := nops(_vars)-1; _solnproc := _dat[1]; if not type(_xout, 'numeric') then if member(x_rkf45, ["start", 'start', "method", 'method', "left", 'left', "right", 'right', "leftdata", "rightdata", "enginedata", "eventstop", 'eventstop', "eventclear", 'eventclear', "eventstatus", 'eventstatus', "eventcount", 'eventcount', "laxtol", 'laxtol', "numfun", 'numfun', NULL]) then _res := _solnproc(convert(x_rkf45, 'string')); if 1 < nops([_res]) then return _res elif type(_res, 'array') then return eval(_res, 1) elif _res <> "procname" then return _res end if elif member(x_rkf45, ["last", 'last', "initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(x_rkf45, 'string'); _res := _solnproc(_xout); if _xout = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return [seq(_vars[_i+1] = [_res][1][_i+1], _i = 0 .. _n), seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] else return [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] end if elif type(_xout, `=`) and member(lhs(_xout), ["initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(lhs(x_rkf45), 'string') = rhs(x_rkf45); if type(rhs(_xout), 'list') then _res := _solnproc(_xout) else error "initial and/or parameter values must be specified in a list" end if; if lhs(_xout) = "initial" then return [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] elif lhs(_xout) = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [seq(_vars[_i+1] = [_res][1][_i+1], _i = 0 .. _n), seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["eventdisable", 'eventdisable', "eventenable", 'eventenable', "eventfired", 'eventfired', "direction", 'direction', NULL]) then return _solnproc(convert(lhs(x_rkf45), 'string') = rhs(x_rkf45)) elif _xout = "solnprocedure" then return eval(_solnproc) elif _xout = "sysvars" then return _vars end if; if procname <> unknown then return ('procname')(x_rkf45) else _ndsol; _ndsol := pointto(_dat[2][0]); return ('_ndsol')(x_rkf45) end if end if; try _res := _solnproc(_xout); [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] catch: error  end try end proc

 

[V__T = 1., a = 2., b = 1., x__0 = 0., V__P = -1.15470053837925]

 

[t = HFloat(1.7320505207668953), X__P(t) = HFloat(-2.890299205020301e-7), X__T(t) = HFloat(-2.8680198421090967e-7), Y__P(t) = HFloat(-8.020543449867425e-16)]

 

HFloat(1.7320505207668953)

 

 

f := proc(a, b, V__T)
  local Outer, F1, V__P, sys, sol, Traj, s, CaptureTime, anim, ell, ELL:
  uses plots:
  interface(warnlevel=0):
  Outer := (x/a)^2+(y/b)^2-1;
  F1    := -sqrt(a^2-b^2);
  V__P  := V__T*a/F1;

  sys := {
    diff(X__T(t), t) = V__T,
    diff(X__P(t), t) = V__P*(X__P(t)-X__T(t))/sqrt((X__P(t)-X__T(t))^2+Y__P(t)^2),
    diff(Y__P(t), t) = V__P*Y__P(t)/sqrt((X__P(t)-X__T(t))^2+Y__P(t)^2),
    X__T(0) = F1,
    X__P(0) = x__0,
    Y__P(0) = b*surd(1-(x__0/a)^2, 2)
  };

  sol := dsolve(sys, numeric, parameters=[x__0], events=[[Y__P(t)=0, halt]]);
  sol(parameters=[0]);
  sol(abs(V__P)*2);
  CaptureTime := sol(eventfired=[1])[1];

  anim := proc(tau)
    local Traj:= NULL:
    for s in [-a+1e-6, evalf(a*~cos~(Pi*~[$1..7]/8))[], a-1e-6] do
      sol(parameters=[s]);
      sol(abs(V__P)*2);
  
      Traj := Traj,
        plots:-odeplot(
        sol
        , [[X__T(t), 0], [X__P(t), Y__P(t)]]
        , t=0..tau
        , color=[blue, red]
        , thickness=[4, 2]
        , labels=["", ""]
      ):
      display(Traj):
    end do:
  end proc:

  ell := implicitplot(Outer, x=-a..a, y=0..b, color=gray);
  ELL := display( seq(plottools:-scale(ell, k, k), k in [seq](0.2..1, 0.2)) ):
  #(print@animate)(
  animate(
    anim, [tau], tau=1e-6..CaptureTime
    , background=ELL
    , scaling=constrained
   , view=[-a..a, 0..b]
   , size=[1000, ceil(1000*b/a)]
  )

end proc:

f(2, 1, 1)

