Maple 2019 Questions and Posts

These are Posts and Questions associated with the product, Maple 2019

I have the following program which constructs the multiplication table, CI, for a matrix Lie algebra and evaluates the difference between CI's row dimension and its rank. The code is a little convoluted because "LieTable" formats the entries very strangely and forces incorrect rank values.

The matrix CI is constructed rather quickly (within a few seconds), and everything works well with "small" examples (up to 12 basis elements has evaluated within seconds). However, the example I've included is for a 27-dimensional Lie algebra. As I stated, CI is constructed quickly, even in larger examples, but the rank evaluation (i.e., LinearAlgebra:-Rank(CI)) has never completed for the example I've included. I let it run for about 3 hours before shutting it down.

I have an older Macbook Air which I am using to run these computations. Could this simply be an issue of not enough computing power?

I have attempted to import the matrix CI into Mathematica (to see if it was simply a limitation of Maple), but that's its own headache (reads entries of the matrix incorrectly).

 

Any recommendations would help. If this is an issue of computing power, I can get access to a more powerful system soon. It doesn't seem that the code itself would cause the issue, since it is not the construction of the matrix which is giving me issues, it is the evaluation of the rank. I am rather naive about Maple (and programming in general) though, so I may be wrong.

 

Index_and_Contact.mw

Hi,

How I can solve biharmonic equations in toroidal coordinate?

If this possible I can provide a worksheet and send it.

I provided a solution for Laplacian in pdf file.

Separation_of_Laplace.pdf

I have a position vector in 3D space of  <t,0,(2/3)t^(3/2)>,0<=t<=8. I found the unit tangent vector to be <1/((1+t)^(1/2)),0,(t^1/2)/((1+t)^(1/2))>. I am not sure how to graph the unit tangent vector and the position vector together. I attached the file I am working in.

 

Unit_Vector_Tangent.mwUnit_Vector_Tangent.mw

Hi,

Is there any way we could use Maple to simplify an equation,

Example: M= 2pqrst / uvw 

I would like a code or a way to separate some variables into one variable, where the expression would be M = 2Krst / w

which can be said that K = pq / uv

I know that I can use the simplify command but it's only worked for simpler expression but not complicated one.

Really need help from you guys. 

 

Thank you :)

 

I need to get fine curved figure.

please suggest command.   Please also tell 6 differnt markers like symbol = asterisk.

I am not geting value of F3.

