Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

Dear friends~I knew that I can copy each function's code into one worksheet bue it's tedious if I need to call many functions.So I want to find another approach with maple's statement.

Thank you ~

Hi,

I have problem with plot of the function ( See attachment)
 

Chargement plots

plot((x^3-x^2)^(1/3), x)

 

``

 

 

``

``

``


 

Download PlotProblème.mw

I dont fully understand the principle of a global variable for example _Z in RootOf expressions. Can someone please explain this to me.

Hi I've been trying to solve these set of PDEs below and have been at it for very long

My codes are below

I tried solving the first equation by using:

sys_ode := 2*(diff(T(eta), eta, eta, eta))+T(eta)*(diff(T(eta), eta, eta)) = 0

ics := T(0) = 0, (D(T))(0) = 1, (D(T))(20) = 0

Digits := 10

sol1 := dsolve({ics, sys_ode}, numeric, output = operator)

{q(eta) = rhs(sol1[2](eta)), w(eta) = rhs(sol1[3](eta))}

Then inputting into the subsequent two equations:

PDE1 := eval([2/P . (diff(g(x, eta), eta, eta))+q(eta)*(diff(g(x, eta), eta))-g(x, eta)*w(eta) = 2*x*w(eta)*(diff(g(x, eta), x)), 2/S . (diff(phi(x, eta), eta, eta))+q(eta)*(diff(phi(x, eta), eta)) = 2*x*w(eta)*(diff(phi(x, eta), x))])

subBC1 := -phi(x, 0)*exp(g(x, 0)*sqrt(x)/(1+varepsilon*g(x, 0)*sqrt(x)))

subBC2 := alpha . ((phi(x, 0))(sqrt(x)))(exp(g(x, 0)*sqrt(x)/(1+varepsilon*g(x, 0)*sqrt(x))))

BC := {diff(g(0, eta), eta, eta) = 0, diff(phi(0, eta), eta, eta) = 0, g(0, eta) = 0, g(x, 20) = 0, phi(0, eta) = 1, phi(x, 20) = 1, (D[2](g))(x, 0) = subBC1, (D[2](phi))(x, 0) = subBC2}

P = 1

S = 1

pds := pdsolve(PDE, {BC}, numeric, spacestep = .25)

but always end up with :Error, (in pdsolve/numeric/process_PDEs) number of dependent variables and number of PDE must be the same

I know my BC conditions might probably have some major errors too but i really cant proceed on cos i always end up with this same error. I really hope anyone would be able to help me on this 

help please

Thought it would be a neat way to create identation for loops and if branches in a text editor and copy the code into Maple. But Maple inserts a new prompt at the beginning of every line.

Is there a solution in 2018?

Hi, Is there any way to set the tolerances in

LinearAlgebra[Rank]

I'm evaluating a matrix which is singular, except the singular values come back as 1 and 10^(-9).  I'd like Maple to compute this as rank 1 rather than rank 2.

Thanks

If I input 3^665 the whole number is displayed. How to display only last few digits?

When I make the input 2*pi*440 the output is pi880.

How to come to the result 2764,6 radians?

Coding_Basic_Reproduction_Number_2.mw

Anybody know how to simplify the equation?

Hi,

Some ideas to plot ( animate) tangents at corner point or cusp point?

For examples : f(x)=sqrt(abs(x-1)) , g(x)=sqrt(abs(x^2-4))

Thanks

factor_problem.mw

I want to factor the following polynomial:

