nm

12088 Reputation

20 Badges

13 years, 217 days

MaplePrimes Activity


These are questions asked by nm

t := (5/9)*Pi;
e:=tan(t) + 4*sin(t);

is -sqrt(3)  but how to make Maple show this?

This is what I tried

t := (5/9)*Pi;
e:=tan(t) + 4*sin(t);
convert(e,radical);
simplify(e,trig);
simplify(e,constant);
allvalues(e);

 

The command "is" and "identify" knows this

is(e=-sqrt(3));
identify(evalf[32](e))

In Mathematica, FullSimplify can do it.

 

Any suggestions in Maple to simplify like the above?

Maple desperately needs a new full_simplify() command.

Having to keep trying different commands by trial and error in the hope one works is not the right way to do things.

I do not think I've ever seen this before.

I have Maple set up to use one engine per one worksheet.

 

Today, when I tried to open new worksheet (after Maple had an internal error running some code in another worksheet), I was not able to execute anything in the new worksheet. I get this message

Looking at task manager, I see the front end running at high CPU

Stange thing, there was nothing else running at the time.

Had to kill all of Maple.

Just wondering if any one saw this message before and what could cause it?

I'll try to see if I can reproduce it again by running same code which caused that initial Maple error in the first worksheet. But as I said, this is the first I see such a problem in Maple.

I was connected to the network at the time, if this makes any difference.

What is the opinion here on the following. If given   A which is linear in x, but not simplified. now type(A,x) gives false.  But type(simplify(A),x) gives true.

Does this mean it is the user responsibility to simplify the expression first before calling type on it? 

Why does not type command do this internally to see if it is linear before deciding? What is the reason for this design choice?

interface(version);

`Standard Worksheet Interface, Maple 2025.2, Windows 10, November 11 2025 Build ID 1971053`

restart;

 

A:=(x+y+1)^2-(x+y-1)^2;

(x+y+1)^2-(x+y-1)^2

simplify(A);

4*x+4*y

type(A,linear(y))

false

type(simplify(A),linear(y))

true

type(A,linear(x))

false

type(simplify(A),linear(x))

true

 

 

Download why_simplify_is_needed_feb_9_2026.mw

Could someone suggest a way to help dsolve be able to obtain this solution to this complicated first order ode? In V 2025.2 it is not able to solve it as is

interface(version);

`Standard Worksheet Interface, Maple 2025.2, Windows 10, November 11 2025 Build ID 1971053`

ode:=-x*sqrt((1 - x)/(x + 1))*(x + 1)*arcsech(x)*diff(y(x), x)*exp(y(x)/arcsech(x) + exp(y(x)/arcsech(x))) - y(x)*exp(y(x)/arcsech(x) + exp(y(x)/arcsech(x))) + 2*x*sqrt((1 - x)/(x + 1))*(x + 1)*arcsech(x)^2 = 0;

-x*((1-x)/(x+1))^(1/2)*(x+1)*arcsech(x)*(diff(y(x), x))*exp(y(x)/arcsech(x)+exp(y(x)/arcsech(x)))-y(x)*exp(y(x)/arcsech(x)+exp(y(x)/arcsech(x)))+2*x*((1-x)/(x+1))^(1/2)*(x+1)*arcsech(x)^2 = 0

sol:=dsolve(ode);

expected_sol:=y(x)=arcsech(x)*ln(ln(2*x+_C1));

y(x) = arcsech(x)*ln(ln(2*x+_C1))

odetest(expected_sol,ode) assuming x>0

0

 

 

Download ode_solution_feb_6_2026.mw

Noticed something strange.  When I type

restart;
F:=x-> (x^4+3*x^3-3*x^2-2*x-24)/(x^4-4*x^3-13*x^2+62*x-56);
u:=x->piecewise(x=-4,limit(F(x),x=-4),true,F(x));
u(-4);

Gives Error, (in F) numeric exception: division by zero which means it did not hit the first condition x=-4

But when I write this

restart;
F:=x-> (x^4+3*x^3-3*x^2-2*x-24)/(x^4-4*x^3-13*x^2+62*x-56);
A:=limit(F(x),x=-4);
u:=x->piecewise(x=-4,A,true,F(x));
u(-4)

Now it gives expected result 15/47

To avoid defining many variables, like A above, I'd like to just write the  limit inside.

Is there a way to make Maple accept the limit inside piecewise as written above? i.e. have it evaluate to 15/47?

Help says "The piecewise function evaluates its arguments on an as-needed basis."

Not sure what this means.

I tried adding eval, as in 

u:=x->piecewise(x=-4,eval(limit(F(x),x=-4)),true,F(x));

But this did nothing

Maple 2025.2

 

1 2 3 4 5 6 7 Last Page 1 of 213