Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

How would I go about getting true or false returned on these propositions?
I have tried just about every eval and various syntax methods, but nothing has worked so far.

I know most can easilly be done by hand/thinking, but I'm sure Maple should have a way to do this as well.

∀n∈Z:2n>n+2   ,   ∃n∈Z:2|(3n+1)    ,   ∃k∈Z:∀n∈Z:n=kn   ,   ∃k∈Z:∀n∈Z:2|(n+k)   ,   ∀n∈Z:∀k∈Z:(n>k∨k≥n)


Coherent States in Quantum Mechanics

 

Pascal Szriftgiser1 and Edgardo S. Cheb-Terrab2 

(1) Laboratoire PhLAM, UMR CNRS 8523, Université Lille 1, F-59655, France

(2) Maplesoft

 

  

Coherent states are among the most relevant representations for the state of a quantum system. These states, that form an overcomplete basis, minimize the quantum uncertainty between position x and momentum p (they satisfy the Heisenberg uncertainty principle with equality and their expectation values satisfy the classical equations of motion). Coherent states are widely used in quantum optics and quantum mechanics in general; they also mathematically characterize the concept of Planck cells. Part of this development is present in Maple 2018.2.1. To reproduce what you see below, however, you need a more recent version, as the one distributed within the Maplesoft Physics Updates (version 276 or higher). A worksheet with this contents is linked at the end of this post.

Definition and the basics

 

with(Physics)

 

Set a quantum operator A and corresponding annihilation / creation operators

Setup(quantumoperators = A)

[quantumoperators = {A}]

(1.1)

am := Annihilation(A)

`#msup(mi("a"),mo("&uminus0;"))`

(1.2)

ap := Creation(A)

`#msup(mi("a"),mo("+"))`

(1.3)

In what follows, on the left-hand sides the product operator used is `*`, which properly represents, but does not perform the attachment of Bras Kets and operators. On the right-hand sides the product operator is `.`, that performs the attachments. Since the introduction of Physics in the Maple system, we have that

am*Ket(A, n) = am.Ket(A, n)

Physics:-`*`(`#msup(mi("a"),mo("&uminus0;"))`, Physics:-Ket(A, n)) = n^(1/2)*Physics:-Ket(A, n-1)

(1.4)

(%Bracket = Bracket)(Bra(A, n), Ket(A, n))

%Bracket(Physics:-Bra(A, n), Physics:-Ket(A, n)) = 1

(1.5)

(%Bracket = Bracket)(Bra(A, n), Ket(A, m))

%Bracket(Physics:-Bra(A, n), Physics:-Ket(A, m)) = Physics:-KroneckerDelta[m, n]

(1.6)

New development during 2018: coherent states, the eigenstates of the annihilation operator `#msup(mi("a",mathcolor = "olive"),mo("&uminus0;",mathcolor = "olive"))`, with all of their properties, are now understood as such by the system

am*Ket(am, alpha) = am.Ket(am, alpha)

Physics:-`*`(`#msup(mi("a"),mo("&uminus0;"))`, Physics:-Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha)) = alpha*Physics:-Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha)

(1.7)

Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha) is an eigenket of `#msup(mi("a",mathcolor = "olive"),mo("&uminus0;",mathcolor = "olive"))` but not of  `#msup(mi("a",mathcolor = "olive"),mo("+",mathcolor = "olive"))`

ap.Ket(am, alpha)

Physics:-`.`(`#msup(mi("a"),mo("+"))`, Physics:-Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha))

(1.8)

The norm of these states is equal to 1

(%Bracket = Bracket)(Bra(am, alpha), Ket(am, alpha))

%Bracket(Physics:-Bra(`#msup(mi("a"),mo("&uminus0;"))`, alpha), Physics:-Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha)) = 1

(1.9)

These states, however, are not orthonormal as the occupation number states Ket(A, n) are, and since `#msup(mi("a",mathcolor = "olive"),mo("&uminus0;",mathcolor = "olive"))` is not Hermitian, its eigenvalues are not real but complex numbers. Instead of (1.6) , we now have

(%Bracket = Bracket)(Bra(am, alpha), Ket(am, beta))

%Bracket(Physics:-Bra(`#msup(mi("a"),mo("&uminus0;"))`, alpha), Physics:-Ket(`#msup(mi("a"),mo("&uminus0;"))`, beta)) = exp(-(1/2)*abs(alpha)^2-(1/2)*abs(beta)^2+conjugate(alpha)*beta)

(1.10)

At alpha = beta,

simplify(eval(%Bracket(Physics[Bra](`#msup(mi("a"),mo("&uminus0;"))`, alpha), Physics[Ket](`#msup(mi("a"),mo("&uminus0;"))`, beta)) = exp(-(1/2)*abs(alpha)^2-(1/2)*abs(beta)^2+conjugate(alpha)*beta), alpha = beta))

1 = 1

(1.11)

Their scalar product with the occupation number states Ket(A, m), using the inert %Bracket on the left-hand side and the active Bracket on the other side:

(%Bracket = Bracket)(Bra(A, n), Ket(am, alpha))

%Bracket(Physics:-Bra(A, n), Physics:-Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha)) = exp(-(1/2)*abs(alpha)^2)*alpha^n/factorial(n)^(1/2)

(1.12)

The expansion of coherent states into occupation number states, first representing the product operation using `*`, then performing the attachments replacing `*` by `.`

Projector(Ket(A, n), dimension = infinity)

Sum(Physics:-`*`(Physics:-Ket(A, n), Physics:-Bra(A, n)), n = 0 .. infinity)

(1.13)

Ket(am, alpha) = (Sum(Physics[`*`](Physics[Ket](A, n), Physics[Bra](A, n)), n = 0 .. infinity))*Ket(am, alpha)

Physics:-Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha) = Physics:-`*`(Sum(Physics:-`*`(Physics:-Ket(A, n), Physics:-Bra(A, n)), n = 0 .. infinity), Physics:-Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha))

(1.14)

eval(Physics[Ket](`#msup(mi("a"),mo("&uminus0;"))`, alpha) = Physics[`*`](Sum(Physics[`*`](Physics[Ket](A, n), Physics[Bra](A, n)), n = 0 .. infinity), Physics[Ket](`#msup(mi("a"),mo("&uminus0;"))`, alpha)), `*` = `.`)

