salim-barzani

1560 Reputation

9 Badges

1 years, 17 days

MaplePrimes Activity


These are replies submitted by salim-barzani

@mmcdara  i want do the same like paper did factoring (m+F)=(m+G'/G) 

@mmcdara 

Previously, you solved a problem for me involving an equation like (m+1/G′)=ϕ. Your explanation was excellent, and I enjoyed learning the new method you used to solve it. Inspired by that, I attempted to apply the same technique to factor (m+G′G)=phi, but I couldn't figure it out this time.

I don’t fully understand the technique you demonstrated earlier, but I’d really appreciate it if you could explain it again. If possible, could you also provide a code implementation for this problem? Your previous explanation was incredibly clear and helpful. Thank you!

@nm that is 2 day i am stuck becuase of this my second odetest  make  a problem i knew problem is parameter becuase in a lot place have a gamma  anyway thank you so much is great it is work .

@Oliver K  but union not work but try the identical is work.

@janhardo  i want figure out by maple.

@dharr if you watch the file part in indet we have name but i remove the name instead i write down the parameter but it say is not exists how this is possible

@dharr it is easy to find all case really is a good code  @ mmcdara write the code i asked letter  for change to arbitrary parameter but he didn't response ,becuase i think  my PDE is not going to zero becuase all parameter there must be a problem i should found i am stuck becuase my pde which i transformed to ode is not going to zero have a problem with parameter but i don't know what is it no one answered untill now i think thus parameter make a problem

@janhardo have a long story 

@nm  i try to explain in this file 


 

restart

with(PDEtools)

with(LinearAlgebra)

with(Physics)

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

_local(gamma)

Warning, A new binding for the name `gamma` has been created. The global instance of this name is still accessible using the :- prefix, :-`gamma`.  See ?protect for details.

 

declare(Omega(x, t)); declare(U(xi)); declare(u(x, y, z, t)); declare(Q(xi)); declare(V(xi))

Omega(x, t)*`will now be displayed as`*Omega

 

U(xi)*`will now be displayed as`*U

 

u(x, y, z, t)*`will now be displayed as`*u

 

Q(xi)*`will now be displayed as`*Q

 

V(xi)*`will now be displayed as`*V

(2)

pde1 := I*(diff(Omega(x, t)^m, t))+alpha*(diff(Omega(x, t)^m, `$`(x, 2)))+I*beta*(diff(abs(Omega(x, t))^(2*n)*Omega(x, t)^m, x))+m*sigma*Omega(x, t)^m*(diff(W(t), t)) = I*gamma*abs(Omega(x, t))^(2*n)*(diff(Omega(x, t)^m, x))+delta*abs(Omega(x, t))^(4*n)*Omega(x, t)^m

I*Omega(x, t)^m*m*(diff(Omega(x, t), t))/Omega(x, t)+alpha*(Omega(x, t)^m*m^2*(diff(Omega(x, t), x))^2/Omega(x, t)^2+Omega(x, t)^m*m*(diff(diff(Omega(x, t), x), x))/Omega(x, t)-Omega(x, t)^m*m*(diff(Omega(x, t), x))^2/Omega(x, t)^2)+I*beta*(abs(Omega(x, t))^(2*n)*n*((diff(Omega(x, t), x))*conjugate(Omega(x, t))+Omega(x, t)*(diff(conjugate(Omega(x, t)), x)))*Omega(x, t)^m/abs(Omega(x, t))^2+abs(Omega(x, t))^(2*n)*Omega(x, t)^m*m*(diff(Omega(x, t), x))/Omega(x, t))+m*sigma*Omega(x, t)^m*(diff(W(t), t)) = I*gamma*abs(Omega(x, t))^(2*n)*Omega(x, t)^m*m*(diff(Omega(x, t), x))/Omega(x, t)+delta*abs(Omega(x, t))^(4*n)*Omega(x, t)^m

(3)

NULL

ode := 4*V(xi)^4*n^2*sigma+(-4*beta*k*m*n^2+4*gamma*k*m*n^2)*V(xi)^3+(4*alpha*k^2*m^2*n^2-4*delta^2*m*n^2+4*m*n^2*w)*V(xi)^2-2*V(xi)*(diff(diff(V(xi), xi), xi))*alpha*m*n+(-alpha*m^2+2*alpha*m*n)*(diff(V(xi), xi))^2 = 0

