vs140580

495 Reputation

8 Badges

4 years, 181 days

MaplePrimes Activity


These are questions asked by vs140580

How to Call a maple code from inside a python code in jupyter say or sypder.

I had purchached reseach licience Maple 2022 towards the end of 2022 only and Quantum Chemistry Toolbox I purchased in Feb 2022 only.

Now i find significant update in toolbox in just 3 months. Now guide me how should i address this issuse.

I had to take loan in india to buy the toolbox.

It is only 3 months.

Can you suggest me how solve the problem to get the update without spending again.

What is the way guide someone.

This is from a graph G with vertex set {0,1,2,3,4,5,6,7,8,9} always labelled from {0,1,2,3,...,n-1}

L:=[{{0, 1}, {0, 3}, {0, 5}, {0, 7}, {2, 9}}, {{0, 1}, {0, 3}, {0, 5}, {0, 7}, {4, 9}}, {{0, 1}, {0, 3}, {0, 5}, {0, 7}, {6, 9}}, {{0, 1}, {0, 3}, {0, 5}, {0, 7}, {8, 9}}, {{0, 1}, {0, 3}, {0, 5}, {0, 9}, {2, 7}}, {{0, 1}, {0, 3}, {0, 5}, {0, 9}, {4, 7}}, {{0, 1}, {0, 3}, {0, 5}, {0, 9}, {6, 7}}, {{0, 1}, {0, 3}, {0, 5}, {0, 9}, {7, 8}}, {{0, 1}, {0, 3}, {0, 7}, {0, 9}, {2, 5}}, {{0, 1}, {0, 3}, {0, 7}, {0, 9}, {4, 5}}, {{0, 1}, {0, 3}, {0, 7}, {0, 9}, {5, 6}}, {{0, 1}, {0, 3}, {0, 7}, {0, 9}, {5, 8}}, {{0, 1}, {0, 5}, {0, 7}, {0, 9}, {2, 3}}, {{0, 1}, {0, 5}, {0, 7}, {0, 9}, {3, 4}}, {{0, 1}, {0, 5}, {0, 7}, {0, 9}, {3, 6}}, {{0, 1}, {0, 5}, {0, 7}, {0, 9}, {3, 8}}, {{0, 1}, {1, 2}, {1, 4}, {1, 6}, {3, 8}}, {{0, 1}, {1, 2}, {1, 4}, {1, 6}, {5, 8}}, {{0, 1}, {1, 2}, {1, 4}, {1, 6}, {7, 8}}, {{0, 1}, {1, 2}, {1, 4}, {1, 6}, {8, 9}}, {{0, 1}, {1, 2}, {1, 4}, {1, 8}, {3, 6}}, {{0, 1}, {1, 2}, {1, 4}, {1, 8}, {5, 6}}, {{0, 1}, {1, 2}, {1, 4}, {1, 8}, {6, 7}}, {{0, 1}, {1, 2}, {1, 4}, {1, 8}, {6, 9}}, {{0, 1}, {1, 2}, {1, 6}, {1, 8}, {3, 4}}, {{0, 1}, {1, 2}, {1, 6}, {1, 8}, {4, 5}}, {{0, 1}, {1, 2}, {1, 6}, {1, 8}, {4, 7}}, {{0, 1}, {1, 2}, {1, 6}, {1, 8}, {4, 9}}, {{0, 1}, {1, 4}, {1, 6}, {1, 8}, {2, 3}}, {{0, 1}, {1, 4}, {1, 6}, {1, 8}, {2, 5}}, {{0, 1}, {1, 4}, {1, 6}, {1, 8}, {2, 7}}, {{0, 1}, {1, 4}, {1, 6}, {1, 8}, {2, 9}}, {{0, 1}, {2, 3}, {2, 5}, {2, 7}, {2, 9}}, {{0, 1}, {2, 3}, {3, 4}, {3, 6}, {3, 8}}, {{0, 1}, {2, 5}, {4, 5}, {5, 6}, {5, 8}}, {{0, 1}, {2, 7}, {4, 7}, {6, 7}, {7, 8}}, {{0, 1}, {2, 9}, {4, 9}, {6, 9}, {8, 