Education

Teaching and learning about math, Maple and MapleSim

Some of you know me from my occasional posts on Maple’s typesetting and plotting features, but today, I am here in my new role as co-chair (along with Rob Corless of Western University) of the 2021 Maple Conference. I am pleased to announce that we have just opened the Call for Presentations.

This year’s conference will be held Nov. 2 – Nov. 5, 2021. It will be a free virtual event again this year, making it an excellent opportunity to share your Maple-related work with others without the expenses and inconveniences of travel.

Maple Conference 2021 invites submissions of proposals for presentations on a range of topics related to Maple, including Maple in education, algorithms and software, and applications. All presenters will be given the option of submitting a full paper, which will undergo peer review, and if accepted, be included in the conference proceedings.

Presentation proposals are due June 1, 2021.

You can find more information about the themes of the conference, how to submit a presentation proposal, and the program committee on Maplesoft Conference Call for Presentations.

Registration for attending the conference will open in June. Another announcement will be made at that time.

I sincerely hope that all of you here in the Maple Primes community will consider joining us for this event, whether as a presenter or attendee.

The https://sites.google.com/view/aladjevbookssoft/home site contains free books in English and Russian along with software created under the guidance of the main author prof. V. Aladjev in such areas as general theory of statistics, theory of cellular automata, programming in Maple and Mathematica systems. Each book is archived, including its cover and book block in pdf format. The software with freeware license is designed for Maple and Mathematica.

Yesterday, user @lcz , while responding as a third party to one of my Answers regarding GraphTheory, asked about breadth-first search. So, I decided to write a more-interesting example of it than the relatively simple example that was used in that Answer. I think that this is general enough to be worthy of a Post.

This application generates all maximal paths in a graph that begin with a given vertex. (I'm calling a path maximal if it cannot be extended and remain a path.) This code requires Maple 2019 or later and 1D input. This works for both directed and undirected graphs. Weights, if present. are ignored.

restart:

AllMaximalPaths:= proc(G::GRAPHLN, v)
description 
    "All maximal paths of G starting at v by breadth-first search"
;
option `Author: Carl Love <carl.j.love@gmail.com> 2021-Mar-17`;
uses GT= GraphTheory;
local 
    P:= [rtable([v])], R:= rtable(1..0),
    VL:= GT:-Vertices(G), V:= table(VL=~ [$1..nops(VL)]),
    Departures:= {op}~(GT:-Departures(G))
;
    while nops(P) <> 0 do
        P:= [
            for local p in P do
                local New:= Departures[V[p[-1]]] minus {seq}(p);
                if New={} then R,= [seq](p); next fi;                
                (
                    for local u in New do 
                        local p1:= rtable(p); p1,= u
                    od
                )       
            od
        ]
    od;
    {seq}(R)  
end proc
:
#large example:
GT:= GraphTheory:
K9:= GT:-CompleteGraph(9):
Pa:= CodeTools:-Usage(AllMaximalPaths(K9,1)):
memory used=212.56MiB, alloc change=32.00MiB, 
cpu time=937.00ms, real time=804.00ms, gc time=312.50ms

nops(Pa);
                             40320
#fun example:
P:= GT:-SpecialGraphs:-PetersenGraph():
Pa:= CodeTools:-Usage(AllMaximalPaths(P,1)):
memory used=0.52MiB, alloc change=0 bytes, 
cpu time=0ns, real time=3.00ms, gc time=0ns

nops(Pa);
                               72

Pa[..9]; #sample paths
    {[1, 2, 3, 4, 10, 9, 8, 5], [1, 2, 3, 7, 8, 9, 10, 6], 
      [1, 2, 9, 8, 7, 3, 4, 5], [1, 2, 9, 10, 4, 3, 7, 6], 
      [1, 5, 4, 3, 7, 8, 9, 2], [1, 5, 4, 10, 9, 8, 7, 6], 
      [1, 5, 8, 7, 3, 4, 10, 6], [1, 5, 8, 9, 10, 4, 3, 2], 
      [1, 6, 7, 3, 4, 10, 9, 2]}

Notes on the procedure:

The two dynamic data structures are

  • P: a list of vectors of vertices. Each vector contains a path which we'll attempt to extend.
  • R: a vector of lists of vertices. Each list is a maximal path to be returned.