4*V(xi)^4*n^2*sigma+(-4*beta*k*m*n^2+4*gamma*k*m*n^2)*V(xi)^3+(4*alpha*k^2*m^2*n^2-4*delta^2*m*n^2+4*m*n^2*w)*V(xi)^2-2*V(xi)*(diff(diff(V(xi), xi), xi))*alpha*m*n+(-alpha*m^2+2*alpha*m*n)*(diff(V(xi), xi))^2 = 0

(4)

L := Omega(x, t) = U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau))

Omega(x, t) = U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau))

(5)

T := U(xi) = V(xi)^(1/(2*n))

U(xi) = V(xi)^((1/2)/n)

(6)

NULL

ode1 := U(xi)^3*U(xi)^(-1+2*n)*beta*k*m-U(xi)^2*gamma*U(xi)^(2*n)*k*m+U(xi)^2*delta^2*m+I*U(xi)^2*(diff(U(xi), xi))*U(xi)^(-1+2*n)*beta*m-I*U(xi)*(diff(U(xi), xi))*gamma*U(xi)^(2*n)*m-(2*I)*U(xi)*(diff(U(xi), xi))*alpha*k*m^2-U(xi)^2*alpha*k^2*m^2-U(xi)^2*m*w-I*U(xi)*(diff(U(xi), xi))*m*c[0]+(2*I)*U(xi)^2*(diff(U(xi), xi))*U(xi)^(-1+2*n)*beta*n+(diff(U(xi), xi))^2*alpha*m^2-sigma*U(xi)^(4*n)*U(xi)^2+U(xi)*(diff(diff(U(xi), xi), xi))*alpha*m-(diff(U(xi), xi))^2*alpha*m = 0

U(xi)^3*U(xi)^(-1+2*n)*beta*k*m-U(xi)^2*gamma*U(xi)^(2*n)*k*m+U(xi)^2*delta^2*m+I*U(xi)^2*(diff(U(xi), xi))*U(xi)^(-1+2*n)*beta*m-I*U(xi)*(diff(U(xi), xi))*gamma*U(xi)^(2*n)*m-(2*I)*U(xi)*(diff(U(xi), xi))*alpha*k*m^2-U(xi)^2*alpha*k^2*m^2-U(xi)^2*m*w-I*U(xi)*(diff(U(xi), xi))*m*c[0]+(2*I)*U(xi)^2*(diff(U(xi), xi))*U(xi)^(-1+2*n)*beta*n+(diff(U(xi), xi))^2*alpha*m^2-sigma*U(xi)^(4*n)*U(xi)^2+U(xi)*(diff(diff(U(xi), xi), xi))*alpha*m-(diff(U(xi), xi))^2*alpha*m = 0

(7)

S := diff(G(xi), `$`(xi, 2))+(2*m*mu+lambda)*(diff(G(xi), xi))+mu = 0

diff(diff(G(xi), xi), xi)+(2*m*mu+lambda)*(diff(G(xi), xi))+mu = 0

(8)

S1 := dsolve(S, G(xi))

G(xi) = -exp(-(2*m*mu+lambda)*xi)*c__1/(2*m*mu+lambda)-mu*xi/(2*m*mu+lambda)+c__2

(9)

S2 := diff(G(xi) = -exp(-(2*m*mu+lambda)*xi)*c__1/(2*m*mu+lambda)-mu*xi/(2*m*mu+lambda)+c__2, xi)

diff(G(xi), xi) = -(-2*m*mu-lambda)*exp(-(2*m*mu+lambda)*xi)*c__1/(2*m*mu+lambda)-mu/(2*m*mu+lambda)

(10)

K := V(xi) = a[-1]/(m+1/(diff(G(xi), xi)))+a[0]+a[1]*(m+1/(diff(G(xi), xi)))

V(xi) = a[-1]/(m+1/(diff(G(xi), xi)))+a[0]+a[1]*(m+1/(diff(G(xi), xi)))

(11)

case1 := {alpha = alpha, beta = gamma, delta = delta, gamma = gamma, k = k, lambda = 0, m = 2*n, mu = mu, n = n, sigma = 32*alpha*mu^2*n^4/a[-1]^2, w = -2*alpha*k^2*n-4*alpha*mu^2*n+delta^2, a[-1] = a[-1], a[0] = 0, a[1] = 0}