 

 

Download Capture.mw

to get he outputs you want.
Among them:

restart;

NN := [4, 6, 8]:
a := 0:
b := 2:
n := 4:

h := evalf((b-a)/n):
print("The integration domain [a, b] = ", [a, b]);

"The integration domain [a, b] = ", [0, 2]

(1)

f := exp(x):
print("The given function is ", f);

"The given function is ", exp(x)

(2)

Exact := evalf(int(f, x = a .. b)):
text  := cat("The exact integration in ", [a, b], " is "):
print(text, Exact);

# or
Exact := evalf(int(f, x = a .. b)):
text1 := "The exact integration in":
text2 := "is":
print(text1, [a, b], text2, Exact);

# or
Exact := evalf(int(f, x = a .. b)):
text1 := "The exact integration in":
text2 := "is":

cattext := cat(text1, " ", convert([a, b], string), " ", text2, " ", convert(Exact, string)):
print(cattext);


# Finally

printf("%s %a %s %1.5f\n", text1, [a, b], text2, Exact)

"The exact integration in [0, 2] is ", 6.389056099

 

"The exact integration in", [0, 2], "is", 6.389056099

 

"The exact integration in [0, 2] is 6.389056099"

 

The exact integration in [0, 2] is 6.38906

 

text1 := "The value of h to divide the domain":
text2 := "into":
text3 := "subintervals is":
cattext := convert(cat(text1, " ", [a, b], " ", text2, " ", n, " ", text3, " ", evalf[5](h)), string):
print(cattext);

# or
cattext := convert(cat(text1, " ", [a, b], " ", text2, " ", n, " ", text3, " ", identify(h)), string):
print(cattext);


# Or

printf("%s %a %s %d %s %1.5f\n", text1, [a, b], text2, n, text3, h);
printf("%s %a %s %d %s %a\n", text1, [a, b], text2, n, text3, identify(h));

"The value of h to divide the domain [0, 2] into 4 subintervals is .50000"

 

"The value of h to divide the domain [0, 2] into 4 subintervals is 1/2"

 

The value of h to divide the domain [0, 2] into 4 subintervals is 0.50000
The value of h to divide the domain [0, 2] into 4 subintervals is 1/2

 

# Customize this one as you want

print("Numerical integration in [a,b] is going to perform when h via RECTANGULAR METHOD for n = ", n);

"Numerical integration in [a,b] is going to perform when h via RECTANGULAR METHOD for n = ", 4

(3)

 

Download Riemann_sum.mw

A help page that might interest you

help(Student:-Calculus1:-RiemannSum);

Riemann_sum_2.mw

Finally, better presentations (IMO) can be obtained, for instance with DocumentTools:-Layout.

Drawing a parabolic cylinder with generatrix paralel to axis (for instance) is easy:

restart
with(plots):

implicitplot3d(
  y-x^2
  , x=-1..1, y=0..1, z=0..1, grid=[40$3]
  , style=surface, color=cyan, transparency=0.3
  , axes=normal
  , seq(axis[k]=[tickmarks=0], k=1..3)
);

Drawing the magenta curve requires you define what this curve is.
Once done: unfold the parabolic cylinder (this gives the plane y=0) and draw the curve C on this plane; next "fold" this plane to retrieve the original parabolic cylinder.
The curve C' you get is the image of C, drawn on the parabolic cylinder.
The parametric equation of curve C' is

[x, f(x), g(x)] for any x in some drawing interval

Where:

  • f := x -> a*x^2 + b*x + c represents the equation of any cross section oc the paramolic cylinder;
  • z = g(x) is the explicit equation of curve C in plane y=0.


Here is an example when the curve C is given by g : x -> g(x)=x
pc0.mw

The file above contains another example

pc.mw

1 2 3 4 5 6 7 Last Page 1 of 47