Maple 2025 Questions and Posts

These are Posts and Questions associated with the product, Maple 2025

The font size in the debugger is very small.

Even if I increase the zoom in the worksheet before starting the debugger, this has no effect on the debugger.

Is there an option to use larger font for the debugger? Here is an example, this is worksheet after making the zoom 145%

 

And here is the debugger window.  side by side with the worksheet. Notice the font in debugger do not change.

 

It looks even smaller on the desktop, I am using large monitor also. 

Is there separate setting to change font size for debugger?

Maple 2025.1 on Linux KDE plasma, Cauchy OS (Arch based)

THis is problem from textbook. Maple do not give solution. 

But when asked for implicit solution, it gives one.  Should it not have done this automatically?

interface(version);

`Standard Worksheet Interface, Maple 2025.1, Linux, June 12 2025 Build ID 1932578`

ode:=y(x)*diff(y(x),x) = a;
ic:=y(0) = b;
sol:=dsolve([ode,ic]);

y(x)*(diff(y(x), x)) = a

y(0) = b

sol:=dsolve([ode,ic],'implicit')

-2*a*x+y(x)^2-b^2 = 0

 

 

Download why_no_solution_maple_2025_1.mw

We see now there are two solutions for y(x), since quadratic.

So why dsolve do not solve this and at least give implicit solution automatically? Should this be reported as defect?

Attached worksheet

interface(version);

`Standard Worksheet Interface, Maple 2025.1, Linux, June 12 2025 Build ID 1932578`

SupportTools:-Version();

`The Customer Support Updates version in the MapleCloud is 29 and is the same as the version installed in this computer, created June 23, 2025, 10:25 hours Eastern Time.`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1877 and is the same as the version installed in this computer, created 2025, July 11, 19:24 hours Pacific Time.`

restart;

integrand:=1/2/x^(9/2)*2^(1/2)*Pi^(1/2)/(1/x)^(1/2)*cos(1/x);

(1/2)*2^(1/2)*Pi^(1/2)*cos(1/x)/(x^(9/2)*(1/x)^(1/2))

int(integrand,x)

Error, (in tools/eval_foo/do) too many levels of recursion

 

 

Download internal_error_on_int_august_20_2025_maple_2025_1.mw

Update

fyi, Here is yet another int() error Error, (in type/trig) too many levels of recursion in Maple 2025.1. (also reported to Maplesoft).

interface(version);

`Standard Worksheet Interface, Maple 2025.1, Linux, June 12 2025 Build ID 1932578`

SupportTools:-Version();

`The Customer Support Updates version in the MapleCloud is 29 and is the same as the version installed in this computer, created June 23, 2025, 10:25 hours Eastern Time.`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1877 and is the same as the version installed in this computer, created 2025, July 11, 19:24 hours Pacific Time.`

restart;

integrand:=(a+a*sin(f*x+e))^(3/2)*(A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(5/2);

(a+a*sin(f*x+e))^(3/2)*(A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(5/2)

int(integrand,x)

Error, (in type/trig) too many levels of recursion

int(integrand,x)

(1/6)*(-c*(-1+sin(f*x+e)))^(1/2)*((3/4)*B*sin(f*x+e)*tan(f*x+e)*cos(2*f*x+2*e)+A*sin(2*f*x+2*e)-(3/8)*tan(f*x+e)*(((4/5)*B*sin(f*x+e)+A)*sin(3*f*x+3*e)+(44/15)*B*sin(f*x+e)^2+(5*A-6*B)*sin(f*x+e)-(32/3)*A))*a*c^2*(a*(1+sin(f*x+e)))^(1/2)/f

restart;

integrand:=(a+a*sin(f*x+e))^(3/2)*(A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(5/2);
int(integrand,x)

(a+a*sin(f*x+e))^(3/2)*(A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(5/2)

Error, (in type/trig) too many levels of recursion

 

 

Download another_int_error_too_many_levels_maple_2025_1.mw

I installed a free trial of Maple 2025, but I can't seem to get the (simple) sample test.java script to run using OpenMaple. It compiles fine, but when I try to run it I get a Segmentation Fault error. I've ensured that the environmental variables, as described in the installation documentation, are given properly. The documentation/example in the installation refers to an old version of Maple, so I wondered if perhaps the free trial version does not have all of the updated components? I was hoping to test my project compatibility with OpenMaple before purchasing Maple.