9}}, {{0, 1}, {3, 4}, {4, 5}, {4, 7}, {4, 9}}, {{0, 1}, {3, 6}, {5, 6}, {6, 7}, {6, 9}}, {{0, 1}, {3, 8}, {5, 8}, {7, 8}, {8, 9}}, {{0, 3}, {0, 5}, {0, 7}, {0, 9}, {1, 2}}, {{0, 3}, {0, 5}, {0, 7}, {0, 9}, {1, 4}}, {{0, 3}, {0, 5}, {0, 7}, {0, 9}, {1, 6}}, {{0, 3}, {0, 5}, {0, 7}, {0, 9}, {1, 8}}, {{0, 3}, {1, 2}, {1, 4}, {1, 6}, {1, 8}}, {{0, 3}, {1, 2}, {2, 5}, {2, 7}, {2, 9}}, {{0, 3}, {1, 2}, {3, 4}, {3, 6}, {3, 8}}, {{0, 3}, {1, 4}, {2, 3}, {3, 6}, {3, 8}}, {{0, 3}, {1, 4}, {4, 5}, {4, 7}, {4, 9}}, {{0, 3}, {1, 6}, {2, 3}, {3, 4}, {3, 8}}, {{0, 3}, {1, 6}, {5, 6}, {6, 7}, {6, 9}}, {{0, 3}, {1, 8}, {2, 3}, {3, 4}, {3, 6}}, {{0, 3}, {1, 8}, {5, 8}, {7, 8}, {8, 9}}, {{0, 3}, {2, 3}, {3, 4}, {3, 6}, {5, 8}}, {{0, 3}, {2, 3}, {3, 4}, {3, 6}, {7, 8}}, {{0, 3}, {2, 3}, {3, 4}, {3, 6}, {8, 9}}, {{0, 3}, {2, 3}, {3, 4}, {3, 8}, {5, 6}}, {{0, 3}, {2, 3}, {3, 4}, {3, 8}, {6, 7}}, {{0, 3}, {2, 3}, {3, 4}, {3, 8}, {6, 9}}, {{0, 3}, {2, 3}, {3, 6}, {3, 8}, {4, 5}}, {{0, 3}, {2, 3}, {3, 6}, {3, 8}, {4, 7}}, {{0, 3}, {2, 3}, {3, 6}, {3, 8}, {4, 9}}, {{0, 3}, {2, 5}, {3, 4}, {3, 6}, {3, 8}}, {{0, 3}, {2, 5}, {4, 5}, {5, 6}, {5, 8}}, {{0, 3}, {2, 7}, {3, 4}, {3, 6}, {3, 8}}, {{0, 3}, {2, 7}, {4, 7}, {6, 7}, {7, 8}}, {{0, 3}, {2, 9}, {3, 4}, {3, 6}, {3, 8}}, {{0, 3}, {2, 9}, {4, 9}, {6, 9}, {8, 9}}, {{0, 5}, {1, 2}, {1, 4}, {1, 6}, {1, 8}}, {{0, 5}, {1, 2}, {2, 3}, {2, 7}, {2, 9}}, {{0, 5}, {1, 2}, {4, 5}, {5, 6}, {5, 8}}, {{0, 5}, {1, 4}, {2, 5}, {5, 6}, {5, 8}}, {{0, 5}, {1, 4}, {3, 4}, {4, 7}, {4, 9}}, {{0, 5}, {1, 6}, {2, 5}, {4, 5}, {5, 8}}, {{0, 5}, {1, 6}, {3, 6}, {6, 7}, {6, 9}}, {{0, 5}, {1, 8}, {2, 5}, {4, 5}, {5, 6}}, {{0, 5}, {1, 8}, {3, 8}, {7, 8}, {8, 9}}, {{0, 5}, {2, 3}, {3, 4}, {3, 6}, {3, 8}}, {{0, 5}, {2, 3}, {4, 5}, {5, 6}, {5, 8}}, {{0, 5}, {2, 5}, {3, 4}, {5, 6}, {5, 8}}, {{0, 5}, {2, 5}, {3, 6}, {4, 5}, {5, 8}}, {{0, 5}, {2, 5}, {3, 8}, {4, 5}, {5, 6}}, {{0, 5}, {2, 5}, {4, 5}, {5, 6}, {7, 8}}, {{0, 5}, {2, 5}, {4, 5}, {5, 6}, {8, 9}}, {{0, 5}, {2, 5}, {4, 5}, {5, 8}, {6, 7}}, {{0, 5}, {2, 5}, {4, 5}, {5, 8}, {6, 9}}, {{0, 5}, {2, 5}, {4, 7}, {5, 6}, {5, 8}}, {{0, 5}, {2, 5}, {4, 9}, {5, 6}, {5, 8}}, {{0, 5}, {2, 7}, {4, 5}, {5, 6}, {5, 8}}, {{0, 5}, {2, 7}, {4, 7}, {6, 7}, {7, 8}}, {{0, 5}, {2, 9}, {4, 5}, {5, 6}, {5, 8}}, {{0, 5}, {2, 