Physics:-Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha) = Sum(exp(-(1/2)*abs(alpha)^2)*alpha^n*Physics:-Ket(A, n)/factorial(n)^(1/2), n = 0 .. infinity)

(1.15)

Hide now the ket label. When in doubt, input show to see the Kets with their labels explicitly shown

Setup(hide = true)

`* Partial match of  '`*hide*`' against keyword '`*hideketlabel*`' `

 

_______________________________________________________

 

[hideketlabel = true]

(1.16)

Define eigenkets of the annihilation operator, with two different eigenvalues for experimentation

`K__α` := Ket(am, alpha)

Physics:-Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha)

(1.17)

`K__β` := Ket(am, beta)

Physics:-Ket(`#msup(mi("a"),mo("&uminus0;"))`, beta)

(1.18)

Because the properties of coherent states are now known to the system, the following computations proceed automatically. The left-hand sides use the `*`, while the right-hand sides use the `.`

(`*` = `.`)(Dagger(`K__α`), ap, am, `K__α`)

Physics:-`*`(Physics:-Bra(`#msup(mi("a"),mo("&uminus0;"))`, alpha), `#msup(mi("a"),mo("+"))`, `#msup(mi("a"),mo("&uminus0;"))`, Physics:-Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha)) = abs(alpha)^2

(1.19)

(`*` = `.`)(Dagger(`K__α`), ap+am, `K__α`)

Physics:-`*`(Physics:-Bra(`#msup(mi("a"),mo("&uminus0;"))`, alpha), `#msup(mi("a"),mo("+"))`+`#msup(mi("a"),mo("&uminus0;"))`, Physics:-Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha)) = conjugate(alpha)+alpha

(1.20)

(`*` = `.`)(Dagger(`K__α`), ap-am, `K__α`)

Physics:-`*`(Physics:-Bra(`#msup(mi("a"),mo("&uminus0;"))`, alpha), `#msup(mi("a"),mo("+"))`-`#msup(mi("a"),mo("&uminus0;"))`, Physics:-Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha)) = conjugate(alpha)-alpha

(1.21)

(`*` = `.`)(Dagger(`K__α`), (ap+am)^2, `K__α`)

Physics:-`*`(Physics:-Bra(`#msup(mi("a"),mo("&uminus0;"))`, alpha), Physics:-`^`(`#msup(mi("a"),mo("+"))`+`#msup(mi("a"),mo("&uminus0;"))`, 2), Physics:-Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha)) = conjugate(alpha)^2+2*abs(alpha)^2+1+alpha^2

(1.22)

Properties of Coherent states

 

The mean value of the occupation number N

 

 

The occupation number operator N is given by

N := ap.am

Physics:-`*`(`#msup(mi("a"),mo("+"))`, `#msup(mi("a"),mo("&uminus0;"))`)

(2.1.1)

N*` is Hermitian`

%Dagger(N) = N

%Dagger(Physics:-`*`(`#msup(mi("a"),mo("+"))`, `#msup(mi("a"),mo("&uminus0;"))`)) = Physics:-`*`(`#msup(mi("a"),mo("+"))`, `#msup(mi("a"),mo("&uminus0;"))`)

(2.1.2)

value(%Dagger(Physics[`*`](`#msup(mi("a"),mo("+"))`, `#msup(mi("a"),mo("&uminus0;"))`)) = Physics[`*`](`#msup(mi("a"),mo("+"))`, `#msup(mi("a"),mo("&uminus0;"))`))

Physics:-`*`(`#msup(mi("a"),mo("+"))`, `#msup(mi("a"),mo("&uminus0;"))`) = Physics:-`*`(`#msup(mi("a"),mo("+"))`, `#msup(mi("a"),mo("&uminus0;"))`)

(2.1.3)

N is diagonal in the Ket(A, n) basis of the Fock (occupation number) space

(`*` = `.`)(Bra(A, n), N, Ket(A, p))

Physics:-`*`(Physics:-Bra(A, n), `#msup(mi("a"),mo("+"))`, `#msup(mi("a"),mo("&uminus0;"))`, Physics:-Ket(A, p)) = p*Physics:-KroneckerDelta[n, p]

(2.1.4)
• 

The mean value of N in a coherent state `≡`(Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha), Ket(alpha))

Bracket(%N)[alpha] = %Bracket(Bra(am, alpha), N, Ket(am, alpha))

Physics:-Bracket(%N)[alpha] = %Bracket(Physics:-Bra(`#msup(mi("a"),mo("&uminus0;"))`, alpha), Physics:-`*`(`#msup(mi("a"),mo("+"))`, `#msup(mi("a"),mo("&uminus0;"))`), Physics:-Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha))

(2.1.5)

value(Physics[Bracket](%N)[alpha] = %Bracket(Physics[Bra](`#msup(mi("a"),mo("&uminus0;"))`, alpha), Physics[`*`](`#msup(mi("a"),mo("+"))`, `#msup(mi("a"),mo("&uminus0;"))`), Physics[Ket](`#msup(mi("a"),mo("&uminus0;"))`, alpha)))

Physics:-Bracket(%N)[alpha] = abs(alpha)^2

(2.1.6)

The mean value of N^2

Bracket(%N^2)[alpha] = %Bracket(Bra(am, alpha), N^2, Ket(am, alpha))

Physics:-Bracket(%N^2)[alpha] = %Bracket(Physics:-Bra(`#msup(mi("a"),mo("&uminus0;"))`, alpha), Physics:-`^`(Physics:-`*`(`#msup(mi("a"),mo("+"))`, `#msup(mi("a"),mo("&uminus0;"))`), 2), Physics:-Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha))

(2.1.7)

value(Physics[Bracket](%N^2)[alpha] = %Bracket(Physics[Bra](`#msup(mi("a"),mo("&uminus0;"))`, alpha), Physics[`^`](Physics[`*`](`#msup(mi("a"),mo("+"))`, `#msup(mi("a"),mo("&uminus0;"))`), 2), Physics[Ket](`#msup(mi("a"),mo("&uminus0;"))`, alpha)))