My OS is Ubuntu 24.04, and I'm using Java 21. It would be nice to get everything running in IntelliJ eventually, but for now even trying to run in the terminal is problematic.

I am trying to factor out I = sqrt(-1) from square roots in my Maple expression by using a substitution f2. However, after applying these substitutions to my final expression, there is no visible change. In addition, the term sqrt(2)/2 + sqrt(2)*I/2 also appear. How can I=sqrt(-1) can be properly factored out from the square roots?

restart

with(Student[Precalculus])

interface(showassumed = 0)

assume(x::real); assume(t::real); assume(lambda1::complex); assume(lambda2::complex); assume(a::real); assume(A__c::real); assume(B1::real); assume(B2::real); assume(delta1::real); assume(delta2::real); assume(`ω__0`::real); assume(g::real); assume(l__0::real)

expr := (0*A__c)*exp(-(2*I)*(A__c^2*g*l__0^2-1/2)*`ω__0`*t)+(2*I)*exp(-I*(A__c^2*g*l__0^2-1/2)*`ω__0`*t)*(sqrt(delta1+I*delta2-sqrt(-A__c^2*g+(delta1+I*delta2)^2))*exp(-2*sqrt(-A__c^2*g+(delta1+I*delta2)^2)*(l__0^2*(I*delta1-delta2)*t*`ω__0`+(1/2)*x))-sqrt(delta1+I*delta2+sqrt(-A__c^2*g+(delta1+I*delta2)^2))*exp(sqrt(-A__c^2*g+(delta1+I*delta2)^2)*(x+(2*I)*`ω__0`*l__0^2*(delta1+I*delta2)*t)))*(sqrt(-delta1+I*delta2-sqrt(-A__c^2*g+(delta1-I*delta2)^2))*exp((2*(l__0^2*(I*delta1+delta2)*t*`ω__0`-(1/2)*x))*sqrt(-A__c^2*g+(delta1-I*delta2)^2))-sqrt(-delta1+I*delta2+sqrt(-A__c^2*g+(delta1-I*delta2)^2))*exp(-(2*(l__0^2*(I*delta1+delta2)*t*`ω__0`-(1/2)*x))*sqrt(-A__c^2*g+(delta1-I*delta2)^2)))*delta2/(exp(I*(A__c^2*g*l__0^2-1/2)*`ω__0`*t)*(((-sqrt(delta1+I*delta2-sqrt(-A__c^2*g+(delta1+I*delta2)^2))*sqrt(-delta1+I*delta2+sqrt(-A__c^2*g+(delta1-I*delta2)^2))-sqrt(delta1+I*delta2+sqrt(-A__c^2*g+(delta1+I*delta2)^2))*sqrt(-delta1+I*delta2-sqrt(-A__c^2*g+(delta1-I*delta2)^2)))*exp((2*(l__0^2*(I*delta1+delta2)*t*`ω__0`-(1/2)*x))*sqrt(-A__c^2*g+(delta1-I*delta2)^2))+exp(-(2*(l__0^2*(I*delta1+delta2)*t*`ω__0`-(1/2)*x))*sqrt(-A__c^2*g+(delta1-I*delta2)^2))*(sqrt(delta1+I*delta2-sqrt(-A__c^2*g+(delta1+I*delta2)^2))*sqrt(-delta1+I*delta2-sqrt(-A__c^2*g+(delta1-I*delta2)^2))+sqrt(-delta1+I*delta2+sqrt(-A__c^2*g+(delta1-I*delta2)^2))*sqrt(delta1+I*delta2+sqrt(-A__c^2*g+(delta1+I*delta2)^2))))*exp(-2*sqrt(-A__c^2*g+(delta1+I*delta2)^2)*(l__0^2*(I*delta1-delta2)*t*`ω__0`+(1/2)*x))+exp(sqrt(-A__c^2*g+(delta1+I*delta2)^2)*(x+(2*I)*`ω__0`*l__0^2*(delta1+I*delta2)*t))*((sqrt(delta1+I*delta2-sqrt(-A__c^2*g+(delta1+I*delta2)^2))*sqrt(-delta1+I*delta2-sqrt(-A__c^2*g+(delta1-I*delta2)^2))+sqrt(-delta1+I*delta2+sqrt(-A__c^2*g+(delta1-I*delta2)^2))*sqrt(delta1+I*delta2+sqrt(-A__c^2*g+(delta1+I*delta2)^2)))*exp((2*(l__0^2*(I*delta1+delta2)*t*`ω__0`-(1/2)*x))*sqrt(-A__c^2*g+(delta1-I*delta2)^2))-exp(-(2*(l__0^2*(I*delta1+delta2)*t*`ω__0`-(1/2)*x))*sqrt(-A__c^2*g+(delta1-I*delta2)^2))*(sqrt(delta1+I*delta2-sqrt(-A__c^2*g+(delta1+I*delta2)^2))*sqrt(-delta1+I*delta2+sqrt(-A__c^2*g+(delta1-I*delta2)^2))+sqrt(delta1+I*delta2+sqrt(-A__c^2*g+(delta1+I*delta2)^2))*sqrt(-delta1+I*delta2-sqrt(-A__c^2*g+(delta1-I*delta2)^2)))))*(-delta1+I*delta2)*(delta1+I*delta2))