question_1.mw
 

restart

A1 := diff(f[3](x), x, x, x, x)+2*R*(((A-1)*x+1)*(diff((1/210)*R^2*((1/72)*(-204*A*C1^2-408*A*C1*C2-204*A*C2^2+204*C1^2+408*C1*C2+204*C2^2)*x^9+(1/56)*(784*A*C1^2+1176*A*C1*C2+392*A*C2^2-1036*C1^2-1680*C1*C2-644*C2^2)*x^8+(1/42)*(2394*A*C1^2*L+4788*A*C1*C2*L+2394*A*C2^2*L-28*A^3-1064*A*C1^2-1064*A*C1*C2-140*A*C2^2-2394*C1^2*L-4788*C1*C2*L-2394*C2^2*L+84*A^2+2072*C1^2+2576*C1*C2+644*C2^2-84*A+28)*x^7+(1/30)*(-6300*A*C1^2*L-9450*A*C1*C2*L-3150*A*C2^2*L+420*A*C1^2+210*A*C1*C2+8820*C1^2*L+14490*C1*C2*L+5670*C2^2*L-140*A^2-1960*C1^2-1750*C1*C2-280*C2^2+280*A-140)*x^6+(1/20)*(-2520*A*C1^2*L^2-5040*A*C1*C2*L^2-2520*A*C2^2*L^2+70*A^3*L+5348*A*C1^2*L+5516*A*C1*C2*L+728*A*C2^2*L+2520*C1^2*L^2+5040*C1*C2*L^2+2520*C2^2*L^2+42*A^3-210*A^2*L+200*A*C1^2+120*A*C1*C2-80*A*C2^2-12068*C1^2*L-15596*C1*C2*L-4088*C2^2*L+14*A^2+210*A*L+780*C1^2+440*C1*C2+220*C2^2-294*A-70*L+238)*x^5+(1/12)*(5040*A*C1^2*L^2+7560*A*C1*C2*L^2+2520*A*C2^2*L^2-1176*A*C1^2*L-672*A*C1*C2*L+84*A*C2^2*L-5040*C1^2*L^2-7560*C1*C2*L^2-2520*C2^2*L^2-14*A^3+210*A^2*L-136*A*C1^2-34*A*C1*C2+32*A*C2^2+7308*C1^2*L+7056*C1*C2*L+1008*C2^2*L+70*A^2-420*A*L-12*C1^2+18*C1*C2-180*C2^2+112*A+210*L-168)*x^4+(1/6)*(-2772*A*C1^2*L^2-3024*A*C1*C2*L^2-252*A*C2^2*L^2-63*A^3*L-300*A*C1^2*L-180*A*C1*C2*L+120*A*C2^2*L+2772*C1^2*L^2+3024*C1*C2*L^2+252*C2^2*L^2-21*A^2*L-1842*C1^2*L-1164*C1*C2*L-162*C2^2*L-28*A^2+231*A*L-48*C1^2-12*C1*C2+36*C2^2-14*A-147*L+42)*x^3)+(1/2)*(-(2/15)*L*R^2*A-(1/30)*L*R^2*A^2+(24/35)*L*R^2*C1^2+(17/35)*L*R^2*C2^2+(1/15)*L*R^2*A^3+(6/35)*L*R^2*C1*C2-(6/5)*L^2*R^2*C1*C2+(68/105)*L*R^2*A*C1^2-(16/105)*L*R^2*A*C2^2+(8/5)*L^2*R^2*A*C1^2-(2/5)*L^2*R^2*C2^2*A+(17/105)*L*R^2*A*C1*C2+(6/5)*L^2*R^2*A*C1*C2-(8/5)*C1^2*R^2*L^2+(2/5)*L^2*R^2*C2^2+(1/10)*L*R^2)*x^2+(-(86/525)*L*R^2*A*C1^2-(29/1050)*L*R^2*A*C1*C2+(1/350)*L*R^2*A*C2^2-(2/1575)*R^2*A^3+(1/140)*R^2*A*C1^2-(1/1260)*R^2*A*C1*C2+(1/420)*R^2*A*C2^2-(19/525)*L*R^2*C1^2-(1/175)*L*R^2*C1*C2-(89/525)*L*R^2*C2^2+(2/525)*R^2*A^2+(1/126)*C1^2*R^2-(1/1260)*R^2*C1*C2+(1/315)*R^2*C2^2+(11/6300)*R^2*A-(3/700)*R^2)*x, x))+(-2*R*(-(1/10)*A*C1*x^5-(1/10)*A*C2*x^5+(1/2)*A*C1*L*x^3+(1/6)*A*C1*x^4+(1/2)*A*C2*L*x^3+(1/12)*A*C2*x^4+(1/10)*x^5*C1+(1/10)*x^5*C2-A*C1*L*x^2-(1/2)*A*C2*L*x^2-(1/2)*C1*x^3*L-(5/12)*x^4*C1-(1/2)*C2*L*x^3-(1/3)*x^4*C2+C1*x^2*L+(2/3)*C1*x^3+(1/2)*C2*L*x^2+(1/3)*x^3*C2-(1/2)*C1*x^2)+(-A*C1*L*R+(2/15)*R*C1*A-(1/30)*R*A*C2+C1*L*R-(3/10)*R*C1+(1/5)*R*C2)*x)*(diff(-2*R*(-(1/10)*A*C1*x^5-(1/10)*A*C2*x^5+(1/2)*A*C1*L*x^3+(1/6)*A*C1*x^4+(1/2)*A*C2*L*x^3+(1/12)*A*C2*x^4+(1/10)*x^5*C1+(1/10)*x^5*C2-A*C1*L*x^2-(1/2)*A*C2*L*x^2-(1/2)*C1*x^3*L-(5/12)*x^4*C1-(1/2)*C2*L*x^3-(1/3)*x^4*C2+C1*x^2*L+(2/3)*C1*x^3+(1/2)*C2*L*x^2+(1/3)*x^3*C2-(1/2)*C1*x^2)+(-A*C1*L*R+(2/15)*R*C1*A-(1/30)*R*A*C2+C1*L*R-(3/10)*R*C1+(1/5)*R*C2)*x, x))+((1/210)*R^2*((1/72)*(-204*A*C1^2-408*A*C1*C2-204*A*C2^2+204*C1^2+408*C1*C2+204*C2^2)*x^9+(1/56)*(784*A*C1^2+1176*A*C1*C2+392*A*C2^2-1036*C1^2-1680*C1*C2-644*C2^2)*x^8+(1/42)*(2394*A*C1^2*L+4788*A*C1*C2*L+2394*A*C2^2*L-28*A^3-1064*A*C1^2-1064*A*C1*C2-140*A*C2^2-2394*C1^2*L-4788*C1*C2*L-2394*C2^2*L+84*A^2+2072*C1^2+2576*C1*C2+644*C2^2-84*A+28)*x^7+(1/30)*(-6300*A*C1^2*L-9450*A*C1*C2*L-3150*A*C2^2*L+420*A*C1^2+210*A*C1*C2+8820*C1^2*L+14490*C1*C2*L+5670*C2^2*L-140*A^2-1960*C1^2-1750*C1*C2-280*C2^2+280*A-140)*x^6+(1/20)*(-2520*A*C1^2*L^2-5040*A*C1*C2*L^2-2520*A*C2^2*L^2+70*A^3*L+5348*A*C1^2*L+5516*A*C1*C2*L+728*A*C2^2*L+2520*C1^2*L^2+5040*C1*C2*L^2+2520*C2^2*L^2+42*A^3-210*A^2*L+200*A*C1^2+120*A*C1*C2-80*A*C2^2-12068*C1^2*L-15596*C1*C2*L-4088*C2^2*L+14*A^2+210*A*L+780*C1^2+440*C1*C2+220*C2^2-294*A-70*L+238)*x^5+(1/12)*(5040*A*C1^2*L^2+7560*A*C1*C2*L^2+2520*A*C2^2*L^2-1176*A*C1^2*L-672*A*C1*C2*L+84*A*C2^2*L-5040*C1^2*L^2-7560*C1*C2*L^2-2520*C2^2*L^2-14*A^3+210*A^2*L-136*A*C1^2-34*A*C1*C2+32*A*C2^2+7308*C1^2*L+7056*C1*C2*L+1008*C2^2*L+70*A^2-420*A*L-12*C1^2+18*C1*C2-180*C2^2+112*A+210*L-168)*x^4+(1/6)*(-2772*A*C1^2*L^2-3024*A*C1*C2*L^2-252*A*C2^2*L^2-63*A^3*L-300*A*C1^2*L-180*A*C1*C2*L+120*A*C2^2*L+2772*C1^2*L^2+3024*C1*C2*L^2+252*C2^2*L^2-21*A^2*L-1842*C1^2*L-1164*C1*C2*L-162*C2^2*L-28*A^2+231*A*L-48*C1^2-12*C1*C2+36*C2^2-14*A-147*L+42)*x^3)+(1/2)*(-(2/15)*L*R^2*A-(1/30)*L*R^2*A^2+(24/35)*L*R^2*C1^2+(17/35)*L*R^2*C2^2+(1/15)*L*R^2*A^3+(6/35)*L*R^2*C1*C2-(6/5)*L^2*R^2*C1*C2+(68/105)*L*R^2*A*C1^2-(16/105)*L*R^2*A*C2^2+(8/5)*L^2*R^2*A*C1^2-(2/5)*L^2*R^2*C2^2*A+(17/105)*L*R^2*A*C1*C2+(6/5)*L^2*R^2*A*C1*C2-(8/5)*C1^2*R^2*L^2+(2/5)*L^2*R^2*C2^2+(1/10)*L*R^2)*x^2+(-(86/525)*L*R^2*A*C1^2-(29/1050)*L*R^2*A*C1*C2+(1/350)*L*R^2*A*C2^2-(2/1575)*R^2*A^3+(1/140)*R^2*A*C1^2-(1/1260)*R^2*A*C1*C2+(1/420)*R^2*A*C2^2-(19/525)*L*R^2*C1^2-(1/175)*L*R^2*C1*C2-(89/525)*L*R^2*C2^2+(2/525)*R^2*A^2+(1/126)*C1^2*R^2-(1/1260)*R^2*C1*C2+(1/315)*R^2*C2^2+(11/6300)*R^2*A-(3/700)*R^2)*x)*(diff((A-1)*x+1, x))+((1/6)*(6*C2+6*C1)*x^3+(1/2)*(-2*C2-4*C1)*x^2+C1*x)*(diff(-(1/105)*R^2*((1/7920)*(-648*C1^3-1944*C1^2*C2-1944*C1*C2^2-648*C2^3)*x^11+(1/5040)*(3024*C1^3+7560*C1^2*C2+6048*C1*C2^2+1512*C2^3)*x^10+(1/3024)*(16632*C1^3*L+49896*C1^2*C2*L+49896*C1*C2^2*L+16632*C2^3*L+21*A^2*C1+21*A^2*C2-5376*C1^3-10752*C1^2*C2-6216*C1*C2^2-840*C2^3-42*A*C1-42*A*C2+21*C1+21*C2)*x^9+(1/1680)*(-55440*C1^3*L-138600*C1^2*C2*L-110880*C1*C2^2*L-27720*C2^3*L+70*A^2*C1+35*A^2*C2+4200*C1^3+6300*C1^2*C2+2100*C1*C2^2+70*A*C1+140*A*C2-140*C1-175*C2)*x^8+(1/840)*(-83160*C1^3*L^2-249480*C1^2*C2*L^2-249480*C1*C2^2*L^2-83160*C2^3*L^2+210*A^2*C1*L+210*A^