Education

Teaching and learning about math, Maple and MapleSim

A way of cutting holes on an implicit plot. This is from the field of numerical parameterization of surfaces. On the example of the surface  x3 = 0.01*exp (x1) / (0.01 + x1^4 + x2^4 + x3^4)  consider the approach to producing holes. The surface is locally parameterized in some suitable way and the place for the hole and its size are selected. In the first example, the parametrization is performed on the basis of the section of the initial surface by perpendicular planes. In the second example, "round"  parametrization. It is made on the basis of the cylinder and the planes passing through its axis. Holes can be of any size and any shape. In the figures, the cut out surface sections are colored green and are located above their own holes at an equidistant to the original surface.
HOLE_1.mwHOLE_2.mw

 

In maple plot, very many symbols like, diamond, star, solidcircle are available. Many of them may have been used also for teaching purposes.

Recently, someone encountered the need to draw graphs with arrowheads and many solutions may be available as well. But it requires a thorough understanding of maple's features which are infinitely many. My feeling was that an arrow symbol also could be added in the symbol feature so that the option can be used as a plot point in the graph at the graph end points very easily. It can be just like adding a solidbox symbol at any point on the curve.

Hope my suggestions are in order.

Thanks.

Ramakrishnan V

The following puzzle prompted me to write this post: "A figure is drawn on checkered paper that needs to be cut into 2 equal parts (the cuts must pass along the sides of the squares.)" (parts are called equal if, after cutting, they can be superimposed on one another, that is, if one of them can be moved, rotated and (if need to) flip so that they completely coincide) (see the first picture below). 
I could not solve it manually and wrote a procedure called  CutTwoParts  that does this automatically (of course, this procedure applies to other similar puzzles). This procedure uses my procedure  AreIsometric  published earlier  https://www.mapleprimes.com/posts/200157-Testing-Of-Two-Plane-Sets-For-Isometry  (for convenience, I have included its text here). In the procedure  CutTwoParts  the figure is specified by the coordinates of the centers of the squares of which it consists).

I advise everyone to first try to solve this puzzle manually in order to feel its non-triviality, and only then load the worksheet with the procedure for automatic solution.


For some reason, the worksheet did not load and I was only able to insert the link.

Cuttings.mw



 

With this application our students of science and engineering in the areas of physics will check the first condition of balance using Maple technology. Only with entering mass and angles we obtain graphs and data for a better interpretation.

First_equilibrium_condition.zip

Lenin AC

Ambassador of Maple

When discussing Maple programming, we often refer to for-loops, while-loops, until-loops, and do-loops (the latter being an infinite loop). But under the hood, Maple has only two kinds of loop, albeit very flexible and powerful ones that can combine the capabilities of any or all of the above, making it possible to write very concise code in a natural way.

Before looking at some actual examples, here is the formal definition of the loops' syntax, expressed in Wirth Syntax Notation, where "|" denotes alternatives, "[...]" denotes an optional part, "(...)" denotes grouping, and Maple keywords are in boldface:

[ for  ] [ from  ] [ by  ] [ to  ]
    [ while  ]
do
    
( end do | until  )
[ for  [ , variable ] ] in 
    [ while  ]
do
    
( end do | until  )

In the first form, every part of the loop syntax is optional, except the do keyword before the body of the loop, and either end do or an until clause after the body. (For those who prefer it, end do can also be written as od.) In the second form, only the in clause is required.

The simplest loop is just:

do
    
end do

This will repeat the forever, unless a break or return statement is executed, or an error occurs.

One or two loop termination conditions can be added:

  • A while clause can be written before the do, specifying a condition that is tested before each iteration begins. If the condition evaluates to false, the loop ends.
  • An until clause can be written instead of the end do, specifying a condition that is tested after each iteration finishes. If the condition evaluates to true, the loop ends.

A so-called for-loop is just a loop to which iteration clauses have been added. These can take one of two forms:

  • Any combination of for (with a single vari