Teller := 2*i1^4*i2*i3+2*i1^4*i2*i4+2*i1^4*i2*i5+2*i1^4*i3*i4+2*i1^4*i3*i5+2*i1^4*i4*i5+4*i1^3*i2^2*i3+4*i1^3*i2^2*i4+4*i1^3*i2^2*i5+4*i1^3*i2*i3^2+6*i1^3*i2*i3*i4+6*i1^3*i2*i3*i5+4*i1^3*i2*i4^2+6*i1^3*i2*i4*i5+4*i1^3*i2*i5^2+4*i1^3*i3^2*i4+4*i1^3*i3^2*i5+4*i1^3*i3*i4^2+6*i1^3*i3*i4*i5+4*i1^3*i3*i5^2+4*i1^3*i4^2*i5+4*i1^3*i4*i5^2+2*i1^2*i2^3*i3+2*i1^2*i2^3*i4+2*i1^2*i2^3*i5+4*i1^2*i2^2*i3^2+6*i1^2*i2^2*i3*i4+6*i1^2*i2^2*i3*i5+4*i1^2*i2^2*i4^2+6*i1^2*i2^2*i4*i5+4*i1^2*i2^2*i5^2+2*i1^2*i2*i3^3+6*i1^2*i2*i3^2*i4+6*i1^2*i2*i3^2*i5+6*i1^2*i2*i3*i4^2+24*i1^2*i2*i3*i4*i5+6*i1^2*i2*i3*i5^2+2*i1^2*i2*i4^3+6*i1^2*i2*i4^2*i5+6*i1^2*i2*i4*i5^2+2*i1^2*i2*i5^3+2*i1^2*i3^3*i4+2*i1^2*i3^3*i5+4*i1^2*i3^2*i4^2+6*i1^2*i3^2*i4*i5+4*i1^2*i3^2*i5^2+2*i1^2*i3*i4^3+6*i1^2*i3*i4^2*i5+6*i1^2*i3*i4*i5^2+2*i1^2*i3*i5^3+2*i1^2*i4^3*i5+4*i1^2*i4^2*i5^2+2*i1^2*i4*i5^3+2*i1*i2^3*i3*i4+2*i1*i2^3*i3*i5+2*i1*i2^3*i4*i5+4*i1*i2^2*i3^2*i4+4*i1*i2^2*i3^2*i5+4*i1*i2^2*i3*i4^2+6*i1*i2^2*i3*i4*i5+4*i1*i2^2*i3*i5^2+4*i1*i2^2*i4^2*i5+4*i1*i2^2*i4*i5^2+2*i1*i2*i3^3*i4+2*i1*i2*i3^3*i5+4*i1*i2*i3^2*i4^2+6*i1*i2*i3^2*i4*i5+4*i1*i2*i3^2*i5^2+2*i1*i2*i3*i4^3+6*i1*i2*i3*i4^2*i5+6*i1*i2*i3*i4*i5^2+2*i1*i2*i3*i5^3+2*i1*i2*i4^3*i5+4*i1*i2*i4^2*i5^2+2*i1*i2*i4*i5^3+2*i1*i3^3*i4*i5+4*i1*i3^2*i4^2*i5+4*i1*i3^2*i4*i5^2+2*i1*i3*i4^3*i5+4*i1*i3*i4^2*i5^2+2*i1*i3*i4*i5^3+4*i1^3*i2*i3+4*i1^3*i2*i4+4*i1^3*i2*i5+4*i1^3*i3*i4+4*i1^3*i3*i5+4*i1^3*i4*i5+8*i1^2*i2^2*i3+8*i1^2*i2^2*i4+8*i1^2*i2^2*i5+8*i1^2*i2*i3^2+12*i1^2*i2*i3*i4+12*i1^2*i2*i3*i5+8*i1^2*i2*i4^2+12*i1^2*i2*i4*i5+8*i1^2*i2*i5^2+8*i1^2*i3^2*i4+8*i1^2*i3^2*i5+8*i1^2*i3*i4^2+12*i1^2*i3*i4*i5+8*i1^2*i3*i5^2+8*i1^2*i4^2*i5+8*i1^2*i4*i5^2+4*i1*i2^3*i3+4*i1*i2^3*i4+4*i1*i2^3*i5+8*i1*i2^2*i3^2+12*i1*i2^2*i3*i4+12*i1*i2^2*i3*i5+8*i1*i2^2*i4^2+12*i1*i2^2*i4*i5+8*i1*i2^2*i5^2+4*i1*i2*i3^3+12*i1*i2*i3^2*i4+12*i1*i2*i3^2*i5+12*i1*i2*i3*i4^2+48*i1*i2*i3*i4*i5+12*i1*i2*i3*i5^2+4*i1*i2*i4^3+12*i1*i2*i4^2*i5+12*i1*i2*i4*i5^2+4*i1*i2*i5^3+4*i1*i3^3*i4+4*i1*i3^3*i5+8*i1*i3^2*i4^2+12*i1*i3^2*i4*i5+8*i1*i3^2*i5^2+4*i1*i3*i4^3+12*i1*i3*i4^2*i5+12*i1*i3*i4*i5^2+4*i1*i3*i5^3+4*i1*i4^3*i5+8*i1*i4^2*i5^2+4*i1*i4*i5^3+4*i2^3*i3*i4+4*i2^3*i3*i5+4*i2^3*i4*i5+8*i2^2*i3^2*i4+8*i2^2*i3^2*i5+8*i2^2*i3*i4^2+12*i2^2*i3*i4*i5+8*i2^2*i3*i5^2+8*i2^2*i4^2*i5+8*i2^2*i4*i5^2+4*i2*i3^3*i4+4*i2*i3^3*i5+8*i2*i3^2*i4^2+12*i2*i3^2*i4*i5+8*i2*i3^2*i5^2+4*i2*i3*i4^3+12*i2*i3*i4^2*i5+12*i2*i3*i4*i5^2+4*i2*i3*i5^3+4*i2*i4^3*i5+8*i2*i4^2*i5^2+4*i2*i4*i5^3+4*i3^3*i4*i5+8*i3^2*i4^2*i5+8*i3^2*i4*i5^2+4*i3*i4^3*i5+8*i3*i4^2*i5^2+4*i3*i4*i5^3+i1^4+3*i1^3*i2+3*i1^3*i3+3*i1^3*i4+3*i1^3*i5+3*i1^2*i2^2+6*i1^2*i2*i3+6*i1^2*i2*i4+6*i1^2*i2*i5+3*i1^2*i3^2+6*i1^2*i3*i4+6*i1^2*i3*i5+3*i1^2*i4^2+6*i1^2*i4*i5+3*i1^2*i5^2+i1*i2^3+3*i1*i2^2*i3+3*i1*i2^2*i4+3*i1*i2^2*i5+3*i1*i2*i3^2+10*i1*i2*i3*i4+10*i1*i2*i3*i5+3*i1*i2*i4^2+10*i1*i2*i4*i5+3*i1*i2*i5^2+i1*i3^3+3*i1*i3^2*i4+3*i1*i3^2*i5+3*i1*i3*i4^2+10*i1*i3*i4*i5+3*i1*i3*i5^2+i1*i4^3+3*i1*i4^2*i5+3*i1*i4*i5^2+i1*i5^3+4*i2^2*i3*i4+4*i2^2*i3*i5+4*i2^2*i4*i5+4*i2*i3^2*i4+4*i2*i3^2*i5+4*i2*i3*i4^2+4*i2*i3*i5^2+4*i2*i4^2*i5+4*i2*i4*i5^2+4*i3^2*i4*i5+4*i3*i4^2*i5+4*i3*i4*i5^2