Physics:-Bracket(%N^2)[alpha] = abs(alpha)^4+abs(alpha)^2

(2.1.8)

The standard deviation `ΔN` = sqrt(-Bracket(%N)[alpha]^2+Bracket(%N^2)[alpha]) for a state Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha)

((Physics[Bracket](%N^2)[alpha] = abs(alpha)^4+abs(alpha)^2)-(Physics[Bracket](%N)[alpha] = abs(alpha)^2)^2)^(1/2)

(-Physics:-Bracket(%N)[alpha]^2+Physics:-Bracket(%N^2)[alpha])^(1/2) = abs(alpha)

(2.1.9)

In conclusion, a coherent state "| alpha >" has a finite spreading `ΔN` = abs(alpha).  Coherent states are good approximations for the states of a laser, where the laser intensity I  is proportional to the mean value of the photon number, I f Bracket(%N)[alpha] = abs(alpha)^2, and so the intensity fluctuation, `∝`(sqrt(I), abs(alpha)).

• 

The mean value of the occupation number N in an occupation number state `≡`(Ket(A, n), Ket(n))

Bracket(%N)[n] = %Bracket(Bra(A, n), N, Ket(A, n))

Physics:-Bracket(%N)[n] = %Bracket(Physics:-Bra(A, n), Physics:-`*`(`#msup(mi("a"),mo("+"))`, `#msup(mi("a"),mo("&uminus0;"))`), Physics:-Ket(A, n))

(2.1.10)

value(Physics[Bracket](%N)[n] = %Bracket(Bra(A, n), Physics[`*`](`#msup(mi("a"),mo("+"))`, `#msup(mi("a"),mo("&uminus0;"))`), Ket(A, n)))

Physics:-Bracket(%N)[n] = n

(2.1.11)

The mean value of the occupation number N in a state Ket(A, n) is thus n itself, as expected since Ket(A, n)represents a (Fock space) state of n (quase-) particles. Accordingly,

Bracket(%N^2)[n] = %Bracket(Bra(A, n), N^2, Ket(A, n))

Physics:-Bracket(%N^2)[n] = %Bracket(Physics:-Bra(A, n), Physics:-`^`(Physics:-`*`(`#msup(mi("a"),mo("+"))`, `#msup(mi("a"),mo("&uminus0;"))`), 2), Physics:-Ket(A, n))

(2.1.12)

value(Physics[Bracket](%N^2)[n] = %Bracket(Bra(A, n), Physics[`^`](Physics[`*`](`#msup(mi("a"),mo("+"))`, `#msup(mi("a"),mo("&uminus0;"))`), 2), Ket(A, n)))

Physics:-Bracket(%N^2)[n] = n^2

(2.1.13)

The standard deviation `ΔN` = sqrt(-Bracket(%N)[n]^2+Bracket(%N^2)[n]) for a state Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha), is thus

((Physics[Bracket](%N^2)[n] = n^2)-(Physics[Bracket](%N)[n] = n)^2)^(1/2)

(-Physics:-Bracket(%N)[n]^2+Physics:-Bracket(%N^2)[n])^(1/2) = 0

(2.1.14)

That is, in a Fock state, `ΔN` = 0,  there is no intensity fluctuation.

"a^(-)| alpha > = alpha| alpha >"

 

 

The specific properties of coherent states implemented can be derived explicitly departing from the projection of "Ket(a^(-),alpha"into the Ket(A, m)basis of occupation number states and the definition of `#msup(mi("a",mathcolor = "olive"),mo("&uminus0;",mathcolor = "olive"))` as the operator that annihilates the vacuum `#msup(mi("a",mathcolor = "olive"),mo("&uminus0;",mathcolor = "olive"))`Ket(A, n) = 0

Ket(am, alpha) = (Sum(Physics[`*`](Ket(A, n), Bra(A, n)), n = 0 .. infinity))*Ket(am, alpha)

Physics:-Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha) = Physics:-`*`(Sum(Physics:-`*`(Physics:-Ket(A, n), Physics:-Bra(A, n)), n = 0 .. infinity), Physics:-Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha))

(2.2.1)

eval(Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha) = Physics[`*`](Sum(Physics[`*`](Ket(A, n), Bra(A, n)), n = 0 .. infinity), Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha)), `*` = `.`)

Physics:-Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha) = Sum(exp(-(1/2)*abs(alpha)^2)*alpha^n*Physics:-Ket(A, n)/factorial(n)^(1/2), n = 0 .. infinity)

(2.2.2)

To derive `#msup(mi("a",mathcolor = "olive"),mo("&uminus0;",mathcolor = "olive"))`*Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha) = alpha*Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha) from the formula above, start multiplying by `#msup(mi("a",mathcolor = "olive"),mo("&uminus0;",mathcolor = "olive"))`

am*(Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha) = Sum(exp(-(1/2)*abs(alpha)^2)*alpha^n*Ket(A, n)/factorial(n)^(1/2), n = 0 .. infinity))

Physics:-`*`(`#msup(mi("a"),mo("&uminus0;"))`, Physics:-Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha)) = Physics:-`*`(`#msup(mi("a"),mo("&uminus0;"))`, Sum(exp(-(1/2)*abs(alpha)^2)*alpha^n*Physics:-Ket(A, n)/factorial(n)^(1/2), n = 0 .. infinity))

(2.2.3)

In view of `#msup(mi("a",mathcolor = "olive"),mo("&uminus0;",mathcolor = "olive"))`*Ket(A, 0) = 0, discard the first term of the sum

subs(0 = 1, Physics[`*`](`#msup(mi("a"),mo("&uminus0;"))`, Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha)) = Physics[`*`](`#msup(mi("a"),mo("&uminus0;"))`, Sum(exp(-(1/2)*abs(alpha)^2)*alpha^n*Ket(A, n)/factorial(n)^(1/2), n = 0 .. infinity)))

Physics:-`*`(`#msup(mi("a"),mo("&uminus0;"))`, Physics:-Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha)) = Physics:-`*`(`#msup(mi("a"),mo("&uminus0;"))`, Sum(exp(-(1/2)*abs(alpha)^2)*alpha^n*Physics:-Ket(A, n)/factorial(n)^(1/2), n = 1 .. infinity))