The static data structures are

  • V: a table mapping vertices (which may be named) to their index numbers.
  • Departures: a list of sets of vertices whose kth set is the possible next vertices from vertex number k.

On each iteration of the outer loop, P is completely reconstructed because each of its entries, a path p, is either determined to be maximal or it's extended. The set New is the vertices that can be appended to the (connected to vertex p[-1]). If New is empty, then p is maximal, and it gets moved to R


The following code constructs an array plot of all the maximal paths in the Petersen graph. I can't post the array plot, but you can see it in the attached worksheet: BreadthFirst.mw

#Do an array plot of each path embedded in the graph:
n:= nops(Pa):
c:= 9: 
plots:-display(
    (PA:= rtable(
        (1..ceil(n/c), 1..c),
        (i,j)-> 
            if (local k:= (i-1)*ceil(n/c) + j) > n then 
                plot(axes= none)
            else 
                GT:-DrawGraph(
                    GT:-HighlightTrail(P, Pa[k], inplace= false), 
                    stylesheet= "legacy", title= typeset(Pa[k])
                )
            fi
    )),
    titlefont= [Times, Bold, 12]
);

#And recast that as an animation so that I can post it:
plots:-display(
    [seq](`$`~(plots:-display~(PA), 5)),
    insequence
); 

 

I am a high school Teacher in Denmark, who have been using Maple since version 12, more than 12 years ago. I suggested it for my school back then and our math faculty finally decided to purchase a school license. We are still there. We have watched Maple improve in a lot of areas (function definitions, context panels, graphically etc., etc ). Often small changes makes a big difference! We have been deligted. We we are mostly interested in improvements in GUI and lower level math, and in animations and quizzes. I have also been enrolled as a beta tester for several years yet. 

One of the areas, which is particually important is print and export to pdf, because Danish students have to turn in their papers/solutions at exams in pdf format! I guess the Scandinavian countries are ahead in this department. They may quite possible be behind in other areas however, but this is how it is. 

Now my point: Maplesoft is lacking terrible behind when regarding screen look in comparison with print/export to pdf. 

I am very frustrated, because I have been pinpointing this problem in several versions of Maple, both on Mapleprimes and in the beta groups. Some time you have corrected it, but it has always been bouncing back again and again! I have come to the opinion that you are not taking it seriously? Why?

Students may loose grades because of missing documentations (marking on graphs etc.). 

I will be reporting yet another instance of this same problem. When will it stop?

Erik

 

Wirtinger Derivatives in Maple 2021

Generally speaking, there are two contexts for differentiating complex functions with respect to complex variables. In the first context, called the classical complex analysis, the derivatives of the complex components ( abs , argument , conjugate , Im , Re , signum ) with respect to complex variables do not exist (do not satisfy the Cauchy-Riemann conditions), with the exception of when they are holomorphic functions. All computer algebra systems implement the complex components in this context, and computationally represent all of abs(z), argument(z), conjugate(z), Im(z), Re(z), signum(z) as functions of z . Then, viewed as functions of z, none of them are analytic, so differentiability becomes an issue.

 

In the second context, first introduced by Poincare (also called Wirtinger calculus), in brief z and its conjugate conjugate(z) are taken as independent variables, and all the six derivatives of the complex components become computable, also with respect to conjugate(z). Technically speaking, Wirtinger calculus permits extending complex differentiation to non-holomorphic functions provided that they are ℝ-differentiable (i.e. differentiable functions of real and imaginary parts, taking f(z) = f(x, y) as a mapping "`&Ropf;`^(2)->`&Ropf;`^()").

 

In simpler terms, this subject is relevant because, in mathematical-physics formulations using paper and pencil, we frequently use Wirtinger calculus automatically. We take z and its conjugate conjugate(z) as independent variables, with that d*conjugate(z)*(1/(d*z)) = 0, d*z*(1/(d*conjugate(z))) = 0, and we compute with the operators "(&PartialD;)/(&PartialD; z)", "(&PartialD;)/(&PartialD; (z))" as partial differential operators that behave as ordinary derivatives. With that, all of abs(z), argument(z), conjugate(z), Im(z), Re(z), signum(z), become differentiable, since they are all expressible as functions of z and conjugate(z).