What is the best strategy using Maple(latest version)? In a previous, less complicated example, the polynomial could be not be factored in a single expression, but I was succesfull to factor it in multiple factors.

kind regards,

Harry Garst


 

restart

with(PDEtools)

with(plots)

P__r := .71; lambda := 1.0; K__r := 1.0; S__r := .5; m := .5; M := sqrt(10.0); `ϰ` := .5; Omega := sqrt(5.0); Gr := 6.0; Gm := 5.0; S__c := .22

PDE := {diff(phi(x, t), t) = (diff(phi(x, t), x, x))/S__c-K__r*phi(x, t)+S__r*(diff(theta(x, t), x, x)), diff(theta(x, t), t) = lambda*(diff(theta(x, t), x, x))/P__r, diff(u(x, t), t) = diff(u(x, t), x, x)-M^2*(u(x, t)-m*w(x, t))/(m^2+1)-u(x, t)/`ϰ`-2*Omega^2*w(x, t)+Gr*theta(x, t)+Gm*phi(x, t), diff(w(x, t), t) = diff(w(x, t), x, x)+M^2*(m*u(x, t)-w(x, t))/(m^2+1)-w(x, t)/`ϰ`+2*Omega^2*u(x, t)}

{diff(phi(x, t), t) = 4.545454545*(diff(diff(phi(x, t), x), x))-1.0*phi(x, t)+.5*(diff(diff(theta(x, t), x), x)), diff(theta(x, t), t) = 1.408450704*(diff(diff(theta(x, t), x), x)), diff(u(x, t), t) = diff(diff(u(x, t), x), x)-9.999999999*u(x, t)-5.999999996*w(x, t)+6.0*theta(x, t)+5.0*phi(x, t), diff(w(x, t), t) = diff(diff(w(x, t), x), x)+14.00000000*u(x, t)-9.999999999*w(x, t)}