(2.2.4)

Change variables n = k+1; in the result rename proc (k) options operator, arrow; n end proc

subs(k = n, PDEtools:-dchange(n = k+1, Physics[`*`](`#msup(mi("a"),mo("&uminus0;"))`, Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha)) = Physics[`*`](`#msup(mi("a"),mo("&uminus0;"))`, Sum(exp(-(1/2)*abs(alpha)^2)*alpha^n*Ket(A, n)/factorial(n)^(1/2), n = 1 .. infinity)), `@`(combine, simplify)))

Physics:-`*`(`#msup(mi("a"),mo("&uminus0;"))`, Physics:-Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha)) = Sum(exp(-(1/2)*abs(alpha)^2)*Physics:-`*`(`#msup(mi("a"),mo("&uminus0;"))`, Physics:-Ket(A, n+1))*alpha^(n+1)/(factorial(n)^(1/2)*(n+1)^(1/2)), n = 0 .. infinity)

(2.2.5)

Activate the product `#msup(mi("a",mathcolor = "olive"),mo("&uminus0;",mathcolor = "olive"))`*Ket(A, n+1) by replacing, in the right-hand side, the product operator `*` by `.`

lhs(Physics[`*`](`#msup(mi("a"),mo("&uminus0;"))`, Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha)) = Sum(exp(-(1/2)*abs(alpha)^2)*Physics[`*`](`#msup(mi("a"),mo("&uminus0;"))`, Ket(A, n+1))*alpha^(n+1)/(factorial(n)^(1/2)*(n+1)^(1/2)), n = 0 .. infinity)) = eval(rhs(Physics[`*`](`#msup(mi("a"),mo("&uminus0;"))`, Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha)) = Sum(exp(-(1/2)*abs(alpha)^2)*Physics[`*`](`#msup(mi("a"),mo("&uminus0;"))`, Ket(A, n+1))*alpha^(n+1)/(factorial(n)^(1/2)*(n+1)^(1/2)), n = 0 .. infinity)), `*` = `.`)

Physics:-`*`(`#msup(mi("a"),mo("&uminus0;"))`, Physics:-Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha)) = Sum(exp(-(1/2)*abs(alpha)^2)*Physics:-Ket(A, n)*alpha^(n+1)/factorial(n)^(1/2), n = 0 .. infinity)

(2.2.6)

By inspection the right-hand side of (2.2.6) is equal to alpha times the right-hand side of (2.2.2)

alpha*(Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha) = Sum(exp(-(1/2)*abs(alpha)^2)*alpha^n*Ket(A, n)/factorial(n)^(1/2), n = 0 .. infinity))-(Physics[`*`](`#msup(mi("a"),mo("&uminus0;"))`, Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha)) = Sum(exp(-(1/2)*abs(alpha)^2)*Ket(A, n)*alpha^(n+1)/factorial(n)^(1/2), n = 0 .. infinity))

alpha*Physics:-Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha)-Physics:-`*`(`#msup(mi("a"),mo("&uminus0;"))`, Physics:-Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha)) = alpha*(Sum(exp(-(1/2)*abs(alpha)^2)*alpha^n*Physics:-Ket(A, n)/factorial(n)^(1/2), n = 0 .. infinity))-(Sum(exp(-(1/2)*abs(alpha)^2)*Physics:-Ket(A, n)*alpha^(n+1)/factorial(n)^(1/2), n = 0 .. infinity))

(2.2.7)

combine(alpha*Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha)-Physics[`*`](`#msup(mi("a"),mo("&uminus0;"))`, Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha)) = alpha*(Sum(exp(-(1/2)*abs(alpha)^2)*alpha^n*Ket(A, n)/factorial(n)^(1/2), n = 0 .. infinity))-(Sum(exp(-(1/2)*abs(alpha)^2)*Ket(A, n)*alpha^(n+1)/factorial(n)^(1/2), n = 0 .. infinity)))

alpha*Physics:-Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha)-Physics:-`*`(`#msup(mi("a"),mo("&uminus0;"))`, Physics:-Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha)) = 0

(2.2.8)
• 

Overview of the coherent states distribution

 

Consider the projection of Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha) over an occupation number state Ket(A, n)

%Bracket(Bra(A, n), lhs(Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha) = Physics[`*`](Sum(Physics[`*`](Ket(A, n), Bra(A, n)), n = 0 .. infinity), Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha)))) = Bracket(Bra(A, n), rhs(Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha) = Physics[`*`](Sum(Physics[`*`](Ket(A, n), Bra(A, n)), n = 0 .. infinity), Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha))))

%Bracket(Physics:-Bra(A, n), Physics:-Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha)) = exp(-(1/2)*abs(alpha)^2)*alpha^n/factorial(n)^(1/2)

(2.2.9)

An overview of the distribution of coherent states Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha) for a sample of values of n and alpha is thus as follows

plot3d(rhs(%Bracket(Bra(A, n), Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha)) = exp(-(1/2)*abs(alpha)^2)*alpha^n/factorial(n)^(1/2)), n = 0 .. 25, alpha = 0 .. 10, axes = boxed, caption = lhs(%Bracket(Bra(A, n), Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha)) = exp(-(1/2)*abs(alpha)^2)*alpha^n/factorial(n)^(1/2)))

 

The distribution can be explored for ranges of values of n and alpha using Explore

NA := Typesetting:-Typeset(Bracket(Bra(A, n), Ket(am, alpha)))

Explore(plot(rhs(%Bracket(Bra(A, n), Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha)) = exp(-(1/2)*abs(alpha)^2)*alpha^n/factorial(n)^(1/2)), n = 0 .. 200, view = 0 .. .6, labels = [n, NA]), parameters = [alpha = 0 .. 10], initialvalues = [alpha = 5])

"a^(+)| alpha >= (∂)/(∂alpha) | alpha >+(alpha)/2 | alpha >"

   

exp(-(1/2)*abs(alpha)^2)*exp(alpha*`#msup(mi("a",mathcolor = "olive"),mo("+",mathcolor = "olive"))`)"| 0 >" = "| alpha >"