(2*I)*exp(-I*(A__c^2*g*l__0^2-1/2)*omega__0*t)*((delta1+I*delta2-(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)*exp(-2*(-A__c^2*g+(delta1+I*delta2)^2)^(1/2)*(l__0^2*(I*delta1-delta2)*t*omega__0+(1/2)*x))-(delta1+I*delta2+(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)*exp((-A__c^2*g+(delta1+I*delta2)^2)^(1/2)*(x+(2*I)*omega__0*l__0^2*(delta1+I*delta2)*t)))*((-delta1+I*delta2-(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2)*exp(2*(l__0^2*(I*delta1+delta2)*t*omega__0-(1/2)*x)*(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))-(-delta1+I*delta2+(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2)*exp(-2*(l__0^2*(I*delta1+delta2)*t*omega__0-(1/2)*x)*(-A__c^2*g+(delta1-I*delta2)^2)^(1/2)))*delta2/(exp(I*(A__c^2*g*l__0^2-1/2)*omega__0*t)*(((-(delta1+I*delta2-(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)*(-delta1+I*delta2+(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2)-(delta1+I*delta2+(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)*(-delta1+I*delta2-(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2))*exp(2*(l__0^2*(I*delta1+delta2)*t*omega__0-(1/2)*x)*(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))+exp(-2*(l__0^2*(I*delta1+delta2)*t*omega__0-(1/2)*x)*(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))*((delta1+I*delta2-(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)*(-delta1+I*delta2-(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2)+(-delta1+I*delta2+(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2)*(delta1+I*delta2+(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)))*exp(-2*(-A__c^2*g+(delta1+I*delta2)^2)^(1/2)*(l__0^2*(I*delta1-delta2)*t*omega__0+(1/2)*x))+exp((-A__c^2*g+(delta1+I*delta2)^2)^(1/2)*(x+(2*I)*omega__0*l__0^2*(delta1+I*delta2)*t))*(((delta1+I*delta2-(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)*(-delta1+I*delta2-(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2)+(-delta1+I*delta2+(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2)*(delta1+I*delta2+(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2))*exp(2*(l__0^2*(I*delta1+delta2)*t*omega__0-(1/2)*x)*(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))-exp(-2*(l__0^2*(I*delta1+delta2)*t*omega__0-(1/2)*x)*(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))*((delta1+I*delta2-(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)*(-delta1+I*delta2+(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2)+(delta1+I*delta2+(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)*(-delta1+I*delta2-(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2))))*(I*delta2-delta1)*(delta1+I*delta2))

(1)

`assuming`([simplify(combine(simplify(convert(combine(eval(expr, delta1 = 0)), trigh))))], [delta2 > g*A__c and g*A__c > 0])