2*C2*L+65184*C1^3*L+130872*C1^2*C2*L+75432*C1*C2^2*L+9744*C2^3*L-84*A^2*C1+126*A^2*C2-420*A*C1*L-420*A*C2*L-996*C1^3-888*C1^2*C2-48*C1*C2^2-156*C2^3+28*A*C1-112*A*C2+210*C1*L+210*C2*L+476*C1+406*C2)*x^7+(1/360)*(166320*C1^3*L^2+415800*C1^2*C2*L^2+332640*C1*C2^2*L^2+83160*C2^3*L^2+840*A^2*C1*L+420*A^2*C2*L-29232*C1^3*L-44604*C1^2*C2*L-15372*C1*C2^2*L-168*A^2*C1-105*A^2*C2+210*A*C1*L+1050*A*C2*L-336*C1^3-330*C1^2*C2+138*C1*C2^2+132*C2^3+21*A*C1-105*A*C2-1050*C1*L-1470*C2*L-693*C1-210*C2)*x^6+(1/120)*(1890*A^2*C1*L^2+1890*A^2*C2*L^2-101304*C1^3*L^2-205632*C1^2*C2*L^2-122472*C1*C2^2*L^2-18144*C2^3*L^2-966*A^2*C1*L-756*A^2*C2*L-3780*A*C1*L^2-3780*A*C2*L^2+2448*C1^3*L+2052*C1^2*C2*L+540*C1*C2^2*L+936*C2^3*L+119*A^2*C1-14*A^2*C2+252*A*C1*L-588*A*C2*L+132*C1^3+54*C1^2*C2-78*C1*C2^2+1890*C1*L^2+1890*C2*L^2-98*A*C1+98*A*C2+714*C1*L+1344*C2*L+399*C1-84*C2)*x^5)+(1/24)*(-2*L*R^2*A*C2-(1368/5)*L^2*R^2*C1^2*C2-(504/5)*L^2*R^2*C1*C2^2-(44/7)*L*R^2*C1^2*C2+(92/35)*L*R^2*C1*C2^2-(16/5)*L*R^2*A^2*C1-2*L*R^2*A^2*C2-24*L^2*R^2*A*C1-12*L^2*R^2*A*C2+12*L^2*R^2*A^2*C1+6*L^2*R^2*A^2*C2-(4/15)*R^2*A*C1+(12/5)*L*R^2*A*C1+(1/15)*R^2*A*C2+(4/5)*L*R^2*C1+4*L*R^2*C2+12*L^2*R^2*C1+6*L^2*R^2*C2-(864/5)*L^2*R^2*C1^3-(32/5)*L*R^2*C1^3+(88/35)*L*R^2*C2^3-(2/5)*R^2*C2+(3/5)*R^2*C1)*x^4+(1/6)*((157/6300)*R^2*A*C1-(446/525)*L*R^2*A*C1-(2777/242550)*R^2*C1*C2^2+(653/12600)*R^2*A^2*C1+(1783/121275)*R^2*C2^3+(1783/121275)*R^2*C1^3+(359/525)*L*R^2*A*C2+(3882/175)*L^2*R^2*C1^2*C2+(312/175)*L^2*R^2*C1*C2^2+(102/175)*L*R^2*C1^2*C2-(118/175)*L*R^2*C1*C2^2+(33/5)*L^2*R^2*A*C1-(61/1800)*R^2*C1+(13/525)*L*R^2*C1+(157/6300)*R^2*A*C2-(989/1050)*L*R^2*C2-(3/10)*L^2*R^2*C2+(3324/175)*L^2*R^2*C1^3-(61/1800)*R^2*A^2*C2+(209/175)*L*R^2*C1^3-(11/175)*L*R^2*C2^3-(2777/242550)*R^2*C1^2*C2-(246/175)*R^2*L^2*C2^3+(653/12600)*R^2*C2-(33/10)*L^2*R^2*C1+(433/525)*L*R^2*A^2*C1+(271/1050)*L*R^2*A^2*C2+(3/5)*L^2*R^2*A*C2-(33/10)*L^2*R^2*A^2*C1-(3/10)*L^2*R^2*A^2*C2)*x^3+(1/2)*((1/1575)*R^2*A*C1+(131/1050)*L*R^2*A*C1+(59/121275)*R^2*C1*C2^2-(13/1575)*R^2*A^2*C1-(314/121275)*R^2*C2^3-(83/121275)*R^2*C1^3-(19/175)*L*R^2*A*C2-(156/175)*L^2*R^2*C1^2*C2+(54/175)*L^2*R^2*C1*C2^2+(1/175)*L*R^2*C1^2*C2+(8/175)*L*R^2*C1*C2^2-(4/5)*L^2*R^2*A*C1-(17/6300)*R^2*C1-(13/1050)*L*R^2*C1-(8/1575)*R^2*A*C2+(127/1050)*L*R^2*C2-(1/10)*L^2*R^2*C2-(192/175)*L^2*R^2*C1^3+(29/4200)*R^2*A^2*C2-(12/175)*L*R^2*C1^3-(1/35)*L*R^2*C2^3+(58/24255)*R^2*C1^2*C2+(18/175)*R^2*L^2*C2^3-(13/12600)*R^2*C2+(2/5)*L^2*R^2*C1-(59/525)*L*R^2*A^2*C1-(13/1050)*L*R^2*A^2*C2+(1/5)*L^2*R^2*A*C2+(2/5)*L^2*R^2*A^2*C1-(1/10)*L^2*R^2*A^2*C2)*x^2, x, x, x))+(-2*R*((1/140)*C1^2*x^7+(1/70)*C1*C2*x^7+(1/140)*C2^2*x^7-(3/10)*C1^2*L*x^5-(1/30)*C1^2*x^6-(3/5)*C1*C2*L*x^5-(1/20)*C1*C2*x^6-(3/10)*C2^2*L*x^5-(1/60)*C2^2*x^6+(1/120)*A^2*x^5+C1^2*L*x^4+(1/20)*C1^2*x^5+(3/2)*C1*C2*L*x^4+(1/20)*C1*C2*x^5+(1/2)*C2^2*L*x^4-(1/60)*x^5*A+(1/24)*x^4*A+(1/120)*x^5-(1/24)*x^4)+(1/6)*((66/5)*C1^2*L*R+(72/5)*C1*C2*L*R+(6/5)*C2^2*L*R+(3/10)*R*A^2+(22/35)*R*C1^2+(9/35)*R*C1*C2-(13/35)*R*C2^2+(2/5)*R*A-(7/10)*R)*x^3+(1/2)*(-(8/5)*C1^2*L*R-(6/5)*C1*C2*L*R+(2/5)*C2^2*L*R-(1/15)*R*A^2-(4/35)*R*C1^2-(1/35)*R*C1*C2+(3/35)*R*C2^2-(1/30)*R*A+(1/10)*R)*x^2)*(diff(-2*R*((1/140)*C1^2*x^7+(1/70)*C1*C2*x^7+(1/140)*C2^2*x^7-(3/10)*C1^2*L*x^5-(1/30)*C1^2*x^6-(3/5)*C1*C2*L*x^5-(1/20)*C1*C2*x^6-(3/10)*C2^2*L*x^5-(1/60)*C2^2*x^6+(1/120)*A^2*x^5+C1^2*L*x^4+(1/20)*C1^2*x^5+(3/2)*C1*C2*L*x^4+(1/20)*C1*C2*x^5+(1/2)*C2^2*L*x^4-(1/60)*x^5*A+(1/24)*x^4*A+(1/120)*x^5-(1/24)*x^4)+(1/6)*((66/5)*C1^2*L*R+(72/5)*C1*C2*L*R+(6/5)*C2^2*L*R+(3/10)*R*A^2+(22/35)*R*C1^2+(9/35)*R*C1*C2-(13/35)*R*C2^2+(2/5)*R*A-(7/10)*R)*x^3+(1/2)*(-(8/5)*C1^2*L*R-(6/5)*C1*C2*L*R+(2/5)*C2^2*L*R-(1/15)*R*A^2-(4/35)*R*C1^2-(1/35)*R*C1*C2+(3/35)*R*C2^2-(1/30)*R*A+(1/10)*R)*x^2, x, x, x))+(-(1/105)*R^2*((1/7920)*(-648*C1^3-1944*C1^2*C2-1944*C1*C2^2-648*C2^3)*x^11+(1/5040)*(3024*C1^3+7560*C1^2*C2+6048*C1*C2^2+1512*C2^3)*x^10+(1/3024)*(16632*C1^3*L+49896*C1^2*C2*L+49896*C1*C2^2*L+16632*C2^3*L+21*A^2*C1+21*A^2*C2-5376*C1^3-10752*C1^2*C2-6216*C1*C2^2-840*C2^3-42*A*C1-42*A*C2+21*C1+21*C2)*x^9+(1/1680)*(-55440*C1^3*L-138600*C1^2*C2*L-110880*C1*C2^2*L-27720*C2^3*L+70*A^2*C1+35*A^2*C2+4200*C1^3+6300*C1^2*C2+2100*C1*C2^2+70*A*C1+140*A*C2-140*C1-175*C2)*x^8+(1/840)*(-83160*C1^3*L^2-249480*C1^2*C2*L^2-249480*C1*C2^2*L^2-83160*C2^3*L^2+210*A^2*C1*L+210*A^2*C2*L+65184*C1^3*L+130872*C1^2*C2*L+75432*C1*C2^2*L+9744*C2^3*L-84*A^2*C1+126*A^2*C2-420*A*C1*L-420*A*C2*L-996*C1^3-888*C1^2*C2-48*C1*C2^2-156*C2^3+28*A*C1-112*A*C2+210*C1*L+210*C2*L+476*C1+406*C2)*x^7+(1/360)*(166320*C1^3*L^2+415800*C1^2*C2*L^2+332640*C1*C2^2*L^2+83160*C2^3*L^2+840*A^2*C1*L+420*A^2*C2*L-29232*C1^3*L-44604*C1^2*C2*L-15372*C1*C2^2*L-168*A^2*C1-105*A^2*C2+210*A*C1*L+1050*A*C2*L-336*C1^3-330*C1^2*C2+138*C1*C2^2+132*C2^3+21*A*C1-105*A*C2-1050*C1*L-1470*C2*L-693*C1-210*C2)*x^6+(1/120)*(1890*A^2*C1*L^2+1890*A^2*C2*L^2-101304*C1^3*L^2-205632*C1^2*C2*L^2-122472*C1*C2^2*L^2-18144*C2^3*L^2-966*A^2*C1*L-756*A^2*C2*L-3780*A*C1*L^2-3780*A*C2*L^2+2448*C1^3*L+2052*C1^2*C2*L+540*C1*C2^2*L+936*C2^3*L+119*A^2*C1-14*A^2*C2+252*A*C1*L-588*A*C2*L+132*C1^3+54*C1^2*C2-78*C1*C2^2+1890*C1*L^2+1890*C2*L^2-98*A*C1+98*A*C2+714*C1*L+1344*C2*L+399*C1-84*C2)*x^5)+(1/24)*(-2*L*R^2*A*C2-(1368/5)*L^2*R^2*C1^2*C2-(504/5)*L^2*R^2*C1*C2^2-(44/7)*L*R^2*C1^2*C2+(92/35)*L*R^2*C1*C2^2-(16/5)*L*R^2*A^2*C1-2*L*R^2*A^2*C2-24*L^2*R^2*A*C1-12*L^2*R^2*A*C2+12*L^2*R^2*A^2*C1+6*L^2*R^2*A^2*C2-(4/15)*R^2*A*C1+(