Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

I use Maple on a Surface Pro 4 tablet and the math input panel does not work with Maple.  This would be a great feature to have.  Or does anybody know how to get it working?


Hello Dr/Prof?sir?madam

i have problem on running the ode bcs

there is cos n sine in ther ode

any idea to solve this ?

i have attched it

thnks
Maple Worksheet - Error

Failed to load the worksheet /maplenet/convert/Sc.mw .

Download Sc.mw

Hi everyone,

For my first question, I am looking for some help about the following. I have the opportunity to run a worksheet in parallel on a cluster of sixteen workstations, each one endowed with twelve CPUs, through the GRID Computing Toolbox. However, I have troubles concerning how to do that.

I join the worksheet at issue: abmm_ma_1.mw The aim is to run large-scale numerical simulations of a dynamic system, depending on the values given to the initial conditions and to the parameters. The worksheet is organized in four execution groups:

  1. The required packages (combinat and LinearAlgebra).
  2. Calibration of the parameters and initial conditions.
  3. The system, which is embedded into a procedure called SIM.
  4. The activation of SIM, whose outputs are nine .mla files, each one being made of a real-number matrix.

The truth is, I do not clearly see how to modify the worksheet with some elements of the GRID package. Besides, the cluster operates under HTCondor so that running the worksheet requires beforehand the creation of a .sub file. This should be done in consistency with the aforesaid modification.

Any help is welcome, thanks a lot.

Hi,

 

I'm trying to export a plot using the open maple api but it looks like open maple API doesnt support certain specific features.

 

Eg. "Export(\"images\\\result1.gif\", plot(sin(x), title = \"The sine function\", thickness = 3, gridlines=true));"

Above works fine when executing in actual maple application (i.e. correctly exports with gridlines) however doing the same via open maple api it does export the chart but not the specified gridlines.

 

Had the same issue when setting axis options to show log instead of linear. 

 

Did anyone else get this? Is this a known issue with open maple api? Is there workaround available?

 

Thanks,

Bidur

Recently, entered a engineering graduate program and will be taking a graduate engineering class in my retirement.  In our Into classes we reviewed engineering math through ODE. In the second class, we performed some numerical methods using MatLab with a small introduction.  My formal Math wass in the 1980s, but now have to fire it up for a Engineering Analysis using Michael Greenberg's Advanced Engineering Mathematics, 2nd which has Maple imbedded code and directions.

 

What would be my assignment for getting up to speed with using Maple to solve algebraic-symbol-programming problems? For instance, which tutorials in what order, or webinars? i think I once had Fortran 77 and remember zip.

 

Appreciate any good advice.

MathMan2

i tend to study a particular function each day, and noticed that the CAS literally ignores me when i as for an evaluation of the mellin transform for the lerch phi function. i just assume there to return an error if the function has properties that do not satisfy the criteria for a particular transform, in this case, null, it just pretends i didnt ask.

Assuming the maple kernel hasnt evolved conciousness and has decided to hate me im guessing someone else has run into similar circumstance.

Hi,

I am trying to download some MapleSim Robotic models from the Maplesoft website but I have 'Invalid File Format' error. Could you help please?

Best

Onder

how i can simplify

(f(x[n])/Df(x[n]));
in code

restart;
taylor(f(x), x = gamma, 8);
f(x[n]) := subs([x-gamma = e[n], f(gamma) = 0, seq(((D@@k)(f))(gamma) = factorial(k)*c[k]*(D(f))(gamma), k = 1 .. 1000)], %);

1 2
f(gamma) + D(f)(gamma) (x - gamma) + - @@(D, 2)(f)(gamma) (x - gamma)
2

1 3 1 4
+ - @@(D, 3)(f)(gamma) (x - gamma) + -- @@(D, 4)(f)(gamma) (x - gamma)
6 24

1 5 1 6
+ --- @@(D, 5)(f)(gamma) (x - gamma) + --- @@(D, 6)(f)(gamma) (x - gamma)
120 720

1 7 / 8\
+ ---- @@(D, 7)(f)(gamma) (x - gamma) + O\(x - gamma) /
5040
2 3
c[1] D(f)(gamma) e[n] + c[2] D(f)(gamma) e[n] + c[3] D(f)(gamma) e[n]