(cos((2*A__c^2*g*l__0^2-1)*omega__0*t)-I*sin((2*A__c^2*g*l__0^2-1)*omega__0*t))*(-I*cosh(4*(l__0^2*delta2*t*omega__0-(1/2)*x)*(-A__c^2*g-delta2^2)^(1/2))*delta2+(I*delta2-(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(I*delta2+(-A__c^2*g-delta2^2)^(1/2))^(1/2)+sinh(4*(l__0^2*delta2*t*omega__0-(1/2)*x)*(-A__c^2*g-delta2^2)^(1/2))*(-A__c^2*g-delta2^2)^(1/2))/(delta2*(I*(I*delta2-(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(I*delta2+(-A__c^2*g-delta2^2)^(1/2))^(1/2)*cosh(4*(l__0^2*delta2*t*omega__0-(1/2)*x)*(-A__c^2*g-delta2^2)^(1/2))+delta2))

(2)

f1 := simplify(convert(numer(%),exp))/factor(denom(%))

I*exp(-(2*I)*(A__c^2*g*l__0^2-1/2)*omega__0*t)*(-I*cosh(4*(l__0^2*delta2*t*omega__0-(1/2)*x)*(-A__c^2*g-delta2^2)^(1/2))*delta2+(I*delta2-(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(I*delta2+(-A__c^2*g-delta2^2)^(1/2))^(1/2)+sinh(4*(l__0^2*delta2*t*omega__0-(1/2)*x)*(-A__c^2*g-delta2^2)^(1/2))*(-A__c^2*g-delta2^2)^(1/2))/((-(I*delta2-(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(I*delta2+(-A__c^2*g-delta2^2)^(1/2))^(1/2)*cosh(2*(2*delta2*l__0^2*t*omega__0-x)*(-A__c^2*g-delta2^2)^(1/2))+I*delta2)*delta2)

(3)

sqrtterms := indets(%, sqrt)

{(I*delta2-(-A__c^2*g-delta2^2)^(1/2))^(1/2), (I*delta2+(-A__c^2*g-delta2^2)^(1/2))^(1/2), (-A__c^2*g-delta2^2)^(1/2)}

(4)

f2 := subs({sqrtterms[1] = sqrt(I)*sqrt(delta2-sqrt(-A__c^2*g-delta2^2)/(I)), sqrtterms[2] = sqrt(I)*sqrt(delta2+sqrt(-A__c^2*g-delta2^2)/(I)), sqrtterms[3] = sqrt(I)*sqrt(A__c^2*g+delta2^2)})

{(I*delta2-(-A__c^2*g-delta2^2)^(1/2))^(1/2) = ((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2), (I*delta2+(-A__c^2*g-delta2^2)^(1/2))^(1/2) = ((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2), (-A__c^2*g-delta2^2)^(1/2) = ((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*(A__c^2*g+delta2^2)^(1/2)}

(5)

f3 := subs(f2, f1)

I*exp(-(2*I)*(A__c^2*g*l__0^2-1/2)*omega__0*t)*(-I*cosh(4*(l__0^2*delta2*t*omega__0-(1/2)*x)*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*(A__c^2*g+delta2^2)^(1/2))*delta2+((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))^2*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)+sinh(4*(l__0^2*delta2*t*omega__0-(1/2)*x)*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*(A__c^2*g+delta2^2)^(1/2))*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*(A__c^2*g+delta2^2)^(1/2))/((-((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))^2*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*cosh(2*(2*delta2*l__0^2*t*omega__0-x)*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*(A__c^2*g+delta2^2)^(1/2))+I*delta2)*delta2)

(6)

f4 := subs({sqrt(A__c^2*g+delta2^2) = Z}, f3)

I*exp(-(2*I)*(A__c^2*g*l__0^2-1/2)*omega__0*t)*(-I*cosh(4*(l__0^2*delta2*t*omega__0-(1/2)*x)*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*Z)*delta2+((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))^2*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)+sinh(4*(l__0^2*delta2*t*omega__0-(1/2)*x)*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*Z)*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*Z)/((-((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))^2*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*cosh(2*(2*delta2*l__0^2*t*omega__0-x)*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*Z)+I*delta2)*delta2)