 

 

Wirtinger derivatives were implemented in Maple 18 , years ago, in the context of the Physics package. There is a setting, Physics:-Setup(wirtingerderivatives), that when set to true - an that is the default value when Physics is loaded - redefines the differentiation rules turning on Wirtinger calculus. The implementation, however, was incomplete, and the subject escaped through the cracks till recently mentioned in this Mapleprimes post.

 

Long intro. This post is to present the completion of Wirtinger calculus in Maple, distributed for everybody using Maple 2021 within the Maplesoft Physics Updates v.929 or newer. Load Physics and set the imaginary unit to be represented by I

 

with(Physics); interface(imaginaryunit = I)

 

The complex components are represented by the computer algebra functions

(FunctionAdvisor(complex_components))(z)

[Im(z), Re(z), abs(z), argument(z), conjugate(z), signum(z)]

(1)

They can all be expressed in terms of z and conjugate(z)

map(proc (u) options operator, arrow; u = convert(u, conjugate) end proc, [Im(z), Re(z), abs(z), argument(z), conjugate(z), signum(z)])

[Im(z) = ((1/2)*I)*(-z+conjugate(z)), Re(z) = (1/2)*z+(1/2)*conjugate(z), abs(z) = (z*conjugate(z))^(1/2), argument(z) = -I*ln(z/(z*conjugate(z))^(1/2)), conjugate(z) = conjugate(z), signum(z) = z/(z*conjugate(z))^(1/2)]

(2)

The main differentiation rules in the context of Wirtinger derivatives, that is, taking z and conjugate(z) as independent variables, are

map(%diff = diff, [Im(z), Re(z), abs(z), argument(z), conjugate(z), signum(z)], z)

[%diff(Im(z), z) = -(1/2)*I, %diff(Re(z), z) = 1/2, %diff(abs(z), z) = (1/2)*conjugate(z)/abs(z), %diff(argument(z), z) = -((1/2)*I)/z, %diff(conjugate(z), z) = 0, %diff(signum(z), z) = (1/2)/abs(z)]

(3)

Since in this context conjugate(z) is taken as - say - a mathematically-atomic variable (the computational representation is still the function conjugate(z)) we can differentiate all the complex components also with respect to  conjugate(z)

map(%diff = diff, [Im(z), Re(z), abs(z), argument(z), conjugate(z), signum(z)], conjugate(z))

[%diff(Im(z), conjugate(z)) = (1/2)*I, %diff(Re(z), conjugate(z)) = 1/2, %diff(abs(z), conjugate(z)) = (1/2)*z/abs(z), %diff(argument(z), conjugate(z)) = ((1/2)*I)*z/abs(z)^2, %diff(conjugate(z), conjugate(z)) = 1, %diff(signum(z), conjugate(z)) = -(1/2)*z^2/abs(z)^3]

(4)

For example, consider the following algebraic expression, starting with conjugate

eq__1 := conjugate(z)+z*conjugate(z)^2

conjugate(z)+z*conjugate(z)^2

(5)

Differentiating this expression with respect to z and conjugate(z) taking them as independent variables, is new, and in this example trivial

(%diff = diff)(eq__1, z)

%diff(conjugate(z)+z*conjugate(z)^2, z) = conjugate(z)^2

(6)

(%diff = diff)(eq__1, conjugate(z))

%diff(conjugate(z)+z*conjugate(z)^2, conjugate(z)) = 1+2*z*conjugate(z)

(7)

Switch to something less trivial, replace conjugate by the real part ReNULL

eq__2 := eval(eq__1, conjugate = Re)

Re(z)+z*Re(z)^2

(8)

To verify results further below, also express eq__2 in terms of conjugate

eq__22 := simplify(convert(eq__2, conjugate), size)

(1/4)*(z^2+z*conjugate(z)+2)*(z+conjugate(z))

(9)

New: differentiate eq__2 with respect to z and  conjugate(z)

(%diff = diff)(eq__2, z)

%diff(Re(z)+z*Re(z)^2, z) = 1/2+Re(z)^2+z*Re(z)

(10)

(%diff = diff)(eq__2, conjugate(z))