   

 exp(alpha*`#msup(mi("a",mathcolor = "olive"),mo("+",mathcolor = "olive"))`-conjugate(alpha)*a)" | 0 >" = "| alpha >"

   

`<|>`(beta, alpha) = exp(conjugate(beta)*alpha-(1/2)*abs(beta)^2-(1/2)*abs(alpha)^2)

 

NULL

The identity in the title can be derived departing again from the the projection of a coherent stateKet(`#msup(mi("a"),mo("&uminus0;"))`, alpha)into the Ket(A, m)basis of occupation number states

Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha) = Sum(exp(-(1/2)*abs(alpha)^2)*alpha^n*Ket(A, n)/factorial(n)^(1/2), n = 0 .. infinity)

Physics:-Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha) = Sum(exp(-(1/2)*abs(alpha)^2)*alpha^n*Physics:-Ket(A, n)/factorial(n)^(1/2), n = 0 .. infinity)

(2.6.1)

Dagger(subs({alpha = beta, n = k}, Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha) = Sum(exp(-(1/2)*abs(alpha)^2)*alpha^n*Ket(A, n)/factorial(n)^(1/2), n = 0 .. infinity)))

Physics:-Bra(`#msup(mi("a"),mo("&uminus0;"))`, beta) = Sum(exp(-(1/2)*abs(beta)^2)*conjugate(beta)^k*Physics:-Bra(A, k)/factorial(k)^(1/2), k = 0 .. infinity)

(2.6.2)

Taking the `*` product of these two expressions

(Bra(`#msup(mi("a"),mo("&uminus0;"))`, beta) = Sum(exp(-(1/2)*abs(beta)^2)*conjugate(beta)^k*Bra(A, k)/factorial(k)^(1/2), k = 0 .. infinity))*(Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha) = Sum(exp(-(1/2)*abs(alpha)^2)*alpha^n*Ket(A, n)/factorial(n)^(1/2), n = 0 .. infinity))

Physics:-`*`(Physics:-Bra(`#msup(mi("a"),mo("&uminus0;"))`, beta), Physics:-Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha)) = Physics:-`*`(Sum(exp(-(1/2)*abs(beta)^2)*conjugate(beta)^k*Physics:-Bra(A, k)/factorial(k)^(1/2), k = 0 .. infinity), Sum(exp(-(1/2)*abs(alpha)^2)*alpha^n*Physics:-Ket(A, n)/factorial(n)^(1/2), n = 0 .. infinity))

(2.6.3)

Perform the attachment of Bras and Kets on the right-hand side by replacing `*` by `.`, evaluating the sum and simplifying the result

lhs(Physics[`*`](Bra(`#msup(mi("a"),mo("&uminus0;"))`, beta), Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha)) = Physics[`*`](Sum(exp(-(1/2)*abs(beta)^2)*conjugate(beta)^k*Bra(A, k)/factorial(k)^(1/2), k = 0 .. infinity), Sum(exp(-(1/2)*abs(alpha)^2)*alpha^n*Ket(A, n)/factorial(n)^(1/2), n = 0 .. infinity))) = simplify(value(eval(rhs(Physics[`*`](Bra(`#msup(mi("a"),mo("&uminus0;"))`, beta), Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha)) = Physics[`*`](Sum(exp(-(1/2)*abs(beta)^2)*conjugate(beta)^k*Bra(A, k)/factorial(k)^(1/2), k = 0 .. infinity), Sum(exp(-(1/2)*abs(alpha)^2)*alpha^n*Ket(A, n)/factorial(n)^(1/2), n = 0 .. infinity))), `*` = `.`)))

Physics:-`*`(Physics:-Bra(`#msup(mi("a"),mo("&uminus0;"))`, beta), Physics:-Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha)) = exp(-(1/2)*abs(beta)^2-(1/2)*abs(alpha)^2+alpha*conjugate(beta))

(2.6.4)
• 

Overview of the real and imaginary part of `<|>`(beta, alpha)

 

In most cases, alpha and beta are complex valued numbers. Below, the plots assume that alpha and beta are both real. To take into account the general case, the possibility to tune a phase difference theta between alpha and beta is explicitly added, so that (2.6.4) becomes

 

%Bracket(Bra(am, beta), Ket(am, alpha)) = subs(conjugate(beta) = conjugate(beta)*exp(I*theta), rhs(Physics[`*`](Bra(`#msup(mi("a"),mo("&uminus0;"))`, beta), Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha)) = exp(conjugate(beta)*alpha-(1/2)*abs(beta)^2-(1/2)*abs(alpha)^2)))

%Bracket(Physics:-Bra(`#msup(mi("a"),mo("&uminus0;"))`, beta), Physics:-Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha)) = exp(-(1/2)*abs(beta)^2-(1/2)*abs(alpha)^2+alpha*conjugate(beta)*exp(I*theta))

(2.6.5)

Explore(plot3d(Re(rhs(%Bracket(Bra(`#msup(mi("a"),mo("&uminus0;"))`, beta), Ket(`#msup(mi("a"),mo("&uminus0;"))`, alpha)) = exp(-(1/2)*abs(beta)^2-(1/2)*abs(alpha)^2+alpha*conjugate(beta)*exp(I*theta)))), alpha = -10 .. 10, beta = -10 .. 10, view = -1 .. 1, orientation = [-12, 74, 3], axes = boxed), parameters = [theta = 0 .. 2*Pi], initialvalues = [theta = (1/10)*Pi])

 

 

Download Coherent_States_in_Quantum_Mechanics.mw

 

Edgardo S. Cheb-Terrab
Physics, Differential Equations and Mathematical Functions, Maplesoft
Editor, Computer Physics Communications

 

Using Maple 2018.2.1, I'm receiving a lost kernel message when importing the attached data file with ImportMatrix. I traced the issue to a "*" symbol at the end of the file but would have expected this to cause an error message (if any error at all) instead of the connection to the kernel to be lost. Is this a bug or am I misunderstanding the usage of ImportMatrix?

test.mw

test2.txt


i want someone hlep me in this worksheet the diff eq of complex i want to sovle it with any numeric method 
 

restart

with(Physics):

with(IntegrationTools):

v := 1;

1

 

-500

 