(7)

f4f := A__c*exp(-(2*I)*(A__c^2*g*l__0^2-1/2)*`ω__0`*t)+f4

A__c*exp(-(2*I)*(A__c^2*g*l__0^2-1/2)*omega__0*t)+I*exp(-(2*I)*(A__c^2*g*l__0^2-1/2)*omega__0*t)*(-I*cosh(4*(l__0^2*delta2*t*omega__0-(1/2)*x)*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*Z)*delta2+((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))^2*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)+sinh(4*(l__0^2*delta2*t*omega__0-(1/2)*x)*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*Z)*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*Z)/((-((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))^2*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*cosh(2*(2*delta2*l__0^2*t*omega__0-x)*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*Z)+I*delta2)*delta2)

(8)

f4fnl := subs({I = -I, x = -x}, f4f)

A__c*exp((2*I)*(A__c^2*g*l__0^2-1/2)*omega__0*t)-I*exp((2*I)*(A__c^2*g*l__0^2-1/2)*omega__0*t)*(I*cosh(4*(l__0^2*delta2*t*omega__0+(1/2)*x)*((1/2)*2^(1/2)-((1/2)*I)*2^(1/2))*Z)*delta2+((1/2)*2^(1/2)-((1/2)*I)*2^(1/2))^2*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)+sinh(4*(l__0^2*delta2*t*omega__0+(1/2)*x)*((1/2)*2^(1/2)-((1/2)*I)*2^(1/2))*Z)*((1/2)*2^(1/2)-((1/2)*I)*2^(1/2))*Z)/((-((1/2)*2^(1/2)-((1/2)*I)*2^(1/2))^2*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*cosh(2*(2*delta2*l__0^2*t*omega__0+x)*((1/2)*2^(1/2)-((1/2)*I)*2^(1/2))*Z)-I*delta2)*delta2)

(9)

Mdensity := simplify(f4f*f4fnl)

(1/4)*(2*(1-I*A__c*cosh((1-I)*(2*delta2*l__0^2*t*omega__0+x)*2^(1/2)*Z)*delta2)*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)-2*cosh((1-I)*(2*delta2*l__0^2*t*omega__0+x)*2^(1/2)*Z)*delta2+(1+I)*2^(1/2)*Z*sinh((1-I)*(2*delta2*l__0^2*t*omega__0+x)*2^(1/2)*Z)+(2*I)*A__c*delta2^2)*(2*(I*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*A__c-1)*delta2*cosh((1+I)*(2*delta2*l__0^2*t*omega__0-x)*2^(1/2)*Z)+(1-I)*2^(1/2)*Z*sinh((1+I)*(2*delta2*l__0^2*t*omega__0-x)*2^(1/2)*Z)-(2*I)*A__c*delta2^2+2*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2))/(delta2^2*((delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*cosh((1+I)*(2*delta2*l__0^2*t*omega__0-x)*2^(1/2)*Z)-delta2)*((delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*cosh((1-I)*(2*delta2*l__0^2*t*omega__0+x)*2^(1/2)*Z)-delta2))

(10)

NULL

Download simplify.mw

I experience the following quirk using maple 2025 in worksheet mode: copy a formula and then paste it can often freeze the program. Termination only via ctrl-Alt-delete task manager. Has anybody similar problems or should i think that is happening only in my case?

To organize windows, Windows 11 provides a new function "Snap Layout". The example screen shot below shows options to place the Maple 2025 Screen Reader window.  

Ein Bild, das Screenshot, Reihe, Software, Multimedia-Software enthält.

KI-generierte Inhalte können fehlerhaft sein.

Draging now Maple 2025.1 Screen Reader to the left window of the third option results in the following selection screen

Ein Bild, das Text, Screenshot, Software, Computersymbol enthält.

KI-generierte Inhalte können fehlerhaft sein.

where on the right a list of tasks to chose from is presented. In this list Maple 2025.1 is missing. However Maple 2025.1 was running as can be seen from the task bar.