%diff(Re(z)+z*Re(z)^2, conjugate(z)) = 1/2+z*Re(z)

(11)

Note these results (10) and (11) are expressed in terms of Re(z), not conjugate(z). Let's compare with the derivative of eq__22 where everything is expressed in terms of z and conjugate(z). Take for instance the derivative with respect to z

(%diff = diff)(eq__22, z)

%diff((1/4)*(z^2+z*conjugate(z)+2)*(z+conjugate(z)), z) = (1/4)*(2*z+conjugate(z))*(z+conjugate(z))+(1/4)*z^2+(1/4)*z*conjugate(z)+1/2

(12)

To verify this result is mathematically equal to (10) expressed in terms of Re(z) take the difference of the right-hand sides

rhs((%diff(Re(z)+z*Re(z)^2, z) = 1/2+Re(z)^2+z*Re(z))-(%diff((1/4)*(z^2+z*conjugate(z)+2)*(z+conjugate(z)), z) = (1/4)*(2*z+conjugate(z))*(z+conjugate(z))+(1/4)*z^2+(1/4)*z*conjugate(z)+1/2)) = 0

Re(z)^2+z*Re(z)-(1/4)*(2*z+conjugate(z))*(z+conjugate(z))-(1/4)*z^2-(1/4)*z*conjugate(z) = 0

(13)

One quick way to verify the value of expressions like this one is to replace z = a+I*b and simplify "assuming" a andNULLb are realNULL

`assuming`([eval(Re(z)^2+z*Re(z)-(1/4)*(2*z+conjugate(z))*(z+conjugate(z))-(1/4)*z^2-(1/4)*z*conjugate(z) = 0, z = a+I*b)], [a::real, b::real])

a^2+(a+I*b)*a-(1/2)*(3*a+I*b)*a-(1/4)*(a+I*b)^2-(1/4)*(a+I*b)*(a-I*b) = 0

(14)

normal(a^2+(a+I*b)*a-(1/2)*(3*a+I*b)*a-(1/4)*(a+I*b)^2-(1/4)*(a+I*b)*(a-I*b) = 0)

0 = 0

(15)

The equivalent differentiation, this time replacing in eq__1 conjugate by abs; construct also the equivalent expression in terms of z and  conjugate(z) for verifying results

eq__3 := eval(eq__1, conjugate = abs)

abs(z)+abs(z)^2*z

(16)

eq__33 := simplify(convert(eq__3, conjugate), size)

(z*conjugate(z))^(1/2)+conjugate(z)*z^2

(17)

Since these two expressions are mathematically equal, their derivatives should be too, and the derivatives of eq__33 can be verified by eye since z and  conjugate(z) are taken as independent variables

(%diff = diff)(eq__3, z)

%diff(abs(z)+abs(z)^2*z, z) = (1/2)*conjugate(z)/abs(z)+z*conjugate(z)+abs(z)^2

(18)

(%diff = diff)(eq__33, z)

%diff((z*conjugate(z))^(1/2)+conjugate(z)*z^2, z) = (1/2)*conjugate(z)/(z*conjugate(z))^(1/2)+2*z*conjugate(z)

(19)

Eq (18) is expressed in terms of abs(z) = abs(z) while (19) is in terms of conjugate(z) = conjugate(z). Comparing as done in (14)

rhs((%diff(abs(z)+abs(z)^2*z, z) = (1/2)*conjugate(z)/abs(z)+z*conjugate(z)+abs(z)^2)-(%diff((z*conjugate(z))^(1/2)+conjugate(z)*z^2, z) = (1/2)*conjugate(z)/(z*conjugate(z))^(1/2)+2*z*conjugate(z))) = 0

(1/2)*conjugate(z)/abs(z)-z*conjugate(z)+abs(z)^2-(1/2)*conjugate(z)/(z*conjugate(z))^(1/2) = 0

(20)

`assuming`([eval((1/2)*conjugate(z)/abs(z)-z*conjugate(z)+abs(z)^2-(1/2)*conjugate(z)/(z*conjugate(z))^(1/2) = 0, z = a+I*b)], [a::real, b::real])