.1

 

.5

 

.5

(1)

``

M[1] := Int(-Physics:-`*`(Physics:-`*`(Physics:-`*`(2, I), exp(-Physics:-`*`(Physics:-`*`(Physics:-`*`(.5, I), v), tt))), 1/Physics:-`*`(Physics:-`*`(sqrt(b^2+tt^2), v^2), exp(sqrt(b^2+tt^2))))+Physics:-`*`(Physics:-`*`(Physics:-`*`(2, I), exp(Physics:-`*`(Physics:-`*`(Physics:-`*`(.5, I), v), tt))), 1/Physics:-`*`(Physics:-`*`(sqrt(b^2+tt^2), v^2), exp(sqrt(b^2+tt^2)))), tt = -500 .. z)

Int(-(2*I)*exp(-(.5*I)*tt)/((0.1e-1+tt^2)^(1/2)*exp((0.1e-1+tt^2)^(1/2)))+(2*I)*exp((.5*I)*tt)/((0.1e-1+tt^2)^(1/2)*exp((0.1e-1+tt^2)^(1/2))), tt = -500 .. z)

(2)

M[2] := Int(Physics:-`*`(Physics:-`*`(Physics:-`*`(Physics:-`*`(4, I), tt), exp(-Physics:-`*`(Physics:-`*`(Physics:-`*`(.5, I), v), tt))), 1/Physics:-`*`(Physics:-`*`(sqrt(b^2+tt^2), v^2), exp(sqrt(b^2+tt^2))))-Physics:-`*`(Physics:-`*`(Physics:-`*`(Physics:-`*`(4, I), tt), exp(Physics:-`*`(Physics:-`*`(Physics:-`*`(.5, I), v), tt))), 1/Physics:-`*`(Physics:-`*`(sqrt(b^2+tt^2), v^2), exp(sqrt(b^2+tt^2)))), tt = -500 .. z):

M[3] := Int(-Physics:-`*`(Physics:-`*`(Physics:-`*`(Physics:-`*`(2, I), tt^2), exp(-Physics:-`*`(Physics:-`*`(Physics:-`*`(.5, I), v), tt))), 1/Physics:-`*`(Physics:-`*`(sqrt(b^2+tt^2), v^2), exp(sqrt(b^2+tt^2))))+Physics:-`*`(Physics:-`*`(Physics:-`*`(Physics:-`*`(2, I), tt^2), exp(Physics:-`*`(Physics:-`*`(Physics:-`*`(.5, I), v), tt))), 1/Physics:-`*`(Physics:-`*`(sqrt(b^2+tt^2), v^2), exp(sqrt(b^2+tt^2)))), tt = -500 .. z):

M[4] := Int(-Physics:-`*`(Physics:-`*`(2, exp(-Physics:-`*`(Physics:-`*`(Physics:-`*`(.5, I), v), tt))), 1/Physics:-`*`(v, exp(sqrt(b^2+tt^2))))-Physics:-`*`(Physics:-`*`(2, exp(Physics:-`*`(Physics:-`*`(Physics:-`*`(.5, I), v), tt))), 1/Physics:-`*`(v, exp(sqrt(b^2+tt^2))))+Physics:-`*`(Physics:-`*`(Physics:-`*`(2, tt), exp(-Physics:-`*`(Physics:-`*`(Physics:-`*`(.5, I), v), tt))), 1/Physics:-`*`(v, exp(sqrt(b^2+tt^2))))+Physics:-`*`(Physics:-`*`(Physics:-`*`(2, tt), exp(Physics:-`*`(Physics:-`*`(Physics:-`*`(.5, I), v), tt))), 1/Physics:-`*`(v, exp(sqrt(b^2+tt^2)))), tt = -500 .. z):

M := Physics:-`*`(z^2, M[1])+Physics:-`*`(z, M[2])+Physics:-`*`(z, M[3])+M[4]:

Mc[1] := Physics:-`*`(z^2, Int(-Physics:-`*`(Physics:-`*`(Physics:-`*`(2, I), exp(-Physics:-`*`(Physics:-`*`(Physics:-`*`(.5, I), v), tt))), 1/Physics:-`*`(Physics:-`*`(sqrt(b^2+tt^2), v^2), exp(sqrt(b^2+tt^2))))+Physics:-`*`(Physics:-`*`(Physics:-`*`(2, I), exp(Physics:-`*`(Physics:-`*`(Physics:-`*`(.5, I), v), tt))), 1/Physics:-`*`(Physics:-`*`(sqrt(b^2+tt^2), v^2), exp(sqrt(b^2+tt^2)))), tt = -500 .. z)):

Mc[2] := Physics:-`*`(z, Int(Physics:-`*`(Physics:-`*`(Physics:-`*`(Physics:-`*`(4, I), tt), exp(-Physics:-`*`(Physics:-`*`(Physics:-`*`(.5, I), v), tt))), 1/Physics:-`*`(Physics:-`*`(sqrt(b^2+tt^2), v^2), exp(sqrt(b^2+tt^2))))-Physics:-`*`(Physics:-`*`(Physics:-`*`(Physics:-`*`(4, I), tt), exp(Physics:-`*`(Physics:-`*`(Physics:-`*`(.5, I), v), tt))), 1/Physics:-`*`(Physics:-`*`(sqrt(b^2+tt^2), v^2), exp(sqrt(b^2+tt^2)))), tt = -500 .. z)):

Mc[3] := Physics:-`*`(z, Int(-Physics:-`*`(Physics:-`*`(2, exp(-Physics:-`*`(Physics:-`*`(Physics:-`*`(.5, I), v), tt))), 1/Physics:-`*`(v, exp(sqrt(b^2+tt^2))))-Physics:-`*`(Physics:-`*`(2, exp(Physics:-`*`(Physics:-`*`(Physics:-`*`(.5, I), v), tt))), 1/Physics:-`*`(v, exp(sqrt(b^2+tt^2)))), tt = -500 .. z)):