{alpha = alpha, beta = gamma, delta = delta, gamma = gamma, k = k, lambda = 0, m = 2*n, mu = mu, n = n, sigma = 32*alpha*mu^2*n^4/a[-1]^2, w = -2*alpha*k^2*n-4*alpha*mu^2*n+delta^2, a[-1] = a[-1], a[0] = 0, a[1] = 0}

(12)

F1 := subs(case1, K)

V(xi) = a[-1]/(2*n+1/(diff(G(xi), xi)))

(13)

F2 := subs(case1, ode)

128*V(xi)^4*n^6*alpha*mu^2/a[-1]^2+(16*alpha*k^2*n^4-8*delta^2*n^3+8*n^3*(-2*alpha*k^2*n-4*alpha*mu^2*n+delta^2))*V(xi)^2-4*V(xi)*(diff(diff(V(xi), xi), xi))*alpha*n^2 = 0

(14)

``

(15)

W1 := subs(S2, F1)

V(xi) = a[-1]/(2*n+1/(-(-2*m*mu-lambda)*exp(-(2*m*mu+lambda)*xi)*c__1/(2*m*mu+lambda)-mu/(2*m*mu+lambda)))

(16)

W2 := subs(case1, W1)

V(xi) = a[-1]/(2*n+1/(exp(-4*mu*n*xi)*c__1-(1/4)/n))

(17)

odetest(W2, F2)

0

(18)

NULL

NULL

T2 := subs(W2, T)

U(xi) = (a[-1]/(2*n+1/(exp(-4*mu*n*xi)*c__1-(1/4)/n)))^((1/2)/n)

(19)

T3 := subs(T2, L)

Omega(x, t) = (a[-1]/(2*n+1/(exp(-4*mu*n*xi)*c__1-(1/4)/n)))^((1/2)/n)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau))

(20)

condition1 := c[0] = -2*alpha*k*m; condition2 := beta = gamma*m/(m+2*n)

c[0] = -2*alpha*k*m

 

beta = gamma*m/(m+2*n)

(21)

n := 2; M := 1

2

 

1

(22)

P := subs(case1, ode1)

4*U(xi)^2*delta^2-(32*I)*U(xi)*(diff(U(xi), xi))*alpha*k-16*U(xi)^2*alpha*k^2-4*U(xi)^2*(-4*alpha*k^2-8*alpha*mu^2+delta^2)-(4*I)*U(xi)*(diff(U(xi), xi))*c[0]+(4*I)*U(xi)^5*(diff(U(xi), xi))*gamma+12*(diff(U(xi), xi))^2*alpha-512*alpha*mu^2*U(xi)^10/a[-1]^2+4*U(xi)*(diff(diff(U(xi), xi), xi))*alpha = 0

(23)

P1 := subs(case1, T2)

U(xi) = (a[-1]/(4+1/(exp(-8*mu*xi)*c__1-1/8)))^(1/4)

(24)

Pe := odetest(P1, P)

-(512*I)*mu*c__1*(8*c__1*a[-1]/(exp(8*mu*xi)+8*c__1)-a[-1]*exp(8*mu*xi)/(exp(8*mu*xi)+8*c__1))^(1/2)*exp(16*mu*xi)*alpha*k/((exp(8*mu*xi)-8*c__1)*(exp(8*mu*xi)+8*c__1)^2)-(16*I)*mu*c__1*(8*c__1*a[-1]/(exp(8*mu*xi)+8*c__1)-a[-1]*exp(8*mu*xi)/(exp(8*mu*xi)+8*c__1))^(1/2)*exp(16*mu*xi)*gamma*a[-1]/((exp(8*mu*xi)-8*c__1)*(exp(8*mu*xi)+8*c__1)^2)-(4096*I)*mu*c__1^2*(8*c__1*a[-1]/(exp(8*mu*xi)+8*c__1)-a[-1]*exp(8*mu*xi)/(exp(8*mu*xi)+8*c__1))^(1/2)*exp(8*mu*xi)*alpha*k/((exp(8*mu*xi)-8*c__1)*(exp(8*mu*xi)+8*c__1)^2)+(128*I)*mu*c__1^2*(8*c__1*a[-1]/(exp(8*mu*xi)+8*c__1)-a[-1]*exp(8*mu*xi)/(exp(8*mu*xi)+8*c__1))^(1/2)*exp(8*mu*xi)*gamma*a[-1]/((exp(8*mu*xi)-8*c__1)*(exp(8*mu*xi)+8*c__1)^2)-(64*I)*mu*c__1*(8*c__1*a[-1]/(exp(8*mu*xi)+8*c__1)-a[-1]*exp(8*mu*xi)/(exp(8*mu*xi)+8*c__1))^(1/2)*exp(16*mu*xi)*c[0]/((exp(8*mu*xi)-8*c__1)*(exp(8*mu*xi)+8*c__1)^2)-(512*I)*mu*c__1^2*(8*c__1*a[-1]/(exp(8*mu*xi)+8*c__1)-a[-1]*exp(8*mu*xi)/(exp(8*mu*xi)+8*c__1))^(1/2)*exp(8*mu*xi)*c[0]/((exp(8*mu*xi)-8*c__1)*(exp(8*mu*xi)+8*c__1)^2)