9}, {4, 9}, {6, 9}, {8, 9}}, {{0, 7}, {1, 2}, {1, 4}, {1, 6}, {1, 8}}, {{0, 7}, {1, 2}, {2, 3}, {2, 5}, {2, 9}}, {{0, 7}, {1, 2}, {4, 7}, {6, 7}, {7, 8}}, {{0, 7}, {1, 4}, {2, 7}, {6, 7}, {7, 8}}, {{0, 7}, {1, 4}, {3, 4}, {4, 5}, {4, 9}}, {{0, 7}, {1, 6}, {2, 7}, {4, 7}, {7, 8}}, {{0, 7}, {1, 6}, {3, 6}, {5, 6}, {6, 9}}, {{0, 7}, {1, 8}, {2, 7}, {4, 7}, {6, 7}}, {{0, 7}, {1, 8}, {3, 8}, {5, 8}, {8, 9}}, {{0, 7}, {2, 3}, {3, 4}, {3, 6}, {3, 8}}, {{0, 7}, {2, 3}, {4, 7}, {6, 7}, {7, 8}}, {{0, 7}, {2, 5}, {4, 5}, {5, 6}, {5, 8}}, {{0, 7}, {2, 5}, {4, 7}, {6, 7}, {7, 8}}, {{0, 7}, {2, 7}, {3, 4}, {6, 7}, {7, 8}}, {{0, 7}, {2, 7}, {3, 6}, {4, 7}, {7, 8}}, {{0, 7}, {2, 7}, {3, 8}, {4, 7}, {6, 7}}, {{0, 7}, {2, 7}, {4, 5}, {6, 7}, {7, 8}}, {{0, 7}, {2, 7}, {4, 7}, {5, 6}, {7, 8}}, {{0, 7}, {2, 7}, {4, 7}, {5, 8}, {6, 7}}, {{0, 7}, {2, 7}, {4, 7}, {6, 7}, {8, 9}}, {{0, 7}, {2, 7}, {4, 7}, {6, 9}, {7, 8}}, {{0, 7}, {2, 7}, {4, 9}, {6, 7}, {7, 8}}, {{0, 7}, {2, 9}, {4, 7}, {6, 7}, {7, 8}}, {{0, 7}, {2, 9}, {4, 9}, {6, 9}, {8, 9}}, {{0, 9}, {1, 2}, {1, 4}, {1, 6}, {1, 8}}, {{0, 9}, {1, 2}, {2, 3}, {2, 5}, {2, 7}}, {{0, 9}, {1, 2}, {4, 9}, {6, 9}, {8, 9}}, {{0, 9}, {1, 4}, {2, 9}, {6, 9}, {8, 9}}, {{0, 9}, {1, 4}, {3, 4}, {4, 5}, {4, 7}}, {{0, 9}, {1, 6}, {2, 9}, {4, 9}, {8, 9}}, {{0, 9}, {1, 6}, {3, 6}, {5, 6}, {6, 7}}, {{0, 9}, {1, 8}, {2, 9}, {4, 9}, {6, 9}}, {{0, 9}, {1, 8}, {3, 8}, {5, 8}, {7, 8}}, {{0, 9}, {2, 3}, {3, 4}, {3, 6}, {3, 8}}, {{0, 9}, {2, 3}, {4, 9}, {6, 9}, {8, 9}}, {{0, 9}, {2, 5}, {4, 5}, {5, 6}, {5, 8}}, {{0, 9}, {2, 5}, {4, 9}, {6, 9}, {8, 9}}, {{0, 9}, {2, 7}, {4, 7}, {6, 7}, {7, 8}}, {{0, 9}, {2, 7}, {4, 9}, {6, 9}, {8, 9}}, {{0, 9}, {2, 9}, {3, 4}, {6, 9}, {8, 9}}, {{0, 9}, {2, 9}, {3, 6}, {4, 9}, {8, 9}}, {{0, 9}, {2, 9}, {3, 8}, {4, 9}, {6, 9}}, {{0, 9}, {2, 9}, {4, 5}, {6, 9}, {8, 9}}, {{0, 9}, {2, 9}, {4, 7}, {6, 9}, {8, 9}}, {{0, 9}, {2, 9}, {4, 9}, {5, 6}, {8, 9}}, {{0, 9}, {2, 9}, {4, 9}, {5, 8}, {6, 9}}, {{0, 9}, {2, 9}, {4, 9}, {6, 7}, {8, 9}}, {{0, 9}, {2, 9}, {4, 9}, {6, 9}, {7, 8}}, {{1, 2}, {2, 3}, {2, 5}, {2, 7}, {4, 9}}, {{1, 2}, {2, 3}, {2, 5}, {2, 7}, {6, 9}}, {{1, 2}, {2, 3}, {2, 5}, {2, 7}, {8, 9}}, {{1, 2}, {2, 3}, {2, 5}, {2, 9}, {4, 7}}, {{1, 2}, {2, 3}, {2, 5}, {2, 9}, {6, 7}}, {{1, 2}, {2, 3}, {2, 5}, {2, 