Has anybody managed to position Maple 2025.1 windows with the Snap Layout (or alternatively with Win+Arrow keys) or at least reproduce what I see on my computer?

Why can a Maple 2025.1 window be adjusted by hand but Windows does not do this in Snap Layout?

(Dragging and adjusting a Maple window by hand is not an option. This is how we had to work before Windows 7.)

Wondering what the experts here think of this. Should not simplify have worked on this automatically? By trial and error, found that combine command is what simplified it the best.

But I think simplify should also have done the same.  

Interested to hear what others think, and why simplify (even using trig option) did not do it.   

The issue is that this is done in code, without lookin at the screen and deciding what to do based on what the expression "looks like".

interface(version);

`Standard Worksheet Interface, Maple 2025.0, Linux, March 24 2025 Build ID 1909157`

A:=(((sin(sqrt(3)/2)*sqrt(3) - 3*cos(sqrt(3)/2))*cos(sqrt(3)*x/2) - sin(sqrt(3)*x/2)*(sqrt(3)*cos(sqrt(3)/2) + 3*sin(sqrt(3)/2)))*exp(-1/2 + x/2))/3 ;

(1/3)*((sin((1/2)*3^(1/2))*3^(1/2)-3*cos((1/2)*3^(1/2)))*cos((1/2)*3^(1/2)*x)-sin((1/2)*3^(1/2)*x)*(3^(1/2)*cos((1/2)*3^(1/2))+3*sin((1/2)*3^(1/2))))*exp(-1/2+(1/2)*x)

B:=- exp(-1/2 + x/2)*(sqrt(3)*sin(sqrt(3)*(x - 1)/2) + 3*cos(sqrt(3)*(x - 1)/2))/3;

-(1/3)*exp(-1/2+(1/2)*x)*(3^(1/2)*sin((1/2)*3^(1/2)*(x-1))+3*cos((1/2)*3^(1/2)*(x-1)))

simplify(A-B); #show these are same

0

simplify(A,trig)

-(1/3)*((-sin((1/2)*3^(1/2))*3^(1/2)+3*cos((1/2)*3^(1/2)))*cos((1/2)*3^(1/2)*x)+sin((1/2)*3^(1/2)*x)*(3^(1/2)*cos((1/2)*3^(1/2))+3*sin((1/2)*3^(1/2))))*exp(-1/2+(1/2)*x)

simplify(A)

-(1/3)*((-sin((1/2)*3^(1/2))*3^(1/2)+3*cos((1/2)*3^(1/2)))*cos((1/2)*3^(1/2)*x)+sin((1/2)*3^(1/2)*x)*(3^(1/2)*cos((1/2)*3^(1/2))+3*sin((1/2)*3^(1/2))))*exp(-1/2+(1/2)*x)

simplify(A,size)

-(1/3)*((-sin((1/2)*3^(1/2))*3^(1/2)+3*cos((1/2)*3^(1/2)))*cos((1/2)*3^(1/2)*x)+sin((1/2)*3^(1/2)*x)*(3^(1/2)*cos((1/2)*3^(1/2))+3*sin((1/2)*3^(1/2))))*exp(-1/2+(1/2)*x)

simplify(normal(A))

-(1/3)*((-sin((1/2)*3^(1/2))*3^(1/2)+3*cos((1/2)*3^(1/2)))*cos((1/2)*3^(1/2)*x)+sin((1/2)*3^(1/2)*x)*(3^(1/2)*cos((1/2)*3^(1/2))+3*sin((1/2)*3^(1/2))))*exp(-1/2+(1/2)*x)

combine(A); #finally

(-(1/3)*3^(1/2)*sin((1/2)*3^(1/2)*(x-1))-cos((1/2)*3^(1/2)*(x-1)))*exp(-1/2+(1/2)*x)

 

 

Download simplify_vs_combine_june_4_2025.mw

I've been debugging this for 20 hrs and finally able to make an example.

I noticed that solve() suddenly no longer works and times out.

First time calling solve() works. Second time it I see message

               Warning, solve may be ignoring assumptions on the input variables.

