one man

Alexey Ivanov

1355 Reputation

18 Badges

13 years, 82 days

Social Networks and Content at Maplesoft.com

Maple Application Center

MaplePrimes Activity


These are Posts that have been published by one man

For a long time I could not understand how to make a kinematic analysis of this device based on the coupling equations (like here). The equations were drawn up relative to the ends of the grips (horns), that is, relative to the coordinates of 4 points. That's 12 equations. But then only a finite number of mechanism positions take place (as shown by RootFinding[Isolate]). It turns out that there is no continuous transition between these positions. Then it is natural to assume that the movement can be obtained with the help of a small deformation. It seemed that if we discard the condition of a constant distance between the midpoints of the horns (this is the f7 equation at the very beginning), then this will allow us to obtain minimal distortion during movement. In fact, the maximum distortion during the movement was in the second decimal place.
(It seemed that these guys came to a similar result, but analytically "Configuration analysis of the Schatz linkage" C-C Lee and J S Dai
Department of Tool and Die-Making Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung, Taiwan Department of Mechanical Engineering, King’s College, University of London, UK)

The left racks are input.


The first text is used to calculate the trajectory, and the other two show design options based on the data received.
For data transfer, a disk called E is used.
Schatz_mechanism_2_0.mw
OF_experimental_1_part_3_Barrel.mw
OF_experimental_1_part_3.mw

One way to show all solutions of a polynomial in one variable.
The root is the intersection of curves representing the imaginary part of the equation (red) and the real part (blue). These equations are obtained after representing the variable as the sum of its imaginary and real parts. The circle limits the area where all the roots are located (according to theory).
Example      -15*x^7+x^2+I*x+2=0;
polynomial_roots_graph.mw

As always, it's just about drawings.
The parametric equation of a circle has 3 variables and two equations. In 3-dimensional space, a circle is a spiral, but we only need one projection of this spiral into 2-dimensional space, and we also know how  the rest 2 it's projections on flat space look.
If we look at the equation of the sphere in parametric form, we will see that these are 3 equations and 5 variables:
x1 = sin(x4)*cos(x5); 
x2 = sin(x4)*sin(x5); 
x3 = cos(x4);
And so I wanted to see how the remaining 9 projections of the sphere onto 3-dimensional space look. It is very easy to do this with Maple.
SPHERE.mw

 Pictures on the theme of Klein bottle.  Wikipedia article
KL_B_1.mw

KL_B_2.mw

A manipulator, in which 3 degrees of freedom are provided by changing the length of the links and one degree of freedom, is provided by turning. Only 4 degrees of freedom. Solved using Draghilev's method. In one case, the length of the manipulator link could be expressed through the value of the 3rd coordinate. The lengths of the other two links are considered generalized coordinates. In this case, it is still obtained polynomial equations, as for the usual coordinates.
I was asked to make an example of the movement of such a manipulator using Maple. (Automatically, this is an example of solving an inverse kinematics problem.)
four_degrees_of_freedom_from_Sabina.mw

1 2 3 4 5 6 7 Last Page 3 of 12