12/5)*L*R^2*A*C1+(1/15)*R^2*A*C2+(4/5)*L*R^2*C1+4*L*R^2*C2+12*L^2*R^2*C1+6*L^2*R^2*C2-(864/5)*L^2*R^2*C1^3-(32/5)*L*R^2*C1^3+(88/35)*L*R^2*C2^3-(2/5)*R^2*C2+(3/5)*R^2*C1)*x^4+(1/6)*((157/6300)*R^2*A*C1-(446/525)*L*R^2*A*C1-(2777/242550)*R^2*C1*C2^2+(653/12600)*R^2*A^2*C1+(1783/121275)*R^2*C2^3+(1783/121275)*R^2*C1^3+(359/525)*L*R^2*A*C2+(3882/175)*L^2*R^2*C1^2*C2+(312/175)*L^2*R^2*C1*C2^2+(102/175)*L*R^2*C1^2*C2-(118/175)*L*R^2*C1*C2^2+(33/5)*L^2*R^2*A*C1-(61/1800)*R^2*C1+(13/525)*L*R^2*C1+(157/6300)*R^2*A*C2-(989/1050)*L*R^2*C2-(3/10)*L^2*R^2*C2+(3324/175)*L^2*R^2*C1^3-(61/1800)*R^2*A^2*C2+(209/175)*L*R^2*C1^3-(11/175)*L*R^2*C2^3-(2777/242550)*R^2*C1^2*C2-(246/175)*R^2*L^2*C2^3+(653/12600)*R^2*C2-(33/10)*L^2*R^2*C1+(433/525)*L*R^2*A^2*C1+(271/1050)*L*R^2*A^2*C2+(3/5)*L^2*R^2*A*C2-(33/10)*L^2*R^2*A^2*C1-(3/10)*L^2*R^2*A^2*C2)*x^3+(1/2)*((1/1575)*R^2*A*C1+(131/1050)*L*R^2*A*C1+(59/121275)*R^2*C1*C2^2-(13/1575)*R^2*A^2*C1-(314/121275)*R^2*C2^3-(83/121275)*R^2*C1^3-(19/175)*L*R^2*A*C2-(156/175)*L^2*R^2*C1^2*C2+(54/175)*L^2*R^2*C1*C2^2+(1/175)*L*R^2*C1^2*C2+(8/175)*L*R^2*C1*C2^2-(4/5)*L^2*R^2*A*C1-(17/6300)*R^2*C1-(13/1050)*L*R^2*C1-(8/1575)*R^2*A*C2+(127/1050)*L*R^2*C2-(1/10)*L^2*R^2*C2-(192/175)*L^2*R^2*C1^3+(29/4200)*R^2*A^2*C2-(12/175)*L*R^2*C1^3-(1/35)*L*R^2*C2^3+(58/24255)*R^2*C1^2*C2+(18/175)*R^2*L^2*C2^3-(13/12600)*R^2*C2+(2/5)*L^2*R^2*C1-(59/525)*L*R^2*A^2*C1-(13/1050)*L*R^2*A^2*C2+(1/5)*L^2*R^2*A*C2+(2/5)*L^2*R^2*A^2*C1-(1/10)*L^2*R^2*A^2*C2)*x^2)*(diff((1/6)*(6*C2+6*C1)*x^3+(1/2)*(-2*C2-4*C1)*x^2+C1*x, x, x, x)))-L*R*((diff((1/6)*(6*C2+6*C1)*x^3+(1/2)*(-2*C2-4*C1)*x^2+C1*x, x))*(diff(-(1/105)*R^2*((1/7920)*(-648*C1^3-1944*C1^2*C2-1944*C1*C2^2-648*C2^3)*x^11+(1/5040)*(3024*C1^3+7560*C1^2*C2+6048*C1*C2^2+1512*C2^3)*x^10+(1/3024)*(16632*C1^3*L+49896*C1^2*C2*L+49896*C1*C2^2*L+16632*C2^3*L+21*A^2*C1+21*A^2*C2-5376*C1^3-10752*C1^2*C2-6216*C1*C2^2-840*C2^3-42*A*C1-42*A*C2+21*C1+21*C2)*x^9+(1/1680)*(-55440*C1^3*L-138600*C1^2*C2*L-110880*C1*C2^2*L-27720*C2^3*L+70*A^2*C1+35*A^2*C2+4200*C1^3+6300*C1^2*C2+2100*C1*C2^2+70*A*C1+140*A*C2-140*C1-175*C2)*x^8+(1/840)*(-83160*C1^3*L^2-249480*C1^2*C2*L^2-249480*C1*C2^2*L^2-83160*C2^3*L^2+210*A^2*C1*L+210*A^2*C2*L+65184*C1^3*L+130872*C1^2*C2*L+75432*C1*C2^2*L+9744*C2^3*L-84*A^2*C1+126*A^2*C2-420*A*C1*L-420*A*C2*L-996*C1^3-888*C1^2*C2-48*C1*C2^2-156*C2^3+28*A*C1-112*A*C2+210*C1*L+210*C2*L+476*C1+406*C2)*x^7+(1/360)*(166320*C1^3*L^2+415800*C1^2*C2*L^2+332640*C1*C2^2*L^2+83160*C2^3*L^2+840*A^2*C1*L+420*A^2*C2*L-29232*C1^3*L-44604*C1^2*C2*L-15372*C1*C2^2*L-168*A^2*C1-105*A^2*C2+210*A*C1*L+1050*A*C2*L-336*C1^3-330*C1^2*C2+138*C1*C2^2+132*C2^3+21*A*C1-105*A*C2-1050*C1*L-1470*C2*L-693*C1-210*C2)*x^6+(1/120)*(1890*A^2*C1*L^2+1890*A^2*C2*L^2-101304*C1^3*L^2-205632*C1^2*C2*L^2-122472*C1*C2^2*L^2-18144*C2^3*L^2-966*A^2*C1*L-756*A^2*C2*L-3780*A*C1*L^2-3780*A*C2*L^2+2448*C1^3*L+2052*C1^2*C2*L+540*C1*C2^2*L+936*C2^3*L+119*A^2*C1-14*A^2*C2+252*A*C1*L-588*A*C2*L+132*C1^3+54*C1^2*C2-78*C1*C2^2+1890*C1*L^2+1890*C2*L^2-98*A*C1+98*A*C2+714*C1*L+1344*C2*L+399*C1-84*C2)*x^5)+(1/24)*(-2*L*R^2*A*C2-(1368/5)*L^2*R^2*C1^2*C2-(504/5)*L^2*R^2*C1*C2^2-(44/7)*L*R^2*C1^2*C2+(92/35)*L*R^2*C1*C2^2-(16/5)*L*R^2*A^2*C1-2*L*R^2*A^2*C2-24*L^2*R^2*A*C1-12*L^2*R^2*A*C2+12*L^2*R^2*A^2*C1+6*L^2*R^2*A^2*C2-(4/15)*R^2*A*C1+(12/5)*L*R^2*A*C1+(1/15)*R^2*A*C2+(4/5)*L*R^2*C1+4*L*R^2*C2+12*L^2*R^2*C1+6*L^2*R^2*C2-(864/5)*L^2*R^2*C1^3-(32/5)*L*R^2*C1^3+(88/35)*L*R^2*C2^3-(2/5)*R^2*C2+(3/5)*R^2*C1)*x^4+(1/6)*((157/6300)*R^2*A*C1-(446/525)*L*R^2*A*C1-(2777/242550)*R^2*C1*C2^2+(653/12600)*R^2*A^2*C1+(1783/121275)*R^2*C2^3+(1783/121275)*R^2*C1^3+(359/525)*L*R^2*A*C2+(3882/175)*L^2*R^2*C1^2*C2+(312/175)*L^2*R^2*C1*C2^2+(102/175)*L*R^2*C1^2*C2-(118/175)*L*R^2*C1*C2^2+(33/5)*L^2*R^2*A*C1-(61/1800)*R^2*C1+(13/525)*L*R^2*C1+(157/6300)*R^2*A*C2-(989/1050)*L*R^2*C2-(3/10)*L^2*R^2*C2+(3324/175)*L^2*R^2*C1^3-(61/1800)*R^2*A^2*C2+(209/175)*L*R^2*C1^3-(11/175)*L*R^2*C2^3-(2777/242550)*R^2*C1^2*C2-(246/175)*R^2*L^2*C2^3+(653/12600)*R^2*C2-(33/10)*L^2*R^2*C1+(433/525)*L*R^2*A^2*C1+(271/1050)*L*R^2*A^2*C2+(3/5)*L^2*R^2*A*C2-(33/10)*L^2*R^2*A^2*C1-(3/10)*L^2*R^2*A^2*C2)*x^3+(1/2)*((1/1575)*R^2*A*C1+(131/1050)*L*R^2*A*C1+(59/121275)*R^2*C1*C2^2-(13/1575)*R^2*A^2*C1-(314/121275)*R^2*C2^3-(83/121275)*R^2*C1^3-(19/175)*L*R^2*A*C2-(156/175)*L^2*R^2*C1^2*C2+(54/175)*L^2*R^2*C1*C2^2+(1/175)*L*R^2*C1^2*C2+(8/175)*L*R^2*C1*C2^2-(4/5)*L^2*R^2*A*C1-(17/6300)*R^2*C1-(13/1050)*L*R^2*C1-(8/1575)*R^2*A*C2+(127/1050)*L*R^2*C2-(1/10)*L^2*R^2*C2-(192/175)*L^2*R^2*C1^3+(29/4200)*R^2*A^2*C2-(12/175)*L*R^2*C1^3-(1/35)*L*R^2*C2^3+(58/24255)*R^2*C1^2*C2+(18/175)*R^2*L^2*C2^3-(13/12600)*R^2*C2+(2/5)*L^2*R^2*C1-(59/525)*L*R^2*A^2*C1-(13/1050)*L*R^2*A^2*C2+(1/5)*L^2*R^2*A*C2+(2/5)*L^2*R^2*A^2*C1-(1/10)*L^2*R^2*A^2*C2)*x^2, x, x, x, x))+(diff(-2*R*((1/140)*C1^2*x^7+(1/70)*C1*C2*x^7+(1/140)*C2^2*x^7-(3/10)*C1^2*L*x^5-(1/30)*C1^2*x^6-(3/5)*C1*C2*L*x^5-(1/20)*C1*C2*x^6-(3/10)*C2^2*L*x^5-(1/60)*C2^2*x^6+(1/120)*A^2*x^5+C1^2*L*x^4+(1/20)*C1^2*x^5+(3/2)*C1*C2*L*x^4+(1/20)*C1*C2*x^5+(1/2)*C2^2*L*x^4-(1/60)*x^5*A+(1/24)*x^4*A+(1/120)*x^5-(1/24)*x^4)+(1/6)*((66/5)*C1^2*L*R+(72/5)*C1*C2*L*R+(6/5)*C2^2*L*R+(3/10)*R*A^2+(22/35)*R*C1^2+(9/35)*R*C1*C2-(13/35)*R*C2^2+(2/5)*R*A-(7/10)*R)*x^3+(1/2)*(-(8/5)*C1^2*L*R-(6/5)*C1*C2*L*R+(2/5)*C2^2*L*R-(1/15)*R*A^2-(4/35)*R*C1^2-(1/35)*R*C1*C2+(3/35)*R*C2^2-(1/30)*R*A+(1/10)*R)*x^2, x))*(diff(-2*R*((1/140)*C1^2*x^7+(1/70)*C1*C2*x^7+(1/140)*C2^2*x^