And it hangs.  Same exact code.   It has to do with calling odetest before and using Physics:-Setup('assumingusesAssume' = false):

i.e. this works
  
     odetest(...) assuming integer
     solve(....) #no hang
     odetest(....) assuming positive

     odetest(...)  assuming integer
     solve(....)  #no hang


But this does not work

     odetest(...) assuming integer
     solve(....) #no hang
     Physics:-Setup('assumingusesAssume' = false):
     odetest(....) assuming positive
     Physics:-Setup('assumingusesAssume' = true):

     odetest(...) assuming integer
     solve(...)   #HANGS
     

Here is worksheet showing the problem. If I remove first call to odetest, solve do not hang.

Also removing Physics:-Setup('assumingusesAssume' = false):, solve also works OK. (ie. does not hang)

So it has to do with some internal caching which causes solve to stop working.

Can others reproduce this and can cause it and how to fix it so solve do not hang second time?

The input used below is not important. It is just what I found to cause this. One would expect solve() to work same way for same input all the time.

Also, same problem happens when using PDEtools:-Solve instead of solve. It hangs second time.

interface(version);

`Standard Worksheet Interface, Maple 2025.0, Linux, March 24 2025 Build ID 1909157`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1873 and is the same as the version installed in this computer, created 2025, May 18, 21:44 hours Pacific Time.`

SupportTools:-Version();

`The Customer Support Updates version in the MapleCloud is 20 and is the same as the version installed in this computer, created May 23, 2025, 23:34 hours Eastern Time.`

restart

DEFINE input

 

ode:=y(x)*sqrt(1 + diff(y(x), x)^2) - a*y(x)*diff(y(x), x) - a*x = 0:
sol:=-_C4^2 + (-y(x)*sqrt(_C4^2/y(x)^2) + a*x)^2/a^2 + y(x)^2 = 0:
ode_to_test:=y(x)*(1+diff(y(x),x)^2)^(1/2)-a*y(x)*diff(y(x),x)-a*x = 0:

FIRST TIME solve works

 

    try
        timelimit(30,(odetest(sol,ode,y(x)) assuming integer));
    catch:
        NULL;
    end try:

    try
        timelimit(30,[solve(ode_to_test,diff(y(x),x))]);
        print("SOLVE worked");              
    catch:
        print("WHY TIMED OUT??");              
    end try:

    Physics:-Setup('assumingusesAssume' = false):
    try
        timelimit(30, (odetest(sol,ode,y(x)) assuming positive) );
    catch:
        NULL;
    end try:
    Physics:-Setup('assumingusesAssume' = true):

"SOLVE worked"

 

 

RUN SAME CODE AS ABOVE again, now it does not work

 

    try
        timelimit(30,(odetest(sol,ode,y(x)) assuming integer));
    catch:
        NULL;
    end try:

    try
        timelimit(30,[solve(ode_to_test,diff(y(x),x))]);
        print("SOLVE worked");              
    catch:
        print("WHY TIMED OUT??");              
    end try:

    Physics:-Setup('assumingusesAssume' = false):
    try
        timelimit(30, (odetest(sol,ode,y(x)) assuming positive) );
    catch:
        NULL;
    end try:
    Physics:-Setup('assumingusesAssume' = true):

Warning, solve may be ignoring assumptions on the input variables.

"WHY TIMED OUT??"

 

 

 

 

Download why_solve_stops_working_maple_2025_may_28_2025.mw

This worksheet below shows that by removing Physics:-Setup('assumingusesAssume' = false): now solve works OK second time. (I turn on/off Physics:-Setup('assumingusesAssume' since I found sometimes it can help with odetest to turn it off in some other cases. But now I am scared of touching this setting as it seems to have side effects internally)

interface(version);

`Standard Worksheet Interface, Maple 2025.0, Linux, March 24 2025 Build ID 1909157`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1873 and is the same as the version installed in this computer, created 2025, May 18, 21:44 hours Pacific Time.`

SupportTools:-Version();