9}, {7, 8}}, {{1, 2}, {2, 3}, {2, 7}, {2, 9}, {4, 5}}, {{1, 2}, {2, 3}, {2, 7}, {2, 9}, {5, 6}}, {{1, 2}, {2, 3}, {2, 7}, {2, 9}, {5, 8}}, {{1, 2}, {2, 5}, {2, 7}, {2, 9}, {3, 4}}, {{1, 2}, {2, 5}, {2, 7}, {2, 9}, {3, 6}}, {{1, 2}, {2, 5}, {2, 7}, {2, 9}, {3, 8}}, {{1, 2}, {3, 4}, {4, 5}, {4, 7}, {4, 9}}, {{1, 2}, {3, 6}, {5, 6}, {6, 7}, {6, 9}}, {{1, 2}, {3, 8}, {5, 8}, {7, 8}, {8, 9}}, {{1, 4}, {2, 3}, {2, 5}, {2, 7}, {2, 9}}, {{1, 4}, {2, 3}, {4, 5}, {4, 7}, {4, 9}}, {{1, 4}, {2, 5}, {3, 4}, {4, 7}, {4, 9}}, {{1, 4}, {2, 7}, {3, 4}, {4, 5}, {4, 9}}, {{1, 4}, {2, 9}, {3, 4}, {4, 5}, {4, 7}}, {{1, 4}, {3, 4}, {4, 5}, {4, 7}, {6, 9}}, {{1, 4}, {3, 4}, {4, 5}, {4, 7}, {8, 9}}, {{1, 4}, {3, 4}, {4, 5}, {4, 9}, {6, 7}}, {{1, 4}, {3, 4}, {4, 5}, {4, 9}, {7, 8}}, {{1, 4}, {3, 4}, {4, 7}, {4, 9}, {5, 6}}, {{1, 4}, {3, 4}, {4, 7}, {4, 9}, {5, 8}}, {{1, 4}, {3, 6}, {4, 5}, {4, 7}, {4, 9}}, {{1, 4}, {3, 6}, {5, 6}, {6, 7}, {6, 9}}, {{1, 4}, {3, 8}, {4, 5}, {4, 7}, {4, 9}}, {{1, 4}, {3, 8}, {5, 8}, {7, 8}, {8, 9}}, {{1, 6}, {2, 3}, {2, 5}, {2, 7}, {2, 9}}, {{1, 6}, {2, 3}, {5, 6}, {6, 7}, {6, 9}}, {{1, 6}, {2, 5}, {3, 6}, {6, 7}, {6, 9}}, {{1, 6}, {2, 7}, {3, 6}, {5, 6}, {6, 9}}, {{1, 6}, {2, 9}, {3, 6}, {5, 6}, {6, 7}}, {{1, 6}, {3, 4}, {4, 5}, {4, 7}, {4, 9}}, {{1, 6}, {3, 4}, {5, 6}, {6, 7}, {6, 9}}, {{1, 6}, {3, 6}, {4, 5}, {6, 7}, {6, 9}}, {{1, 6}, {3, 6}, {4, 7}, {5, 6}, {6, 9}}, {{1, 6}, {3, 6}, {4, 9}, {5, 6}, {6, 7}}, {{1, 6}, {3, 6}, {5, 6}, {6, 7}, {8, 9}}, {{1, 6}, {3, 6}, {5, 6}, {6, 9}, {7, 8}}, {{1, 6}, {3, 6}, {5, 8}, {6, 7}, {6, 9}}, {{1, 6}, {3, 8}, {5, 6}, {6, 7}, {6, 9}}, {{1, 6}, {3, 8}, {5, 8}, {7, 8}, {8, 9}}, {{1, 8}, {2, 3}, {2, 5}, {2, 7}, {2, 9}}, {{1, 8}, {2, 3}, {5, 8}, {7, 8}, {8, 9}}, {{1, 8}, {2, 5}, {3, 8}, {7, 8}, {8, 9}}, {{1, 8}, {2, 7}, {3, 8}, {5, 8}, {8, 9}}, {{1, 8}, {2, 9}, {3, 8}, {5, 8}, {7, 8}}, {{1, 8}, {3, 4}, {4, 5}, {4, 7}, {4, 9}}, {{1, 8}, {3, 4}, {5, 8}, {7, 8}, {8, 9}}, {{1, 8}, {3, 6}, {5, 6}, {6, 7}, {6, 9}}, {{1, 8}, {3, 6}, {5, 8}, {7, 8}, {8, 9}}, {{1, 8}, {3, 8}, {4, 5}, {7, 8}, {8, 9}}, {{1, 8}, {3, 8}, {4, 7}, {5, 8}, {8, 9}}, {{1, 8}, {3, 8}, {4, 9}, {5, 8}, {7, 8}}, {{1, 8}, {3, 8}, {5, 6}, {7, 8}, {8, 9}}, {{1, 8}, {3, 8}, {5, 8}, {6, 7}, {8, 9}}, {{1, 8}, {3, 8}, {5, 8}, {6, 9}, {7, 8}}]