Mc[4] := Int(-Physics:-`*`(Physics:-`*`(Physics:-`*`(Physics:-`*`(2, I), tt^2), exp(-Physics:-`*`(Physics:-`*`(Physics:-`*`(.5, I), v), tt))), 1/Physics:-`*`(Physics:-`*`(sqrt(b^2+tt^2), v^2), exp(sqrt(b^2+tt^2))))+Physics:-`*`(Physics:-`*`(Physics:-`*`(Physics:-`*`(2, I), tt^2), exp(Physics:-`*`(Physics:-`*`(Physics:-`*`(.5, I), v), tt))), 1/Physics:-`*`(Physics:-`*`(sqrt(b^2+tt^2), v^2), exp(sqrt(b^2+tt^2))))+Physics:-`*`(Physics:-`*`(Physics:-`*`(2, tt), exp(-Physics:-`*`(Physics:-`*`(Physics:-`*`(.5, I), v), tt))), 1/Physics:-`*`(v, exp(sqrt(b^2+tt^2))))+Physics:-`*`(Physics:-`*`(Physics:-`*`(2, tt), exp(Physics:-`*`(Physics:-`*`(Physics:-`*`(.5, I), v), tt))), 1/Physics:-`*`(v, exp(sqrt(b^2+tt^2)))), tt = -500 .. z):

Mc := Mc[1]+Mc[2]+Mc[3]+Mc[4]:

N[1] := Int(Physics:-`*`(Physics:-`*`(Physics:-`*`(2, tt), exp(-Physics:-`*`(Physics:-`*`(Physics:-`*`(.5, I), v), tt))), 1/Physics:-`*`(Physics:-`*`(sqrt(b^2+tt^2), v), exp(sqrt(b^2+tt^2))))-Physics:-`*`(Physics:-`*`(Physics:-`*`(2, tt), exp(Physics:-`*`(Physics:-`*`(Physics:-`*`(.5, I), v), tt))), 1/Physics:-`*`(Physics:-`*`(sqrt(b^2+tt^2), v), exp(sqrt(b^2+tt^2))))+Physics:-`*`(Physics:-`*`(Physics:-`*`(2, I), exp(-Physics:-`*`(Physics:-`*`(Physics:-`*`(.5, I), v), tt))), 1/exp(sqrt(b^2+tt^2))), tt = -500 .. z):

N[2] := Physics:-`*`(z, Int(-Physics:-`*`(Physics:-`*`(2, exp(-Physics:-`*`(Physics:-`*`(Physics:-`*`(.5, I), v), tt))), 1/Physics:-`*`(Physics:-`*`(sqrt(b^2+tt^2), v), exp(sqrt(b^2+tt^2))))+Physics:-`*`(Physics:-`*`(2, exp(Physics:-`*`(Physics:-`*`(Physics:-`*`(.5, I), v), tt))), 1/Physics:-`*`(Physics:-`*`(sqrt(b^2+tt^2), v), exp(sqrt(b^2+tt^2)))), tt = -500 .. z)):

N := N[1]+N[2]:

Nc[1] := Int(-Physics:-`*`(Physics:-`*`(Physics:-`*`(2., tt), exp(Physics:-`*`(Physics:-`*`(Physics:-`*`(.5, I), v), tt))), 1/Physics:-`*`(Physics:-`*`(sqrt(b^2+tt^2), v), exp(sqrt(b^2+tt^2))))+Physics:-`*`(Physics:-`*`(Physics:-`*`(2., tt), exp(-Physics:-`*`(Physics:-`*`(Physics:-`*`(.5, I), v), tt))), 1/Physics:-`*`(Physics:-`*`(sqrt(b^2+tt^2), v), exp(sqrt(b^2+tt^2))))-Physics:-`*`(Physics:-`*`(Physics:-`*`(2., I), exp(-Physics:-`*`(Physics:-`*`(Physics:-`*`(.5, I), v), tt))), 1/exp(sqrt(b^2+tt^2))), tt = -500 .. z):

Nc[2] := Physics:-`*`(z, Int(Physics:-`*`(Physics:-`*`(2., exp(Physics:-`*`(Physics:-`*`(Physics:-`*`(.5, I), v), tt))), 1/Physics:-`*`(Physics:-`*`(sqrt(b^2+tt^2), v), exp(sqrt(b^2+tt^2))))-Physics:-`*`(Physics:-`*`(2., exp(-Physics:-`*`(Physics:-`*`(Physics:-`*`(.5, I), v), tt))), 1/Physics:-`*`(Physics:-`*`(sqrt(b^2+tt^2), v), exp(sqrt(b^2+tt^2)))), tt = -500 .. z)):

Nc := Nc[1]+Nc[2]:

V := Physics:-`*`(Physics:-`*`(1/Physics:-`*`(4, Pi^2), 1/sqrt(b^2+z^2)), Physics:-`*`(exp(-Physics:-`*`(2, sqrt(b^2+z^2))), Physics:-`*`(2, sqrt(b^2+z^2))+2)-2):

Vc := Physics:-`*`(Physics:-`*`(Physics:-`*`(-1, 1/Physics:-`*`(4, Pi^2)), 1/sqrt(b^2+z^2)), Physics:-`*`(exp(-Physics:-`*`(2, sqrt(b^2+z^2))), Physics:-`*`(2, sqrt(b^2+z^2))+2)-2):

