2096 Reputation

11 Badges

13 years, 45 days

Dr. Robert J. Lopez, Emeritus Professor of Mathematics at the Rose-Hulman Institute of Technology in Terre Haute, Indiana, USA, is an award winning educator in mathematics and is the author of several books including Advanced Engineering Mathematics (Addison-Wesley 2001). For over two decades, Dr. Lopez has also been a visionary figure in the introduction of Maplesoft technology into undergraduate education. Dr. Lopez earned his Ph.D. in mathematics from Purdue University, his MS from the University of Missouri - Rolla, and his BA from Marist College. He has held academic appointments at Rose-Hulman (1985-2003), Memorial University of Newfoundland (1973-1985), and the University of Nebraska - Lincoln (1970-1973). His publication and research history includes manuscripts and papers in a variety of pure and applied mathematics topics. He has received numerous awards for outstanding scholarship and teaching.

MaplePrimes Activity

These are Posts that have been published by rlopez

You are teaching linear algebra, or perhaps a differential equations course that contains a unit on first-order linear systems. You need to get across the notion of the eigenpair of a matrix, that is, eigenvalues and eigenvectors, what they mean, how are they found, for what are they useful.

Of course, Maple's Context Menu can, with a click or two of the mouse, return both eigenvalues and eigenvectors. But that does not satisfy the needs of the student: an answer has been given but nothing has been learned. So, of what use is Maple in this pedagogical task? How can Maple enhance the lessons devoted to finding and using eigenpairs of a matrix?

In this webinar I am going to demonstrate how Maple can be used to get across the concept of the eigenpair, to show its meaning, to relate this concept to the by-hand algorithms taught in textbooks.

Ah, but it's not enough just to do the calculations - they also have to be easy to implement so that the implementation does not cloud the pedagogic goal. So, an essential element of this webinar will be its Clickable format, free of the encumbrance of commands and their related syntax. I'll use a syntax-free paradigm to keep the technology as simple as possible while achieving the didactic goal.

Notes added on July 7, 2015:

Fourteen Clickable Calculus examples have been added to the Teaching Concepts with Maple area of the Maplesoft web site. Four are sequence and series explorations taken from algebra/precalculus, four are applications of differentiation, four are applications of integration, and two are problems from the lines-and-planes section of multivariate calculus. By my count, this means some 111 Clickable Calculus examples have now been posted to the section.

Thirteen Clickable Calculus examples have been added to the Teaching Concepts with Maple section of the Maplesoft web site. The additions include examples in algebra, differential and integral calculus, lines-and-planes in multivariate calculus, and linear algebra. By my count, this means some 97 Clickable Calculus examples are now available.

In the Algebra/Precalculus section, examples of an

In a webinar on July 10, 2013, I solved the related rate problem:

Helium is pumped into a spherical balloon at the constant rate of 25 cu ft per min.
At what rate is the surface area of the balloon increasing at the moment when its radius is 8 ft?

A question in the Q&A at the end of the Webinar asked if it were possible to have an animation illustrate the expanding sphere and the rate of change in the surface area thereof. 

In Maple 17, the Student MultivariateCalculus package has been augmented with fifteen new commands relevant for defining and manipulating lines and planes. There already exists a functionality for this in the geom3d package whose structures differ from those in the new Student packages. Students...

2 3 4 5 6 7 8 Page 4 of 11