(1/2)*(a-I*b)/(a^2+b^2)^(1/2)-(a+I*b)*(a-I*b)+a^2+b^2-(1/2)*(a-I*b)/((a+I*b)*(a-I*b))^(1/2) = 0

(21)

simplify((1/2)*(a-I*b)/(a^2+b^2)^(1/2)-(a+I*b)*(a-I*b)+a^2+b^2-(1/2)*(a-I*b)/((a+I*b)*(a-I*b))^(1/2) = 0)

0 = 0

(22)

To mention but one not so famliar case, consider the derivative of the sign of a complex number, represented in Maple by signum(z). So our testing expression is

eq__4 := eval(eq__1, conjugate = signum)

signum(z)+z*signum(z)^2

(23)

This expression can also be rewritten in terms of z and  conjugate(z) 

eq__44 := simplify(convert(eq__4, conjugate), size)

z/(z*conjugate(z))^(1/2)+z^2/conjugate(z)

(24)

This time differentiate with respect to conjugate(z),

(%diff = diff)(eq__4, conjugate(z))

%diff(signum(z)+z*signum(z)^2, conjugate(z)) = -(1/2)*z^2/abs(z)^3-z^3*signum(z)/abs(z)^3

(25)

Here again, the differentiation of eq__44, that is expressed entirely in terms of z and  conjugate(z), can be computed by eye

(%diff = diff)(eq__44, conjugate(z))

%diff(z/(z*conjugate(z))^(1/2)+z^2/conjugate(z), conjugate(z)) = -(1/2)*z^2/(z*conjugate(z))^(3/2)-z^2/conjugate(z)^2

(26)

Eq (25) is expressed in terms of abs(z) = abs(z) while (26) is in terms of conjugate(z) = conjugate(z). Comparing as done in (14),

rhs((%diff(signum(z)+z*signum(z)^2, conjugate(z)) = -(1/2)*z^2/abs(z)^3-z^3*signum(z)/abs(z)^3)-(%diff(z/(z*conjugate(z))^(1/2)+z^2/conjugate(z), conjugate(z)) = -(1/2)*z^2/(z*conjugate(z))^(3/2)-z^2/conjugate(z)^2)) = 0

-(1/2)*z^2/abs(z)^3-z^3*signum(z)/abs(z)^3+(1/2)*z^2/(z*conjugate(z))^(3/2)+z^2/conjugate(z)^2 = 0

(27)

`assuming`([eval(-(1/2)*z^2/abs(z)^3-z^3*signum(z)/abs(z)^3+(1/2)*z^2/(z*conjugate(z))^(3/2)+z^2/conjugate(z)^2 = 0, z = a+I*b)], [a::real, b::real])

-(1/2)*(a+I*b)^2/(a^2+b^2)^(3/2)-(a+I*b)^4/(a^2+b^2)^2+(1/2)*(a+I*b)^2/((a+I*b)*(a-I*b))^(3/2)+(a+I*b)^2/(a-I*b)^2 = 0

(28)

simplify(-(1/2)*(a+I*b)^2/(a^2+b^2)^(3/2)-(a+I*b)^4/(a^2+b^2)^2+(1/2)*(a+I*b)^2/((a+I*b)*(a-I*b))^(3/2)+(a+I*b)^2/(a-I*b)^2 = 0)

0 = 0

(29)

NULL


 

Download Wirtinger_Derivatives.mw

Edgardo S. Cheb-Terrab
Physics, Differential Equations and Mathematical Functions, Maplesoft

Hi Mapleprimes,

Per your request.

A_prime_producing_quadratic_expression_2019_(2).pdf

bye

I’m very pleased to announce that the Maple Calculator app now offers step-by-step solutions. Maple Calculator is a free mobile app that makes it easy to enter, solve, and visualize mathematical problems from algebra, precalculus, calculus, linear algebra, and differential equations, right on your phone.  Solution steps have been, by far, the most requested feature from Maple Calculator users, so we are pretty excited about being able to offer this functionality to our customers. With steps, students can use the app not just to check if their own work is correct, but to find the source of the problem if they made a mistake.  They can also use the steps to learn how to approach problems they are unfamiliar with.

Steps are available in Maple Calculator for a wide variety of problems, including solving equations and systems of equations, finding limits, derivatives, and integrals, and performing matrix operations such as finding inverses and eigenvalues.