(25)

subs({condition1, condition2}, Pe)

-(512*I)*mu*c__1*(8*c__1*a[-1]/(exp(8*mu*xi)+8*c__1)-a[-1]*exp(8*mu*xi)/(exp(8*mu*xi)+8*c__1))^(1/2)*exp(16*mu*xi)*alpha*k/((exp(8*mu*xi)-8*c__1)*(exp(8*mu*xi)+8*c__1)^2)-(16*I)*mu*c__1*(8*c__1*a[-1]/(exp(8*mu*xi)+8*c__1)-a[-1]*exp(8*mu*xi)/(exp(8*mu*xi)+8*c__1))^(1/2)*exp(16*mu*xi)*gamma*a[-1]/((exp(8*mu*xi)-8*c__1)*(exp(8*mu*xi)+8*c__1)^2)-(4096*I)*mu*c__1^2*(8*c__1*a[-1]/(exp(8*mu*xi)+8*c__1)-a[-1]*exp(8*mu*xi)/(exp(8*mu*xi)+8*c__1))^(1/2)*exp(8*mu*xi)*alpha*k/((exp(8*mu*xi)-8*c__1)*(exp(8*mu*xi)+8*c__1)^2)+(128*I)*mu*c__1^2*(8*c__1*a[-1]/(exp(8*mu*xi)+8*c__1)-a[-1]*exp(8*mu*xi)/(exp(8*mu*xi)+8*c__1))^(1/2)*exp(8*mu*xi)*gamma*a[-1]/((exp(8*mu*xi)-8*c__1)*(exp(8*mu*xi)+8*c__1)^2)+(128*I)*mu*c__1*(8*c__1*a[-1]/(exp(8*mu*xi)+8*c__1)-a[-1]*exp(8*mu*xi)/(exp(8*mu*xi)+8*c__1))^(1/2)*exp(16*mu*xi)*alpha*k*m/((exp(8*mu*xi)-8*c__1)*(exp(8*mu*xi)+8*c__1)^2)+(1024*I)*mu*c__1^2*(8*c__1*a[-1]/(exp(8*mu*xi)+8*c__1)-a[-1]*exp(8*mu*xi)/(exp(8*mu*xi)+8*c__1))^(1/2)*exp(8*mu*xi)*alpha*k*m/((exp(8*mu*xi)-8*c__1)*(exp(8*mu*xi)+8*c__1)^2)

(26)

NULL

NULL

NULL


 

Download explain.mw

@mmcdara  in the code i don't want all parameter maybe 4 or 5 is enough How i do that?

F-P.mw

@acer  last night my work stoped becuase of this physic i will not used anymore untill i something strange appear.

@acer  just some time  a new sign appear with physic they remove , why problem is physic?

@mmcdara is different no one can undrestand except you  best of best thank you so much.