7-(3/10)*C1^2*L*x^5-(1/30)*C1^2*x^6-(3/5)*C1*C2*L*x^5-(1/20)*C1*C2*x^6-(3/10)*C2^2*L*x^5-(1/60)*C2^2*x^6+(1/120)*A^2*x^5+C1^2*L*x^4+(1/20)*C1^2*x^5+(3/2)*C1*C2*L*x^4+(1/20)*C1*C2*x^5+(1/2)*C2^2*L*x^4-(1/60)*x^5*A+(1/24)*x^4*A+(1/120)*x^5-(1/24)*x^4)+(1/6)*((66/5)*C1^2*L*R+(72/5)*C1*C2*L*R+(6/5)*C2^2*L*R+(3/10)*R*A^2+(22/35)*R*C1^2+(9/35)*R*C1*C2-(13/35)*R*C2^2+(2/5)*R*A-(7/10)*R)*x^3+(1/2)*(-(8/5)*C1^2*L*R-(6/5)*C1*C2*L*R+(2/5)*C2^2*L*R-(1/15)*R*A^2-(4/35)*R*C1^2-(1/35)*R*C1*C2+(3/35)*R*C2^2-(1/30)*R*A+(1/10)*R)*x^2, x, x, x, x))+(diff(-(1/105)*R^2*((1/7920)*(-648*C1^3-1944*C1^2*C2-1944*C1*C2^2-648*C2^3)*x^11+(1/5040)*(3024*C1^3+7560*C1^2*C2+6048*C1*C2^2+1512*C2^3)*x^10+(1/3024)*(16632*C1^3*L+49896*C1^2*C2*L+49896*C1*C2^2*L+16632*C2^3*L+21*A^2*C1+21*A^2*C2-5376*C1^3-10752*C1^2*C2-6216*C1*C2^2-840*C2^3-42*A*C1-42*A*C2+21*C1+21*C2)*x^9+(1/1680)*(-55440*C1^3*L-138600*C1^2*C2*L-110880*C1*C2^2*L-27720*C2^3*L+70*A^2*C1+35*A^2*C2+4200*C1^3+6300*C1^2*C2+2100*C1*C2^2+70*A*C1+140*A*C2-140*C1-175*C2)*x^8+(1/840)*(-83160*C1^3*L^2-249480*C1^2*C2*L^2-249480*C1*C2^2*L^2-83160*C2^3*L^2+210*A^2*C1*L+210*A^2*C2*L+65184*C1^3*L+130872*C1^2*C2*L+75432*C1*C2^2*L+9744*C2^3*L-84*A^2*C1+126*A^2*C2-420*A*C1*L-420*A*C2*L-996*C1^3-888*C1^2*C2-48*C1*C2^2-156*C2^3+28*A*C1-112*A*C2+210*C1*L+210*C2*L+476*C1+406*C2)*x^7+(1/360)*(166320*C1^3*L^2+415800*C1^2*C2*L^2+332640*C1*C2^2*L^2+83160*C2^3*L^2+840*A^2*C1*L+420*A^2*C2*L-29232*C1^3*L-44604*C1^2*C2*L-15372*C1*C2^2*L-168*A^2*C1-105*A^2*C2+210*A*C1*L+1050*A*C2*L-336*C1^3-330*C1^2*C2+138*C1*C2^2+132*C2^3+21*A*C1-105*A*C2-1050*C1*L-1470*C2*L-693*C1-210*C2)*x^6+(1/120)*(1890*A^2*C1*L^2+1890*A^2*C2*L^2-101304*C1^3*L^2-205632*C1^2*C2*L^2-122472*C1*C2^2*L^2-18144*C2^3*L^2-966*A^2*C1*L-756*A^2*C2*L-3780*A*C1*L^2-3780*A*C2*L^2+2448*C1^3*L+2052*C1^2*C2*L+540*C1*C2^2*L+936*C2^3*L+119*A^2*C1-14*A^2*C2+252*A*C1*L-588*A*C2*L+132*C1^3+54*C1^2*C2-78*C1*C2^2+1890*C1*L^2+1890*C2*L^2-98*A*C1+98*A*C2+714*C1*L+1344*C2*L+399*C1-84*C2)*x^5)+(1/24)*(-2*L*R^2*A*C2-(1368/5)*L^2*R^2*C1^2*C2-(504/5)*L^2*R^2*C1*C2^2-(44/7)*L*R^2*C1^2*C2+(92/35)*L*R^2*C1*C2^2-(16/5)*L*R^2*A^2*C1-2*L*R^2*A^2*C2-24*L^2*R^2*A*C1-12*L^2*R^2*A*C2+12*L^2*R^2*A^2*C1+6*L^2*R^2*A^2*C2-(4/15)*R^2*A*C1+(12/5)*L*R^2*A*C1+(1/15)*R^2*A*C2+(4/5)*L*R^2*C1+4*L*R^2*C2+12*L^2*R^2*C1+6*L^2*R^2*C2-(864/5)*L^2*R^2*C1^3-(32/5)*L*R^2*C1^3+(88/35)*L*R^2*C2^3-(2/5)*R^2*C2+(3/5)*R^2*C1)*x^4+(1/6)*((157/6300)*R^2*A*C1-(446/525)*L*R^2*A*C1-(2777/242550)*R^2*C1*C2^2+(653/12600)*R^2*A^2*C1+(1783/121275)*R^2*C2^3+(1783/121275)*R^2*C1^3+(359/525)*L*R^2*A*C2+(3882/175)*L^2*R^2*C1^2*C2+(312/175)*L^2*R^2*C1*C2^2+(102/175)*L*R^2*C1^2*C2-(118/175)*L*R^2*C1*C2^2+(33/5)*L^2*R^2*A*C1-(61/1800)*R^2*C1+(13/525)*L*R^2*C1+(157/6300)*R^2*A*C2-(989/1050)*L*R^2*C2-(3/10)*L^2*R^2*C2+(3324/175)*L^2*R^2*C1^3-(61/1800)*R^2*A^2*C2+(209/175)*L*R^2*C1^3-(11/175)*L*R^2*C2^3-(2777/242550)*R^2*C1^2*C2-(246/175)*R^2*L^2*C2^3+(653/12600)*R^2*C2-(33/10)*L^2*R^2*C1+(433/525)*L*R^2*A^2*C1+(271/1050)*L*R^2*A^2*C2+(3/5)*L^2*R^2*A*C2-(33/10)*L^2*R^2*A^2*C1-(3/10)*L^2*R^2*A^2*C2)*x^3+(1/2)*((1/1575)*R^2*A*C1+(131/1050)*L*R^2*A*C1+(59/121275)*R^2*C1*C2^2-(13/1575)*R^2*A^2*C1-(314/121275)*R^2*C2^3-(83/121275)*R^2*C1^3-(19/175)*L*R^2*A*C2-(156/175)*L^2*R^2*C1^2*C2+(54/175)*L^2*R^2*C1*C2^2+(1/175)*L*R^2*C1^2*C2+(8/175)*L*R^2*C1*C2^2-(4/5)*L^2*R^2*A*C1-(17/6300)*R^2*C1-(13/1050)*L*R^2*C1-(8/1575)*R^2*A*C2+(127/1050)*L*R^2*C2-(1/10)*L^2*R^2*C2-(192/175)*L^2*R^2*C1^3+(29/4200)*R^2*A^2*C2-(12/175)*L*R^2*C1^3-(1/35)*L*R^2*C2^3+(58/24255)*R^2*C1^2*C2+(18/175)*R^2*L^2*C2^3-(13/12600)*R^2*C2+(2/5)*L^2*R^2*C1-(59/525)*L*R^2*A^2*C1-(13/1050)*L*R^2*A^2*C2+(1/5)*L^2*R^2*A*C2+(2/5)*L^2*R^2*A^2*C1-(1/10)*L^2*R^2*A^2*C2)*x^2, x))*(diff((1/6)*(6*C2+6*C1)*x^3+(1/2)*(-2*C2-4*C1)*x^2+C1*x, x, x, x, x))+3*(diff((A-1)*x+1, x))*(diff((1/210)*R^2*((1/72)*(-204*A*C1^2-408*A*C1*C2-204*A*C2^2+204*C1^2+408*C1*C2+204*C2^2)*x^9+(1/56)*(784*A*C1^2+1176*A*C1*C2+392*A*C2^2-1036*C1^2-1680*C1*C2-644*C2^2)*x^8+(1/42)*(2394*A*C1^2*L+4788*A*C1*C2*L+2394*A*C2^2*L-28*A^3-1064*A*C1^2-1064*A*C1*C2-140*A*C2^2-2394*C1^2*L-4788*C1*C2*L-2394*C2^2*L+84*A^2+2072*C1^2+2576*C1*C2+644*C2^2-84*A+28)*x^7+(1/30)*(-6300*A*C1^2*L-9450*A*C1*C2*L-3150*A*C2^2*L+420*A*C1^2+210*A*C1*C2+8820*C1^2*L+14490*C1*C2*L+5670*C2^2*L-140*A^2-1960*C1^2-1750*C1*C2-280*C2^2+280*A-140)*x^6+(1/20)*(-2520*A*C1^2*L^2-5040*A*C1*C2*L^2-2520*A*C2^2*L^2+70*A^3*L+5348*A*C1^2*L+5516*A*C1*C2*L+728*A*C2^2*L+2520*C1^2*L^2+5040*C1*C2*L^2+2520*C2^2*L^2+42*A^3-210*A^2*L+200*A*C1^2+120*A*C1*C2-80*A*C2^2-12068*C1^2*L-15596*C1*C2*L-4088*C2^2*L+14*A^2+210*A*L+780*C1^2+440*C1*C2+220*C2^2-294*A-70*L+238)*x^5+(1/12)*(5040*A*C1^2*L^2+7560*A*C1*C2*L^2+2520*A*C2^2*L^2-1176*A*C1^2*L-672*A*C1*C2*L+84*A*C2^2*L-5040*C1^2*L^2-7560*C1*C2*L^2-2520*C2^2*L^2-14*A^3+210*A^2*L-136*A*C1^2-34*A*C1*C2+32*A*C2^2+7308*C1^2*L+7056*C1*C2*L+1008*C2^2*L+70*A^2-420*A*L-12*C1^2+18*C1*C2-180*C2^2+112*A+210*L-168)*x^4+(1/6)*(-2772*A*C1^2*L^2-3024*A*C1*C2*L^2-252*A*C2^2*L^2-63*A^3*L-300*A*C1^2*L-180*A*C1*C2*L+120*A*C2^2*L+2772*C1^2*L^2+3024*C1*C2*L^2+252*C2^2*L^2-21*A^2*L-1842*C1^2*L-1164*C1*C2*L-162*C2^2*L-28*A^2+231*A*L-48*C1^2-12*C1*C2+36*C2^2-14*A-147*L+42)*x^3)+(1/2)*(-(2/15)*L*R^2*A-(1/30)*L*R^2*A^2+(24/35)*L*R^2*C1^2+(17/35)*L*R^2*C2^2+(1/15)*L*R^2*A^3+(6/35)*L*R^2*C1*C2-(6/5)*L^2*R^2*C1*C2+(68/105)*L*R^2*A*C1^2-(16/105)*L*R^2*A*C2^2+(8/5)*L^2*R^2*A*C1^2-(2/5)*L^2*R^2*C2^2*A+(17/105)*L*R^2*A*C1*C2+(6/5)*L^2*R^2*A*C1*C2-(8/5)*C1^2*R