4 5 6
+ c[4] D(f)(gamma) e[n] + c[5] D(f)(gamma) e[n] + c[6] D(f)(gamma) e[n]

7 / 8\
+ c[7] D(f)(gamma) e[n] + O\e[n] /

taylor(D(f)(x), x = gamma, 8);
Df(x[n]) := subs([x-gamma = e[n], f(gamma) = 0, seq(((D@@k)(f))(gamma) = factorial(k)*c[k]*(D(f))(gamma), k = 2 .. 1000)], %);

D(f)(gamma) + @@(D, 2)(f)(gamma) (x - gamma)

1 2 1 3
+ - @@(D, 3)(f)(gamma) (x - gamma) + - @@(D, 4)(f)(gamma) (x - gamma)
2 6

1 4 1 5
+ -- @@(D, 5)(f)(gamma) (x - gamma) + --- @@(D, 6)(f)(gamma) (x - gamma)
24 120

1 6
+ --- @@(D, 7)(f)(gamma) (x - gamma)
720

1 7 / 8\
+ ---- @@(D, 8)(f)(gamma) (x - gamma) + O\(x - gamma) /
5040
2
D(f)(gamma) + 2 c[2] D(f)(gamma) e[n] + 3 c[3] D(f)(gamma) e[n]

3 4
+ 4 c[4] D(f)(gamma) e[n] + 5 c[5] D(f)(gamma) e[n]

5 6
+ 6 c[6] D(f)(gamma) e[n] + 7 c[7] D(f)(gamma) e[n]

7 / 8\
+ 8 c[8] D(f)(gamma) e[n] + O\e[n] /

(f(x[n])/Df(x[n]));
this last term did not use f(x[n]) value from above to solve it. plxx help if any one can solve it...

Let a non-planar non-self-intersecting closed polygon in three dimensions P  be given, say
with(plots): with(plottools):
P := polygon([[0, 1, 1], [1, -1, 2], [3, 0, 5], [1, 1, 1]]):
How to find the minimal surface  with the boundary P?
There is no chance to find the solution as a closed-form expression.
Thus, the numerical solution (or/and a triangulation which approximates the minimal surface up to the given accuracy) is required.

how i can find order of convergence of newton method by expanding taylor series?? plz send me code???

 

how we can solve an ode with boundaries by using RK4 and any other technique??

how we can solve an ode with exat soltuion n calculate the unknw constant which aries after solving an ode.???

I wish to study the trend of medical consultations each day during six years. Thus I expect near 2200 datas to analyse.

But some parameters are to consider :

- I don't have yet the datas per day, but the mean is about 2 consultations per day

- as it is difficult to do more than 3 or perhaps 4 consultations during one day (9h30 am - 13h pm), the others if they exist will probably be seen the next day (aso if the next day 3 news consultations occured)

- then, I don't know actually (as I expect the datas or each day but don't have now these datas) if the better distribution will be simply follow a Poisson' law, or exponential, or negative binomial, ..

- do someone have a clue for the better law given what i said ?

 

Further, I don't have a stastic program especially used for time trend, excepting Systran 13, but I don't believe that this program can be used with a theoric model of distribution, I recall that it does usual tasks, autocorrelations, saisonnal adjustments, .. but with continuous distributions I believe, and a linear model (removing the basic frequencies)

As such program (study of temporal series) is usually sold about 3000$ in France, that I don't expect to be a trader, with only one calculus to do, could anyone tell me how to adjust the better model to the 2200 datas that could be expected ?