@mmcdara you are legend of the coding

@mmcdara  i look to my old code and find another thing but is not give my answer even 

How you do that is unbliavable , just this is unclear for me why the author just write a[-1],a[1],c[4] 

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

lprint

lprint

(2)

declare(Omega(x, t)); declare(U(xi)); declare(u(x, y, z, t)); declare(Q(xi))

Omega(x, t)*`will now be displayed as`*Omega

 

U(xi)*`will now be displayed as`*U

 

u(x, y, z, t)*`will now be displayed as`*u

 

Q(xi)*`will now be displayed as`*Q

(3)

tr := {t = tau, x = (-ZETA*c[3]-tau*c[4]-`Υ`*c[2]+xi)/c[1], y = `Υ`, z = ZETA, u(x, y, z, t) = U(xi)}

pde1 := diff(u(x, y, z, t), `$`(x, 3), z)-4*(diff(u(x, y, z, t), x, t))+4*(diff(u(x, y, z, t), x))*(diff(u(x, y, z, t), x, z))+2*(diff(u(x, y, z, t), `$`(x, 2)))*(diff(u(x, y, z, t), z))+3*(diff(u(x, y, z, t), `$`(y, 2))) = 0

``

L1 := PDEtools:-dchange(tr, pde1, [xi, `Υ`, ZETA, tau, U])

map(int, L1, xi)

ode := %

F := sum(a[i]*(m+1/(diff(G(xi), xi)))^i, i = -1 .. 1)

D1 := diff(F, xi)

S := diff(G(xi), `$`(xi, 2)) = -(2*m*mu+lambda)*(diff(G(xi), xi))-mu

E1 := subs(S, D1)

D2 := diff(E1, xi)

E2 := subs(S, D2)

D3 := diff(E2, xi)

E3 := subs(S, D3)

NULL

NULL

K := U(xi) = F

K1 := diff(U(xi), xi) = E1

K2 := diff(U(xi), `$`(xi, 2)) = E2

K3 := diff(U(xi), `$`(xi, 3)) = E3

NULL

L := eval(ode, {K, K1, K2, K3})

c[1]^3*c[3]*(6*a[-1]*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)^3/((m+1/(diff(G(xi), xi)))^4*(diff(G(xi), xi))^6)-12*a[-1]*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)^3/((m+1/(diff(G(xi), xi)))^3*(diff(G(xi), xi))^5)-6*a[-1]*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)^2*(2*m*mu+lambda)/((m+1/(diff(G(xi), xi)))^3*(diff(G(xi), xi))^4)+6*a[-1]*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)^3/((m+1/(diff(G(xi), xi)))^2*(diff(G(xi), xi))^4)+6*a[-1]*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)^2*(2*m*mu+lambda)/((m+1/(diff(G(xi), xi)))^2*(diff(G(xi), xi))^3)+a[-1]*(2*m*mu+lambda)^2*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/((m+1/(diff(G(xi), xi)))^2*(diff(G(xi), xi))^2)-6*a[1]*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)^3/(diff(G(xi), xi))^4-6*a[1]*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)^2*(2*m*mu+lambda)/(diff(G(xi), xi))^3-a[1]*(2*m*mu+lambda)^2*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/(diff(G(xi), xi))^2)+3*c[2]^2*(a[-1]*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/((m+1/(diff(G(xi), xi)))^2*(diff(G(xi), xi))^2)-a[1]*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/(diff(G(xi), xi))^2)-4*c[4]*c[1]*(a[-1]*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/((m+1/(diff(G(xi), xi)))^2*(diff(G(xi), xi))^2)-a[1]*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/(diff(G(xi), xi))^2)+3*c[1]^2*c[3]*(a[-1]*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/((m+1/(diff(G(xi), xi)))^2*(diff(G(xi), xi))^2)-a[1]*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/(diff(G(xi), xi))^2)^2 = 0

(4)

NULL

# rewritting rule

RR := isolate(m+1/(diff(G(xi), xi))=Phi, diff(G(xi), xi));

diff(G(xi), xi) = 1/(Phi-m)

(5)

# Apply RR and collect wrt Phi

subs(RR, L):
normal(%):
PhiN := collect(numer(lhs(%)), Phi):
PhiD := denom(lhs(%%));

Phi^4

(6)



with(LargeExpressions):

LLE := collect(PhiN, Phi, Veil[phi] ):
LLE / PhiD = 0;

(3*Phi^8*phi[1]+6*Phi^7*phi[2]+Phi^6*phi[3]+Phi^5*phi[4]-Phi^4*phi[5]-Phi^3*phi[6]+Phi^2*phi[7]-6*Phi*phi[8]+3*phi[9])/Phi^4 = 0

(7)

# phi[i] coefficients

CoefficientNullity:=print~( [ seq( phi[i] = simplify(Unveil[phi](phi[i]), size), i=1..LastUsed[phi] ) ] ):

phi[1] = mu^2*a[1]*c[1]^2*c[3]*(2*mu*c[1]+a[1])