^2*L^2+(2/5)*L^2*R^2*C2^2+(1/10)*L*R^2)*x^2+(-(86/525)*L*R^2*A*C1^2-(29/1050)*L*R^2*A*C1*C2+(1/350)*L*R^2*A*C2^2-(2/1575)*R^2*A^3+(1/140)*R^2*A*C1^2-(1/1260)*R^2*A*C1*C2+(1/420)*R^2*A*C2^2-(19/525)*L*R^2*C1^2-(1/175)*L*R^2*C1*C2-(89/525)*L*R^2*C2^2+(2/525)*R^2*A^2+(1/126)*C1^2*R^2-(1/1260)*R^2*C1*C2+(1/315)*R^2*C2^2+(11/6300)*R^2*A-(3/700)*R^2)*x, x, x))+3*(diff(-2*R*(-(1/10)*A*C1*x^5-(1/10)*A*C2*x^5+(1/2)*A*C1*L*x^3+(1/6)*A*C1*x^4+(1/2)*A*C2*L*x^3+(1/12)*A*C2*x^4+(1/10)*x^5*C1+(1/10)*x^5*C2-A*C1*L*x^2-(1/2)*A*C2*L*x^2-(1/2)*C1*x^3*L-(5/12)*x^4*C1-(1/2)*C2*L*x^3-(1/3)*x^4*C2+C1*x^2*L+(2/3)*C1*x^3+(1/2)*C2*L*x^2+(1/3)*x^3*C2-(1/2)*C1*x^2)+(-A*C1*L*R+(2/15)*R*C1*A-(1/30)*R*A*C2+C1*L*R-(3/10)*R*C1+(1/5)*R*C2)*x, x))*(diff(-2*R*(-(1/10)*A*C1*x^5-(1/10)*A*C2*x^5+(1/2)*A*C1*L*x^3+(1/6)*A*C1*x^4+(1/2)*A*C2*L*x^3+(1/12)*A*C2*x^4+(1/10)*x^5*C1+(1/10)*x^5*C2-A*C1*L*x^2-(1/2)*A*C2*L*x^2-(1/2)*C1*x^3*L-(5/12)*x^4*C1-(1/2)*C2*L*x^3-(1/3)*x^4*C2+C1*x^2*L+(2/3)*C1*x^3+(1/2)*C2*L*x^2+(1/3)*x^3*C2-(1/2)*C1*x^2)+(-A*C1*L*R+(2/15)*R*C1*A-(1/30)*R*A*C2+C1*L*R-(3/10)*R*C1+(1/5)*R*C2)*x, x, x))+3*(diff((1/210)*R^2*((1/72)*(-204*A*C1^2-408*A*C1*C2-204*A*C2^2+204*C1^2+408*C1*C2+204*C2^2)*x^9+(1/56)*(784*A*C1^2+1176*A*C1*C2+392*A*C2^2-1036*C1^2-1680*C1*C2-644*C2^2)*x^8+(1/42)*(2394*A*C1^2*L+4788*A*C1*C2*L+2394*A*C2^2*L-28*A^3-1064*A*C1^2-1064*A*C1*C2-140*A*C2^2-2394*C1^2*L-4788*C1*C2*L-2394*C2^2*L+84*A^2+2072*C1^2+2576*C1*C2+644*C2^2-84*A+28)*x^7+(1/30)*(-6300*A*C1^2*L-9450*A*C1*C2*L-3150*A*C2^2*L+420*A*C1^2+210*A*C1*C2+8820*C1^2*L+14490*C1*C2*L+5670*C2^2*L-140*A^2-1960*C1^2-1750*C1*C2-280*C2^2+280*A-140)*x^6+(1/20)*(-2520*A*C1^2*L^2-5040*A*C1*C2*L^2-2520*A*C2^2*L^2+70*A^3*L+5348*A*C1^2*L+5516*A*C1*C2*L+728*A*C2^2*L+2520*C1^2*L^2+5040*C1*C2*L^2+2520*C2^2*L^2+42*A^3-210*A^2*L+200*A*C1^2+120*A*C1*C2-80*A*C2^2-12068*C1^2*L-15596*C1*C2*L-4088*C2^2*L+14*A^2+210*A*L+780*C1^2+440*C1*C2+220*C2^2-294*A-70*L+238)*x^5+(1/12)*(5040*A*C1^2*L^2+7560*A*C1*C2*L^2+2520*A*C2^2*L^2-1176*A*C1^2*L-672*A*C1*C2*L+84*A*C2^2*L-5040*C1^2*L^2-7560*C1*C2*L^2-2520*C2^2*L^2-14*A^3+210*A^2*L-136*A*C1^2-34*A*C1*C2+32*A*C2^2+7308*C1^2*L+7056*C1*C2*L+1008*C2^2*L+70*A^2-420*A*L-12*C1^2+18*C1*C2-180*C2^2+112*A+210*L-168)*x^4+(1/6)*(-2772*A*C1^2*L^2-3024*A*C1*C2*L^2-252*A*C2^2*L^2-63*A^3*L-300*A*C1^2*L-180*A*C1*C2*L+120*A*C2^2*L+2772*C1^2*L^2+3024*C1*C2*L^2+252*C2^2*L^2-21*A^2*L-1842*C1^2*L-1164*C1*C2*L-162*C2^2*L-28*A^2+231*A*L-48*C1^2-12*C1*C2+36*C2^2-14*A-147*L+42)*x^3)+(1/2)*(-(2/15)*L*R^2*A-(1/30)*L*R^2*A^2+(24/35)*L*R^2*C1^2+(17/35)*L*R^2*C2^2+(1/15)*L*R^2*A^3+(6/35)*L*R^2*C1*C2-(6/5)*L^2*R^2*C1*C2+(68/105)*L*R^2*A*C1^2-(16/105)*L*R^2*A*C2^2+(8/5)*L^2*R^2*A*C1^2-(2/5)*L^2*R^2*C2^2*A+(17/105)*L*R^2*A*C1*C2+(6/5)*L^2*R^2*A*C1*C2-(8/5)*C1^2*R^2*L^2+(2/5)*L^2*R^2*C2^2+(1/10)*L*R^2)*x^2+(-(86/525)*L*R^2*A*C1^2-(29/1050)*L*R^2*A*C1*C2+(1/350)*L*R^2*A*C2^2-(2/1575)*R^2*A^3+(1/140)*R^2*A*C1^2-(1/1260)*R^2*A*C1*C2+(1/420)*R^2*A*C2^2-(19/525)*L*R^2*C1^2-(1/175)*L*R^2*C1*C2-(89/525)*L*R^2*C2^2+(2/525)*R^2*A^2+(1/126)*C1^2*R^2-(1/1260)*R^2*C1*C2+(1/315)*R^2*C2^2+(11/6300)*R^2*A-(3/700)*R^2)*x, x))*(diff((A-1)*x+1, x, x))+2*(diff((1/6)*(6*C2+6*C1)*x^3+(1/2)*(-2*C2-4*C1)*x^2+C1*x, x, x))*(diff(-(1/105)*R^2*((1/7920)*(-648*C1^3-1944*C1^2*C2-1944*C1*C2^2-648*C2^3)*x^11+(1/5040)*(3024*C1^3+7560*C1^2*C2+6048*C1*C2^2+1512*C2^3)*x^10+(1/3024)*(16632*C1^3*L+49896*C1^2*C2*L+49896*C1*C2^2*L+16632*C2^3*L+21*A^2*C1+21*A^2*C2-5376*C1^3-10752*C1^2*C2-6216*C1*C2^2-840*C2^3-42*A*C1-42*A*C2+21*C1+21*C2)*x^9+(1/1680)*(-55440*C1^3*L-138600*C1^2*C2*L-110880*C1*C2^2*L-27720*C2^3*L+70*A^2*C1+35*A^2*C2+4200*C1^3+6300*C1^2*C2+2100*C1*C2^2+70*A*C1+140*A*C2-140*C1-175*C2)*x^8+(1/840)*(-83160*C1^3*L^2-249480*C1^2*C2*L^2-249480*C1*C2^2*L^2-83160*C2^3*L^2+210*A^2*C1*L+210*A^2*C2*L+65184*C1^3*L+130872*C1^2*C2*L+75432*C1*C2^2*L+9744*C2^3*L-84*A^2*C1+126*A^2*C2-420*A*C1*L-420*A*C2*L-996*C1^3-888*C1^2*C2-48*C1*C2^2-156*C2^3+28*A*C1-112*A*C2+210*C1*L+210*C2*L+476*C1+406*C2)*x^7+(1/360)*(166320*C1^3*L^2+415800*C1^2*C2*L^2+332640*C1*C2^2*L^2+83160*C2^3*L^2+840*A^2*C1*L+420*A^2*C2*L-29232*C1^3*L-44604*C1^2*C2*L-15372*C1*C2^2*L-168*A^2*C1-105*A^2*C2+210*A*C1*L+1050*A*C2*L-336*C1^3-330*C1^2*C2+138*C1*C2^2+132*C2^3+21*A*C1-105*A*C2-1050*C1*L-1470*C2*L-693*C1-210*C2)*x^6+(1/120)*(1890*A^2*C1*L^2+1890*A^2*C2*L^2-101304*C1^3*L^2-205632*C1^2*C2*L^2-122472*C1*C2^2*L^2-18144*C2^3*L^2-966*A^2*C1*L-756*A^2*C2*L-3780*A*C1*L^2-3780*A*C2*L^2+2448*C1^3*L+2052*C1^2*C2*L+540*C1*C2^2*L+936*C2^3*L+119*A^2*C1-14*A^2*C2+252*A*C1*L-588*A*C2*L+132*C1^3+54*C1^2*C2-78*C1*C2^2+1890*C1*L^2+1890*C2*L^2-98*A*C1+98*A*C2+714*C1*L+1344*C2*L+399*C1-84*C2)*x^5)+(1/24)*(-2*L*R^2*A*C2-(1368/5)*L^2*R^2*C1^2*C2-(504/5)*L^2*R^2*C1*C2^2-(44/7)*L*R^2*C1^2*C2+(92/35)*L*R^2*C1*C2^2-(16/5)*L*R^2*A^2*C1-2*L*R^2*A^2*C2-24*L^2*R^2*A*C1-12*L^2*R^2*A*C2+12*L^2*R^2*A^2*C1+6*L^2*R^2*A^2*C2-(4/15)*R^2*A*C1+(12/5)*L*R^2*A*C1+(1/15)*R^2*A*C2+(4/5)*L*R^2*C1+4*L*R^2*C2+12*L^2*R^2*C1+6*L^2*R^2*C2-(864/5)*L^2*R^2*C1^3-(32/5)*L*R^2*C1^3+(88/35)*L*R^2*C2^3-(2/5)*R^2*C2+(3/5)*R^2*C1)*x^4+(1/6)*((157/6300)*R^2*A*C1-(446/525)*L*R^2*A*C1-(2777/242550)*R^2*C1*C2^2+(653/12600)*R^2*A^2*C1+(1783/121275)*R^2*C2^3+(1783/121275)*R^2*C1^3+(359/525)*L*R^2*A*C2+(3882/175)*L^2*R^2*C1^2*C2+(312/175)*L^2*R^2*C1*C2^2+(102/175)*L*R^2*C1^2*C2-(118/175)*L*R^2*C1*C2^2+(33/5)*L^2*R^2*A*C1-(61/1800)*R^2*C1+(13/525)*L*R^2*C1+(157/6300)*R^2*A*C2-(989/1050)*L*R^2*C2-(3/10)*L^2*R^2*C2+(3324/175)*L^2*R^2*C1^