(1)

``

IBC := {phi(0, t) = 1, phi(9, t) = 0, phi(x, 0) = 0, theta(0, t) = 1, theta(9, t) = 0, theta(x, 0) = 0, u(0, t) = t, u(9, t) = 0, u(x, 0) = 0, w(0, t) = 0, w(9, t) = 0, w(x, 0) = 0}

sol := pdsolve(PDE, IBC, numeric, spacestep = 0.1e-1)

_m2167514531200

(2)

p1 := sol:-plot(t = .3, color = red); p2 := sol:-plot(t = .5, color = gold); p3 := sol:-plot(t = .7, color = purple); p4 := sol:-plot(t = 1., color = green); plots[display]({p1, p2, p3, p4})

 

q1, q2, q3, q4 := seq(eval(u(x, t), sol:-value(t = t0, output = listprocedure)), t0 = [.3, .5, .7, 1]); plot([q1, q2, q3, q4], 0 .. 10, color = [red, gold, purple, green])

 

p1 := sol:-plot(t = 1, S__c = .1, color = red); p2 := sol:-plot(t = 1, S__c = .2, color = gold); p3 := sol:-plot(t = 1, S__c = .3, color = purple); p4 := sol:-plot(t = 1, S__c = .4, color = green); plots[display]({p1, p2, p3, p4})

Error, (in plot/options2d) unexpected option: .22 = .1

 

Error, (in plot/options2d) unexpected option: .22 = .2

 

Error, (in plot/options2d) unexpected option: .22 = .3

 

Error, (in plot/options2d) unexpected option: .22 = .4

 

 

q1, q2, q3, q4 := seq(eval(diff(u(0, t), t), sol:-value(t = t0, output = listprocedure)), t0 = [.3, .5, .7, 1]); plot([q1, q2, q3, q4], 0 .. 10, color = [red, gold, purple, green])

Error, (in plot) procedure expected, as range contains no plotting variable

 

``


 

Download pde_baru.mwpde_baru.mw

Dear Prof DRs ,Please see the attachments

how to PLOT PDE IBCS for different  Sc , Pr, Gr, Gm at fixed t? Also for Nusselt (theta prime)  ,skin friction (f double prime)?

sys*{A2+D2 = 0, B1*sin(192*K1)+D1 = 0, 3.383*B2*K1+C2 = 0, B1*K1^2*sin(192*K1)+11.444689*A2*K1^2*cos(568.344*K1)+11.444689*B2*K1^2*sin(568.344*K1) = 0, A2*cos(568.344*K1)+B2*sin(568.344*K1)+168*C2+D2 = 0, -3.383*A2*K1*sin(568.344*K1)+3.383*B2*K1*cos(568.344*K1)+C2-B1*K1*cos(192*K1) = 0};
     /                                                               
sys { A2 + D2 = 0, B1 sin(192 K1) + D1 = 0, 3.383 B2 K1 + C2 = 0, B1 
     \                                                               

    2                              2                
  K1  sin(192 K1) + 11.444689 A2 K1  cos(568.344 K1)

                    2                      
   + 11.444689 B2 K1  sin(568.344 K1) = 0, 

  A2 cos(568.344 K1) + B2 sin(568.344 K1) + 168 C2 + D2 = 0, 
-3.383 A2 K1 sin(568.344 K1) + 3.383 B2 K1 cos(568.344 K1) + C2

                          \ 
   - B1 K1 cos(192 K1) = 0 }
                          / 
fsolve(sys*{A2, B1, B2, C2, D1, D2});
Error, (in fsolve) number of equations, 1, does not match number of variables, 7

E_dislocated_bar.mws

I wish to make the letter E from a previous program of the letter F - which seemed to work perfectly.  I've added the base arm to the F - with it looking like the letter Fand trailing base.  Further comments in the program.  Tags are polygon, patchnogrid, LINE, animation  Help please. 

cos(440*2*pi*t)+cos(554*2*pi*t)+cos(659*2*pi*t)

How to turn the above row into complex exponential Fourier series?

First 838 839 840 841 842 843 844 Last Page 840 of 2216