Now to Split the List L to sublists like this

Now going through L list in details (All my lists will be like this only}

Sublist L1 will have all those from first in this firstly we see  edge {0,1} we take all those which take {0,1} in sequencial manner and put in sublist L1

Now as we proceed we see the next starting edge is {0,3} so their is none with {0,2} so we pick all those with {0,3} in the first sequencial manner and put in sublist L2

Similiar we pick all sublist from this with first element unique in the sequential manner and make a list of lists

Lk:=[L1,L2,L3,L4,....]

Code until L

which was done

Toy_code_(1).mw

Now again proceed we can observe we can see their none with {0,4} next is only with {0,5} 

Then i need write a function F which takes a List say L1 returns

all possible 2 element permutions from L1 list say [S1,S2] and [S2,S1] like that all possible as order also matter where that set is positioned

Given Graph G and Graph H how to store the list of all the various Subgraphs of Shape H in G with their vertex labels.

I have write a code but it may not be the optimal way to do it and it may be time consuming for even medium graphs too

Any way to optimize

Let From this list of subgraphs H of say [G0,G1,G2,.....] we pick NumberOfVertices(G) Graphs
say H= [H0,H1,H2,H3,....,Hn]

i) Now any two graph Hi,Hj have excatly one edge interection if (i,j) is an edge in G

 ii) An edge in  the list H will occur exactly twice only in the entire list of graphs

If these two conditions satifies all such H I need to save

 

Toycode until picking graphs

From that how to pick lists which satify conditions i) and ii) is another need help

Toy_code.mw

Say I have a data matrix with one dependent variable and 50 independent variable

The first column is the dependent variable columns my first row has header names of variables say.

Is their way to code such that I can do a Linear regression stepwise such that even interactions terms can be into account and check for a best fit.

As only matlab can do it easily as i  see and it is paid costly software.

If pssible any help kind help. 

If possible some code can be written in maple kind help.

1 2 3 4 5 6 7 Last Page 1 of 25