`The Customer Support Updates version in the MapleCloud is 20 and is the same as the version installed in this computer, created May 23, 2025, 23:34 hours Eastern Time.`

restart

DEFINE input

 

ode:=y(x)*sqrt(1 + diff(y(x), x)^2) - a*y(x)*diff(y(x), x) - a*x = 0:
sol:=-_C4^2 + (-y(x)*sqrt(_C4^2/y(x)^2) + a*x)^2/a^2 + y(x)^2 = 0:
ode_to_test:=y(x)*(1+diff(y(x),x)^2)^(1/2)-a*y(x)*diff(y(x),x)-a*x = 0:

FIRST TIME solve works

 

    try
        timelimit(30,(odetest(sol,ode,y(x)) assuming integer));
    catch:
        NULL;
    end try:

    try
        timelimit(30,[solve(ode_to_test,diff(y(x),x))]);
        print("SOLVE worked");              
    catch:
        print("WHY TIMED OUT??");              
    end try:

    try
        timelimit(30, (odetest(sol,ode,y(x)) assuming positive) );
    catch:
        NULL;
    end try:

"SOLVE worked"

 

 

RUN SAME CODE AS ABOVE again, now it does not work

 

    try
        timelimit(30,(odetest(sol,ode,y(x)) assuming integer));
    catch:
        NULL;
    end try:

    try
        timelimit(30,[solve(ode_to_test,diff(y(x),x))]);
        print("SOLVE worked");              
    catch:
        print("WHY TIMED OUT??");              
    end try:

    try
        timelimit(30, (odetest(sol,ode,y(x)) assuming positive) );
    catch:
        NULL;
    end try:

"SOLVE worked"

 

 

 

 

Download why_solve_stops_working_maple_2025_may_28_2025_V2.mw

I asked similar question 5 years ago about Physics update but it was not possible to find this information

How-To-Find-What-Changed-In-Physics

I'd like to ask now again same about  SupportTools. Can one find out what update is actually included in new version?

Even if it is just 2-3 lines. It will be good if users had an idea what was fixed or improved in the new version.

Any update to software should inlcude such information. Not asking for details, just general information will be nice. Right now one does an update and have no idea at all what the new update fixed or improved which is not good.

May be such information can be displayed on screen after a user updates?

This happens in Maple 2025, but when I checked Maple 2024.2, same thing happen.

To reproduce, I typed ?coeff in the worksheet. Now the help page for coeff comes up OK. On the right, there are some links below "see also". 

Clicking on the one that says PolynomialTools[CoefficientVector] and now an EMPTY page opens up.

Also, typing ?PolynomialTools in worksheet, opens the help page for Overview of the PolynomialTools Package. Now clicking on CoefficientList link, opens an EMPTY page. Same when clicking on CoefficientVector, an EMPTY page !

Have not checked all the links in the help page, but why are some commands have empty help pages?

 

 

MapleCloud opend from Maple2025 and 2024.

Has this extended scrollbar always been like this?
Maybe it is a browser thing.
Which browser is Maple using?
Are there any settings I could adjust?

I can't find the help page for Abel second kind, class B. 

Maple has help page for Abel second kind, class A and Abel second kind, class C. But not for class B. 

Here is an example of Abel second kind class B

ode:=(3*t*y(t)+y(t)^2)+(t^2+t*y(t))*diff(y(t),t)=0;
DEtools:-odeadvisor(ode)

I wanted to know the difference and the transformation used for class B to make it Abel first kind.

I googled and can't find it. Also local help skips over class B.

Is this documented somewhere else?

btw, find error on the help page for class A. Transformation used is wrong. Will leave this for another question.

I have repeatedly seen this on two Windows PCs:

The assignement operator := is rendered as a roman d

This happens after using Maple for some time.
 Exiting Maple and restart of Maple is required. Has someone noticed the same?
All on Windows 10 and for sure in screen reader mode (my default, cannot report on the new GUI).

It seems that the new Ribbon interface has several bugs (probably an update will come soon). So, not only the Export As is not working, but I see that (at least in Windows), opening a worksheet with a large output will display the output using the Maple input font.
Just save a .mw with the content:

expand((x+1)^200);

and then open it.

1 2 3 4 5 6 7 Last Page 1 of 9