3-(61/1800)*R^2*A^2*C2+(209/175)*L*R^2*C1^3-(11/175)*L*R^2*C2^3-(2777/242550)*R^2*C1^2*C2-(246/175)*R^2*L^2*C2^3+(653/12600)*R^2*C2-(33/10)*L^2*R^2*C1+(433/525)*L*R^2*A^2*C1+(271/1050)*L*R^2*A^2*C2+(3/5)*L^2*R^2*A*C2-(33/10)*L^2*R^2*A^2*C1-(3/10)*L^2*R^2*A^2*C2)*x^3+(1/2)*((1/1575)*R^2*A*C1+(131/1050)*L*R^2*A*C1+(59/121275)*R^2*C1*C2^2-(13/1575)*R^2*A^2*C1-(314/121275)*R^2*C2^3-(83/121275)*R^2*C1^3-(19/175)*L*R^2*A*C2-(156/175)*L^2*R^2*C1^2*C2+(54/175)*L^2*R^2*C1*C2^2+(1/175)*L*R^2*C1^2*C2+(8/175)*L*R^2*C1*C2^2-(4/5)*L^2*R^2*A*C1-(17/6300)*R^2*C1-(13/1050)*L*R^2*C1-(8/1575)*R^2*A*C2+(127/1050)*L*R^2*C2-(1/10)*L^2*R^2*C2-(192/175)*L^2*R^2*C1^3+(29/4200)*R^2*A^2*C2-(12/175)*L*R^2*C1^3-(1/35)*L*R^2*C2^3+(58/24255)*R^2*C1^2*C2+(18/175)*R^2*L^2*C2^3-(13/12600)*R^2*C2+(2/5)*L^2*R^2*C1-(59/525)*L*R^2*A^2*C1-(13/1050)*L*R^2*A^2*C2+(1/5)*L^2*R^2*A*C2+(2/5)*L^2*R^2*A^2*C1-(1/10)*L^2*R^2*A^2*C2)*x^2, x, x, x))+2*(diff(-2*R*((1/140)*C1^2*x^7+(1/70)*C1*C2*x^7+(1/140)*C2^2*x^7-(3/10)*C1^2*L*x^5-(1/30)*C1^2*x^6-(3/5)*C1*C2*L*x^5-(1/20)*C1*C2*x^6-(3/10)*C2^2*L*x^5-(1/60)*C2^2*x^6+(1/120)*A^2*x^5+C1^2*L*x^4+(1/20)*C1^2*x^5+(3/2)*C1*C2*L*x^4+(1/20)*C1*C2*x^5+(1/2)*C2^2*L*x^4-(1/60)*x^5*A+(1/24)*x^4*A+(1/120)*x^5-(1/24)*x^4)+(1/6)*((66/5)*C1^2*L*R+(72/5)*C1*C2*L*R+(6/5)*C2^2*L*R+(3/10)*R*A^2+(22/35)*R*C1^2+(9/35)*R*C1*C2-(13/35)*R*C2^2+(2/5)*R*A-(7/10)*R)*x^3+(1/2)*(-(8/5)*C1^2*L*R-(6/5)*C1*C2*L*R+(2/5)*C2^2*L*R-(1/15)*R*A^2-(4/35)*R*C1^2-(1/35)*R*C1*C2+(3/35)*R*C2^2-(1/30)*R*A+(1/10)*R)*x^2, x, x))*(diff(-2*R*((1/140)*C1^2*x^7+(1/70)*C1*C2*x^7+(1/140)*C2^2*x^7-(3/10)*C1^2*L*x^5-(1/30)*C1^2*x^6-(3/5)*C1*C2*L*x^5-(1/20)*C1*C2*x^6-(3/10)*C2^2*L*x^5-(1/60)*C2^2*x^6+(1/120)*A^2*x^5+C1^2*L*x^4+(1/20)*C1^2*x^5+(3/2)*C1*C2*L*x^4+(1/20)*C1*C2*x^5+(1/2)*C2^2*L*x^4-(1/60)*x^5*A+(1/24)*x^4*A+(1/120)*x^5-(1/24)*x^4)+(1/6)*((66/5)*C1^2*L*R+(72/5)*C1*C2*L*R+(6/5)*C2^2*L*R+(3/10)*R*A^2+(22/35)*R*C1^2+(9/35)*R*C1*C2-(13/35)*R*C2^2+(2/5)*R*A-(7/10)*R)*x^3+(1/2)*(-(8/5)*C1^2*L*R-(6/5)*C1*C2*L*R+(2/5)*C2^2*L*R-(1/15)*R*A^2-(4/35)*R*C1^2-(1/35)*R*C1*C2+(3/35)*R*C2^2-(1/30)*R*A+(1/10)*R)*x^2, x, x, x))+2*(diff(-(1/105)*R^2*((1/7920)*(-648*C1^3-1944*C1^2*C2-1944*C1*C2^2-648*C2^3)*x^11+(1/5040)*(3024*C1^3+7560*C1^2*C2+6048*C1*C2^2+1512*C2^3)*x^10+(1/3024)*(16632*C1^3*L+49896*C1^2*C2*L+49896*C1*C2^2*L+16632*C2^3*L+21*A^2*C1+21*A^2*C2-5376*C1^3-10752*C1^2*C2-6216*C1*C2^2-840*C2^3-42*A*C1-42*A*C2+21*C1+21*C2)*x^9+(1/1680)*(-55440*C1^3*L-138600*C1^2*C2*L-110880*C1*C2^2*L-27720*C2^3*L+70*A^2*C1+35*A^2*C2+4200*C1^3+6300*C1^2*C2+2100*C1*C2^2+70*A*C1+140*A*C2-140*C1-175*C2)*x^8+(1/840)*(-83160*C1^3*L^2-249480*C1^2*C2*L^2-249480*C1*C2^2*L^2-83160*C2^3*L^2+210*A^2*C1*L+210*A^2*C2*L+65184*C1^3*L+130872*C1^2*C2*L+75432*C1*C2^2*L+9744*C2^3*L-84*A^2*C1+126*A^2*C2-420*A*C1*L-420*A*C2*L-996*C1^3-888*C1^2*C2-48*C1*C2^2-156*C2^3+28*A*C1-112*A*C2+210*C1*L+210*C2*L+476*C1+406*C2)*x^7+(1/360)*(166320*C1^3*L^2+415800*C1^2*C2*L^2+332640*C1*C2^2*L^2+83160*C2^3*L^2+840*A^2*C1*L+420*A^2*C2*L-29232*C1^3*L-44604*C1^2*C2*L-15372*C1*C2^2*L-168*A^2*C1-105*A^2*C2+210*A*C1*L+1050*A*C2*L-336*C1^3-330*C1^2*C2+138*C1*C2^2+132*C2^3+21*A*C1-105*A*C2-1050*C1*L-1470*C2*L-693*C1-210*C2)*x^6+(1/120)*(1890*A^2*C1*L^2+1890*A^2*C2*L^2-101304*C1^3*L^2-205632*C1^2*C2*L^2-122472*C1*C2^2*L^2-18144*C2^3*L^2-966*A^2*C1*L-756*A^2*C2*L-3780*A*C1*L^2-3780*A*C2*L^2+2448*C1^3*L+2052*C1^2*C2*L+540*C1*C2^2*L+936*C2^3*L+119*A^2*C1-14*A^2*C2+252*A*C1*L-588*A*C2*L+132*C1^3+54*C1^2*C2-78*C1*C2^2+1890*C1*L^2+1890*C2*L^2-98*A*C1+98*A*C2+714*C1*L+1344*C2*L+399*C1-84*C2)*x^5)+(1/24)*(-2*L*R^2*A*C2-(1368/5)*L^2*R^2*C1^2*C2-(504/5)*L^2*R^2*C1*C2^2-(44/7)*L*R^2*C1^2*C2+(92/35)*L*R^2*C1*C2^2-(16/5)*L*R^2*A^2*C1-2*L*R^2*A^2*C2-24*L^2*R^2*A*C1-12*L^2*R^2*A*C2+12*L^2*R^2*A^2*C1+6*L^2*R^2*A^2*C2-(4/15)*R^2*A*C1+(12/5)*L*R^2*A*C1+(1/15)*R^2*A*C2+(4/5)*L*R^2*C1+4*L*R^2*C2+12*L^2*R^2*C1+6*L^2*R^2*C2-(864/5)*L^2*R^2*C1^3-(32/5)*L*R^2*C1^3+(88/35)*L*R^2*C2^3-(2/5)*R^2*C2+(3/5)*R^2*C1)*x^4+(1/6)*((157/6300)*R^2*A*C1-(446/525)*L*R^2*A*C1-(2777/242550)*R^2*C1*C2^2+(653/12600)*R^2*A^2*C1+(1783/121275)*R^2*C2^3+(1783/121275)*R^2*C1^3+(359/525)*L*R^2*A*C2+(3882/175)*L^2*R^2*C1^2*C2+(312/175)*L^2*R^2*C1*C2^2+(102/175)*L*R^2*C1^2*C2-(118/175)*L*R^2*C1*C2^2+(33/5)*L^2*R^2*A*C1-(61/1800)*R^2*C1+(13/525)*L*R^2*C1+(157/6300)*R^2*A*C2-(989/1050)*L*R^2*C2-(3/10)*L^2*R^2*C2+(3324/175)*L^2*R^2*C1^3-(61/1800)*R^2*A^2*C2+(209/175)*L*R^2*C1^3-(11/175)*L*R^2*C2^3-(2777/242550)*R^2*C1^2*C2-(246/175)*R^2*L^2*C2^3+(653/12600)*R^2*C2-(33/10)*L^2*R^2*C1+(433/525)*L*R^2*A^2*C1+(271/1050)*L*R^2*A^2*C2+(3/5)*L^2*R^2*A*C2-(33/10)*L^2*R^2*A^2*C1-(3/10)*L^2*R^2*A^2*C2)*x^3+(1/2)*((1/1575)*R^2*A*C1+(131/1050)*L*R^2*A*C1+(59/121275)*R^2*C1*C2^2-(13/1575)*R^2*A^2*C1-(314/121275)*R^2*C2^3-(83/121275)*R^2*C1^3-(19/175)*L*R^2*A*C2-(156/175)*L^2*R^2*C1^2*C2+(54/175)*L^2*R^2*C1*C2^2+(1/175)*L*R^2*C1^2*C2+(8/175)*L*R^2*C1*C2^2-(4/5)*L^2*R^2*A*C1-(17/6300)*R^2*C1-(13/1050)*L*R^2*C1-(8/1575)*R^2*A*C2+(127/1050)*L*R^2*C2-(1/10)*L^2*R^2*C2-(192/175)*L^2*R^2*C1^3+(29/4200)*R^2*A^2*C2-(12/175)*L*R^2*C1^3-(1/35)*L*R^2*C2^3+(58/24255)*R^2*C1^2*C2+(18/175)*R^2*L^2*C2^3-(13/12600)*R^2*C2+(2/5)*L^2*R^2*C1-(59/525)*L*R^2*A^2*C1-(13/1050)*L*R^2*A^2*C2+(1/5)*L^2*R^2*A*C2+(2/5)*L^2*R^2*A^2*C1-(1/10)*L^2*R^2*A^2*C2)*x^2, x, x))*(diff((1/6)*(6*C2+6*C1)*x^3+(1/2)*(-2*C2-4*C1)*x^2+C1*x, x, x, x))) = 0; Eq7 := dsolve({A1, f[3](0) = 0, f[3](1) = 0, (D(f[3]))(0) = 0, (D(f[3]))(1) = 0}, f[3](x))