(*Spoiler alert* You may also want to keep a look-out for more step-by-step solution abilities in the next Maple release.)

If you are unfamiliar with the Maple Calculator app, you can find more information and app store links on the Maple Calculator product page.  One feature in particular to note for Maple and Maple Learn users is that you can use the app to take a picture of your math and load those math expressions into Maple or Maple Learn.  It makes for a fast, accurate method for entering large expressions, so even if you aren’t interested in doing math on your phone, you still might find the app useful.

I make a maple worksheet for generating Pythagorean Triples Ternary Tree :

Around 10,000 records in the matrix currently !

You can set your desire size or export the Matrix as text ...

But yet ! I wish to understand from you better techniques If you have some suggestion ?

the mapleprimes Don't load my worksheet for preview so i put a screenshot !

Pythagoras_ternary.mw

Pythagoras_ternary_data.mw

Pythagoras_ternary_maple.mw

 

 

 

            We announce the release of a new book, of title Fourier Transforms for Chemistry, which is in the form of a Maple worksheet.  This book is freely available through Maple Application Centre, either as a Maple worksheet with no output from commands or as a .pdf file with all output and plots.

            This interactive electronic book in the form of a Maple worksheet comprises six chapters containing Maple commands, plus an overview 0 as an introduction.  The chapters have content as follows.

  -   1    continuous Fourier transformation

  -   2    electron diffraction of a gaseous sample

  -   3    xray diffraction of a crystal and a powder

  -   4    microwave spectrum of a gaseous sample

  -   5    infrared and Raman spectra of a liquid sample

  -   6    nuclear magnetic resonance of various samples

            This book will be useful in courses of physical chemistry or devoted to the determination of molecular structure by physical methods.  Some content, duly acknowledged, has been derived and adapted from other authors, with permission.

Hi all,

Look at my pretty plot.  It is defined by

x=sin(m*t);
y=sin(n*t);

where n and m are one digit positive integers.

You can modify my worksheet with different values of n and m.

pillow_curve.mw

pillow_curve.pdf

The name of the curve may be something like Curve of Lesotho.  I saw this first in one of my father's books.

Regards,
Matt

 

As a continuation of the posts:
https://www.mapleprimes.com/posts/208958-Determination-Of-The-Angles-Of-The-Manipulator
https://www.mapleprimes.com/posts/209255-The-Use-Of-Manipulators-As-Multiaxis
https://www.mapleprimes.com/posts/210003-Manipulator-With-Variable-Length-Of
But this time without Draghilev's method.
Motion along straight lines can replace motion along any spatial path (with any practical precision), which means that solving the inverse problem of the manipulator's kinematics can be reduced to solving the movement along a sequential set of segments. Thus, another general method for solving the manipulator inverse problem is proposed.
An example of a three-link manipulator with 5 degrees of freedom. Its last link, like the first link, geometrically corresponds to the radius of the sphere. We calculate the coordinates of the ends of its links when passing a straight line segment. We do this in a loop for interior points of the segment using the procedure for finding real roots of polynomial systems of equations RootFinding [Isolate]. First, we “remove” two “extra” degrees of freedom by adding two equations to the system. There can be an infinite set of options for additional equations - if only they correspond to the technical capabilities of the device. In this case, two maximally easy conditions were taken: one equation corresponds to the perpendicularity of the last (third) link directly to the segment of the trajectory itself, and the second equation corresponds to the perpendicularity to the vector with coordinates <1,1,1>. As a result, we got four ways to move the manipulator for the same segment. All of these ways are selected as one of the RootFinding [Isolate] solutions (in text  jj=1,2,3,4).
In this text jj=4
without_Draghilev_method.mw       

As you can see, everything is very simple, there is practically no programming and is performed exclusively by Maple procedures.

 

Maple Learn is out of beta! I am pleased to announce that Maple Learn, our new online environment for teaching and learning math and solving math problems, is out of beta and is now an officially released product. Over 5000 teachers and students used Maple Learn during its public beta period, which was very helpful. Thank you to everyone who took the time to try it out and provide feedback.