Thx for your help, friendly yours;

Milos

I wonder why the thole procedure becomes ... when converting from 1-D math to 2-D math.

hi...please help me for solve this nonlinear equations with pdsolve

thanksoffcenter2.mw

La := .25; Lb := 0.1e-1

h := 0.4e-2

rho := 7900

E := 0.200e12

nu := .3

ve := 5

g := 9.8

M := .5

Z0 := 0.1e-2

K := 5/6

C := sqrt(E/rho)

NULL

 

PDE[1] := diff(u(x, t), x, x)+(diff(w(x, t), x))*(diff(w(x, t), x, x)) = (diff(u(x, t), t, t))/C^2

diff(diff(u(x, t), x), x)+(diff(w(x, t), x))*(diff(diff(w(x, t), x), x)) = 0.3949999999e-7*(diff(diff(u(x, t), t), t))

(1)

PDE[2] := K*(diff(phi(x, t), x)+diff(w(x, t), x, x))/(2*(1+nu))+(diff(w(x, t), x))*(diff(u(x, t), x, x))+(diff(u(x, t), x))*(diff(w(x, t), x, x))+(3/2)*(diff(w(x, t), x, x))*(diff(w(x, t), x))^2 = (diff(w(x, t), t, t))/C^2

.3205128205*(diff(phi(x, t), x))+.3205128205*(diff(diff(w(x, t), x), x))+(diff(w(x, t), x))*(diff(diff(u(x, t), x), x))+(diff(u(x, t), x))*(diff(diff(w(x, t), x), x))+(3/2)*(diff(diff(w(x, t), x), x))*(diff(w(x, t), x))^2 = 0.3949999999e-7*(diff(diff(w(x, t), t), t))

(2)

 

PDE[3] := diff(phi(x, t), x, x)-6*K*(diff(w(x, t), x)+phi(x, t))/(h^2*(1+nu)) = (diff(phi(x, t), t, t))/C^2

diff(diff(phi(x, t), x), x)-240384.6154*(diff(w(x, t), x))-240384.6154*phi(x, t) = 0.3949999999e-7*(diff(diff(phi(x, t), t), t))

(3)

 

 

#####################################

(4)

at x= La

PDE[a1] := diff(u(x, t), x)+(1/2)*(diff(w(x, t), x))^2-M*(g-(diff(u(x, t), t, t))-Z0*(diff(phi(x, t), t, t)))/(E*Lb*h) = 0

diff(u(x, t), x)+(1/2)*(diff(w(x, t), x))^2-0.6125000000e-6+0.6250000000e-7*(diff(diff(u(x, t), t), t))+0.6250000000e-10*(diff(diff(phi(x, t), t), t)) = 0

(5)

PDE[a2] := diff(phi(x, t), x)-12*M*Z0*(g-(diff(u(x, t), t, t))-Z0*(diff(phi(x, t), t, t)))/(E*Lb*h^3) = 0

diff(phi(x, t), x)-0.4593750000e-3+0.4687500000e-4*(diff(diff(u(x, t), t), t))+0.4687500000e-7*(diff(diff(phi(x, t), t), t)) = 0

(6)

PDE[a3] := w(x, t) = 0

w(x, t) = 0

(7)

NULL

############################################

``

at x=0 NULL

(8)

PDE[b1] := u(x, t) = 0 

PDE[b2] := w(x, t) = 0

PDE[b3] := diff(phi(x, t), x) = 0

diff(phi(x, t), x) = 0

(9)

################################################

at t=0 for x= [0,La]

u(x, t) = 0

u(x, t) = 0

(10)

w(x, t) = 0

w(x, t) = 0

(11)

phi(x, t) = 0

phi(x, t) = 0

(12)

diff(phi(x, t), t) = 0

diff(phi(x, t), t) = 0

(13)

diff(w(x, t), t) = 0

diff(w(x, t), t) = 0

(14)

diff(phi(x, t), t, t) = 0

diff(diff(phi(x, t), t), t) = 0

(15)

diff(w(x, t), t, t) = 0

diff(diff(w(x, t), t), t) = 0

(16)

######################################################

at t=0 for x= [0,La)

diff(u(x, t), t) = 0

diff(u(x, t), t) = 0

(17)

diff(u(x, t), t, t) = 0

diff(diff(u(x, t), t), t) = 0

(18)

###################################################

at t=0 for x=La

NULL

diff(u(x, t), t) = -ve

diff(u(x, t), t) = -5

(19)

diff(u(x, t), t, t) = g

diff(diff(u(x, t), t), t) = 9.8

(20)

NULL

NULL

 

Download offcenter2.mw

First 163 164 165 166 167 168 169 Last Page 165 of 2231