(1)

``


 

Download question_1.mw

 

 

If I have a tensor T[mu,nu,alpha] in 3-dimensions which is symmetric on {mu,nu} and anti-symmetric on {nu,alpha}, then the number of independent components should be zero. However, if I put this into Maple, using Library:-MinimizeTensorComponents followed by Library:-NumberOfIndependentTensorComponents it returns 4.

Any insight into why it does this would be great, thanks.

Here is a strange one...

1> /Library/Frameworks/Maple.framework/Versions/2019/bin/maple ; exit;
    |\^/|     Maple 2019 (APPLE UNIVERSAL OSX)
._|\|   |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2019
 \  MAPLE  /  All rights reserved. Maple is a trademark of
 <____ ____>  Waterloo Maple Inc.
      |       Type ? for help.
> version();
 User Interface: 1435526
         Kernel: 1435526
        Library: 1435526
                                    1435526

> DE := (28*x + 44)*u(x) + (336*x^2 +
> 726*x - 12)*diff(u(x), x) + (144*x^3 + 396*x^2 - 9*x)*diff(u(x), x, x);
                               2               /d      \
DE := (28 x + 44) u(x) + (336 x  + 726 x - 12) |-- u(x)|
                                               \dx     /

                               / 2      \
             3        2        |d       |
     + (144 x  + 396 x  - 9 x) |--- u(x)|
                               |  2     |
                               \dx      /

> dsolve({DE,u(0)=2},u(x));
memory used=21.5MB, alloc=44.3MB, time=0.37
memory used=53.3MB, alloc=84.3MB, time=0.94
Error, (in dsolve) when calling 'property/ConvertRelation'. Received: 'numeric
exception: division by zero'

Presumably, the solution should be


u0:=2*HeunG((11 - 5*sqrt(5))/(11 + 5*sqrt(5)), 352/(9*(11 + 5*sqrt(5))^3*(-11 + 5*sqrt(5))^2), 1/6, 7/6, 4/3, 1/2, -8*x/(11 + 5*sqrt(5)));

(I get that by replacing coefficient 44 in DE with variable e44, solve, then substitute back e44 = 44.)

But maybe the problem is that this solution turns out to be an algebraic function:

u1:=2^(7/6)/(1 - 22*x + sqrt(-16*x^2 - 44*x + 1))^(1/6);

 

 

 

f[2](x) = -(3*R^2*x^11)/30800 + R^2*x^9/420 - (177*R^2*x^7)/9800 + M1*M2*x^5/40 + (17*R^2*x^5)/700 + ((-(3*M1*M2)/10 - (443*R^2)/21560)*x^3)/6 + (M1*M2/40 - (137*R^2)/26950)*x

What is the best way to get some one on one training in maple , has anyone done this?

I would like to plot a specific vector with an initial point of <4,3,-5> and a terminal point of <3,-1,4>. I have been searching through Maple Primes and Maple Soft.

restart;
M1 := 12.3:
M2 := 12.4:
M3 := 12.5:
R := 50:

EQ:={(diff(F(x), x $ 4)) - M1*diff(G(x),x$2) -2*R*F(x)*diff(F(x),x$3)=0, diff(G(x),x$2)+ M2*(diff(F(x),x$2)-2*G(x)) +M3*(diff(F(x),x)*G(x)-2*F(x)*diff(G(x),x))=0}:


IC:={D(F)(-1)=0, D(F)(1)=0,F(-1)=-1,F(1)=1,G(-1)=0,  G(1)=0}:

sol:= dsolve(EQ union IC,numeric,output=Array([-1,-0.9,-0.8,-0.7,-0.6,-0.5,-0.4,-0.3,-0.2,-0.1,0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1]));
Error, (in dsolve/numeric/bvp) uanble to achieve continuous solution with requested accuracy of 0.1e-5 with maximum 128 point mesh (was able to get 0.47e-5), consider increasing `maxmesh` or using larger `abserr`
plots:-odeplot(sol,[x,F(x)],x=-1..1,color=red,axes=box)


Error, (in plots/odeplot) input is not a valid dsolve/numeric solution
plots:-odeplot(sol,  [x, diff(F(x), x)], x = -1 .. 1, color =  green, axes = box)
Error, (in plots/odeplot) input is not a valid dsolve/numeric solution
plots:-odeplot(sol,[[x,F(x)],[x,diff(F(x),x)],[x,G(x)]],x=-1..1,color=[red,green,blue],axes=box):
Error, (in plots/odeplot) input is not a valid dsolve/numeric solution
plots:-odeplot(sol, [x, G(x)], x = -1 .. 1, color = blue, axes = box);
Error, (in plots/odeplot) input is not a valid dsolve/numeric solution

 

I have to find the distance between a point and a plot. The point is (2,-3,4) and the plane is x+2y+2z=13. How do I plot this?

 

i need to find a y(2) and than work with it in a loop

but i cant do it because i solved my equation with "dsolve" and "sol(2)" and its solution is list

really need a help

Since I've updated maple to version 2019 it's has become very slow. Erverytime I enter something it seems to reload all the side buttons just like when a new worksheet is started. This is very annoying because during this loading time you cannot enter anything. Has anyone any suggestions? btw I've bought my pc in march 2020 and it has enough CPU and GPU.

 

 

1 2 3 4 5 6 7 Last Page 1 of 31