We are very excited about Maple Learn, and what it can mean for math education. Educators told us that, while Maple is a great tool for doing, teaching, and learning all sorts of math, some of their students found its very power and breadth overwhelming, especially in the early years of their studies. As a result, we created Maple Learn to be a version of Maple that is specifically focused on the needs of educators and students who are teaching and learning math in high school, two year and community college, and the first two years of university.  

I talked a bit about what this means in a previous post, but probably the best way to get an overview of what this means is to watch our new two minute video:  Introducing Maple Learn.

 

 

Visit Maple Learn for more information and to try it out for yourself.  A basic Maple Learn account is free, and always will be.   If you are an instructor, please note that you may be eligible for a free Maple Learn Premium account. You can apply from the web site. 

There’s lots more we want to do with Maple Learn in the future, of course. Even though the beta period is over, please feel free to continue sending us your feedback and suggestions. We’ve love to hear from you!

With this application, the differential equation of forced systems is studied directly. It comes with embedded components and also with native Maple code. Soon I will develop this same application with MapleSim. Only for engineering students.

Damped_Forced_Movement.mw

Lenin AC

Ambassador of Maple

One of the most interesting help page about the use of the Physics package is Physics,Examples. This page received some additions recently. It is also an excellent example of the File -> Export -> LaTeX capabilities under development.

Below you see the sections and subsections of this page. At the bottom, you have links to the updated PhysicsExample.mw worksheet, together with PhysicsExamples.PDF.

The PDF file has 74 pages and is obtained by going File -> Export -> LaTeX (FEL) on this worksheet to get a .tex version of it using an experimental version of Maple under development. The .tex file that results from FEL (used to get the PDF using TexShop on a Mac) has no manual editing. This illustrates new automatic line-breakingequation labels, colours, plots, and the new LaTeX translation of sophisticated mathematical physics notation used in the Physics package (command Latex in the Maplesoft Physics Updates, to be renamed as latex in the upcoming Maple release). 

In brief, this LaTeX project aims at writing entire course lessons or scientific papers directly in the Maple worksheet that combines what-you-see-is-what-you-get editing capabilities with the Maple computational engine to produce mathematical results. And from there get a LaTeX version of the work in two clicks, optionally hiding all the input (View -> Show/Hide -> Input).

PhysicsExamples.mw   PhysicsExamples.pdf

PS: MANY THANKS to all of you who provided so-valuable feedback on the new Latex here in Mapleprimes.

Edgardo S. Cheb-Terrab
Physics, Differential Equations and Mathematical Functions, Maplesoft

In the two examples below (in the second example, the range for the roots is simply expanded), we see bugs in both examples (Maple 2018.2). I wonder if these errors are fixed in Maple 2020?
 

restart;

solve({log[1/3](2*sin(x)^2-3*cos(2*x)+6)=-2,x>=-7*Pi/2,x<=-2*Pi}, explicit, allsolutions); # Example 1 - strange error message
solve({log[1/3](2*sin(x)^2-3*cos(2*x)+6)=-2,x>=-4*Pi,x<=-2*Pi}, explicit, allsolutions);  # Example 2 - two roots missing

Error, (in assume) contradictory assumptions

 

{x = -(11/3)*Pi}, {x = -(10/3)*Pi}

(1)

plot(log[1/3](2*sin(x)^2-3*cos(2*x)+6)+2, x=-7*Pi/2..-2*Pi);
plot(log[1/3](2*sin(x)^2-3*cos(2*x)+6)+2, x=-4*Pi..-2*Pi);

 

 

Student:-Calculus1:-Roots(log[1/3](2*sin(x)^2-3*cos(2*x)+6)=-2, x=-7*Pi/2..-2*Pi);  # OK
Student:-Calculus1:-Roots(log[1/3](2*sin(x)^2-3*cos(2*x)+6)=-2, x=-4*Pi..-2*Pi);  # OK

[-(10/3)*Pi, -(8/3)*Pi, -(7/3)*Pi]

 

[-(11/3)*Pi, -(10/3)*Pi, -(8/3)*Pi, -(7/3)*Pi]

(2)

 


I am glad that  Student:-Calculus1:-Roots  command successfully handles both examples.

 

Download bugs-in-solve.mw

1 2 3 4 5 6 7 Last Page 1 of 47