 

phi[2] = lambda*mu*a[1]*c[1]^2*c[3]*(2*mu*c[1]+a[1])

 

phi[3] = -8*(mu*c[3]*(m^2*mu^2+m*mu*lambda-(7/8)*lambda^2)*c[1]^3+(3/4)*c[3]*((m^2*a[1]+a[-1])*mu^2+m*mu*lambda*a[1]-(1/2)*lambda^2*a[1])*c[1]^2+(1/2)*mu*c[1]*c[4]-(3/8)*mu*c[2]^2)*a[1]

 

phi[4] = -8*lambda*(c[3]*(m^2*mu^2+m*mu*lambda-(1/8)*lambda^2)*c[1]^3+(3/4)*(m*lambda*a[1]+mu*(m^2*a[1]+2*a[-1]))*c[3]*c[1]^2+(1/2)*c[1]*c[4]-(3/8)*c[2]^2)*a[1]

 

phi[5] = -2*(m^2*mu^2+m*mu*lambda-(1/2)*lambda^2)*((m^2*a[1]+a[-1])*mu+m*lambda*a[1])*c[3]*c[1]^3-3*((m^4*a[1]^2+4*m^2*a[-1]*a[1]+a[-1]^2)*mu^2+2*m*lambda*a[1]*(m^2*a[1]+2*a[-1])*mu+lambda^2*a[1]*(m^2*a[1]-2*a[-1]))*c[3]*c[1]^2-4*c[4]*((m^2*a[1]+a[-1])*mu+m*lambda*a[1])*c[1]+3*c[2]^2*((m^2*a[1]+a[-1])*mu+m*lambda*a[1])

 

phi[6] = -8*a[-1]*(c[3]*(m^2*mu^2+m*mu*lambda-(1/8)*lambda^2)*c[1]^3+(3/2)*(m*lambda*a[1]+mu*(m^2*a[1]+(1/2)*a[-1]))*c[3]*c[1]^2+(1/2)*c[1]*c[4]-(3/8)*c[2]^2)*lambda

 

phi[7] = -8*a[-1]*(mu^2*c[1]^2*c[3]*(mu*c[1]+(3/4)*a[1])*m^4+2*mu*lambda*c[1]^2*c[3]*(mu*c[1]+(3/4)*a[1])*m^3+((1/8)*mu*c[3]*c[1]^3*lambda^2+(3/4)*c[3]*(lambda^2*a[1]+mu^2*a[-1])*c[1]^2+(1/2)*mu*c[1]*c[4]-(3/8)*mu*c[2]^2)*m^2+(3/4)*lambda*(-(7/6)*c[1]^3*c[3]*lambda^2+mu*a[-1]*c[1]^2*c[3]+(2/3)*c[1]*c[4]-(1/2)*c[2]^2)*m-(3/8)*lambda^2*a[-1]*c[1]^2*c[3])

 

phi[8] = a[-1]*lambda*c[3]*(m*mu+lambda)*m*(2*m^2*mu*c[1]+2*lambda*m*c[1]+a[-1])*c[1]^2

 

phi[9] = a[-1]*c[3]*(m*mu+lambda)^2*m^2*(2*m^2*mu*c[1]+2*lambda*m*c[1]+a[-1])*c[1]^2

(8)

COEFFS := solve({phi[1],phi[2],phi[3],phi[4],phi[5],phi[6],phi[7],phi[8],phi[9]}, {a[-1],a[1],mu,c[4]})

(9)

C := solve({phi[1], phi[2], phi[3], phi[4], phi[5], phi[6], phi[7], phi[8], phi[9]}, {a[-1], a[0], a[1], c[4]})

(10)

sols := solve(CoefficientNullity, [a[-1], a[0], a[1], c[4]]); sols := `assuming`([eval(sols)], [b > 0]); whattype(sols); print(cat(`$`('_', 120))); `~`[print](sols)

[[a[-1] = a[-1], a[0] = a[0], a[1] = a[1], c[4] = c[4]]]

 

list

 

________________________________________________________________________________________________________________________

 

[a[-1] = a[-1], a[0] = a[0], a[1] = a[1], c[4] = c[4]]

(11)
 

 

Download mmcdara-new-M-F-P.mw

First 20 21 22 23 24 25 26 Last Page 22 of 37