``

H := proc (z) local t; if not z::numeric then return ('procname')(args) end if; evalf(-I*(z^2*(Int(-(2*I)*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))+(2*I)*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+z*(Int((4*I)*tt*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))-(4*I)*tt*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+z*(Int(-2*exp((-1)*.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2)))-2*exp(.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+Int(-(2*I)*tt^2*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))+(2*I)*tt^2*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))+2*tt*exp((-1)*.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2)))+2*tt*exp(.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2))), tt = -500 .. z))*(-1/2+(1/2)*p^2*v^2+1/sqrt(b^2+z^2)+(1/4)*(exp(-2*sqrt(b^2+z^2))*(2*sqrt(b^2+z^2)+2)-2)/(Pi^2*sqrt(b^2+z^2)))/(((z^2*(Int(-(2*I)*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))+(2*I)*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+z*(Int((4*I)*tt*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))-(4*I)*tt*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+z*(Int(-(2*I)*tt^2*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))+(2*I)*tt^2*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+Int(-2*exp((-1)*.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2)))-2*exp(.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2)))+2*tt*exp((-1)*.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2)))+2*tt*exp(.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2))), tt = -500 .. z))*(z^2*(Int(-(2*I)*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))+(2*I)*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+z*(Int((4*I)*tt*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))-(4*I)*tt*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+z*(Int(-2*exp((-1)*.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2)))-2*exp(.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+Int(-(2*I)*tt^2*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))+(2*I)*tt^2*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))+2*tt*exp((-1)*.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2)))+2*tt*exp(.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2))), tt = -500 .. z))-1)*v)+I*((-1/2+(1/2)*p^2*v^2+1/sqrt(b^2+z^2))*(z^2*(Int(-(2*I)*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))+(2*I)*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+z*(Int((4*I)*tt*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))-(4*I)*tt*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+z*(Int(-2*exp((-1)*.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2)))-2*exp(.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+Int(-(2*I)*tt^2*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))+(2*I)*tt^2*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))+2*tt*exp((-1)*.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2)))+2*tt*exp(.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+Int((-1)*2.*tt*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v*exp(sqrt(b^2+tt^2)))+2.*tt*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v*exp(sqrt(b^2+tt^2)))+(-1)*2.*I*exp((-1)*.5*I*v*tt)/exp(sqrt(b^2+tt^2)), tt = -500 .. z)+z*(Int(2.*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v*exp(sqrt(b^2+tt^2)))+(-1)*2.*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v*exp(sqrt(b^2+tt^2))), tt = -500 .. z)))/(((z^2*(Int(-(2*I)*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))+(2*I)*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+z*(Int((4*I)*tt*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))-(4*I)*tt*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+z*(Int(-(2*I)*tt^2*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))+(2*I)*tt^2*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+Int(-2*exp((-1)*.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2)))-2*exp(.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2)))+2*tt*exp((-1)*.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2)))+2*tt*exp(.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2))), tt = -500 .. z))*(z^2*(Int(-(2*I)*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))+(2*I)*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+z*(Int((4*I)*tt*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))-(4*I)*tt*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+z*(Int(-2*exp((-1)*.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2)))-2*exp(.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+Int(-(2*I)*tt^2*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))+(2*I)*tt^2*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))+2*tt*exp((-1)*.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2)))+2*tt*exp(.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2))), tt = -500 .. z))-1)*v)) end proc:

H(500)

-6.287499768+0.1713975e-19*I

(3)

NULL

L := proc (z) local t; if not z::numeric then return ('procname')(args) end if; evalf(-I*(z^2*(Int(-(2*I)*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))+(2*I)*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+z*(Int((4*I)*tt*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))-(4*I)*tt*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+z*(Int(-2*exp((-1)*.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2)))-2*exp(.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+Int(-(2*I)*tt^2*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))+(2*I)*tt^2*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))+2*tt*exp((-1)*.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2)))+2*tt*exp(.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2))), tt = -500 .. z))*((-1/2+(1/2)*q^2*v^2+1/sqrt(b^2+z^2))*(z^2*(Int(-(2*I)*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))+(2*I)*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+z*(Int((4*I)*tt*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))-(4*I)*tt*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+z*(Int(-(2*I)*tt^2*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))+(2*I)*tt^2*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+Int(-2*exp((-1)*.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2)))-2*exp(.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2)))+2*tt*exp((-1)*.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2)))+2*tt*exp(.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+Int(2*tt*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v*exp(sqrt(b^2+tt^2)))-2*tt*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v*exp(sqrt(b^2+tt^2)))+(2*I)*exp((-1)*.5*I*v*tt)/exp(sqrt(b^2+tt^2)), tt = -500 .. z)+z*(Int(-2*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v*exp(sqrt(b^2+tt^2)))+2*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v*exp(sqrt(b^2+tt^2))), tt = -500 .. z)))/(((z^2*(Int(-(2*I)*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))+(2*I)*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+z*(Int((4*I)*tt*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))-(4*I)*tt*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+z*(Int(-(2*I)*tt^2*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))+(2*I)*tt^2*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+Int(-2*exp((-1)*.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2)))-2*exp(.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2)))+2*tt*exp((-1)*.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2)))+2*tt*exp(.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2))), tt = -500 .. z))*(z^2*(Int(-(2*I)*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))+(2*I)*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+z*(Int((4*I)*tt*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))-(4*I)*tt*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+z*(Int(-2*exp((-1)*.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2)))-2*exp(.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+Int(-(2*I)*tt^2*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))+(2*I)*tt^2*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))+2*tt*exp((-1)*.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2)))+2*tt*exp(.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2))), tt = -500 .. z))-1)*v)+I*(-1/2+(1/2)*q^2*v^2+1/sqrt(b^2+z^2)-(1/4)*(exp(-2*sqrt(b^2+z^2))*(2*sqrt(b^2+z^2)+2)-2)/(Pi^2*sqrt(b^2+z^2)))/(((z^2*(Int(-(2*I)*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))+(2*I)*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+z*(Int((4*I)*tt*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))-(4*I)*tt*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+z*(Int(-(2*I)*tt^2*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))+(2*I)*tt^2*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+Int(-2*exp((-1)*.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2)))-2*exp(.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2)))+2*tt*exp((-1)*.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2)))+2*tt*exp(.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2))), tt = -500 .. z))*(z^2*(Int(-(2*I)*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))+(2*I)*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+z*(Int((4*I)*tt*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))-(4*I)*tt*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+z*(Int(-2*exp((-1)*.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2)))-2*exp(.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+Int(-(2*I)*tt^2*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))+(2*I)*tt^2*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))+2*tt*exp((-1)*.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2)))+2*tt*exp(.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2))), tt = -500 .. z))-1)*v)) end proc:

``

G := proc (z) local t; if not z::numeric then return ('procname')(args) end if; evalf(I*(-1/2+(1/2)*p^2*v^2+1/sqrt(b^2+z^2)+(1/4)*(exp(-2*sqrt(b^2+z^2))*(2*sqrt(b^2+z^2)+2)-2)/(Pi^2*sqrt(b^2+z^2)))/(((z^2*(Int(-(2*I)*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))+(2*I)*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+z*(Int((4*I)*tt*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))-(4*I)*tt*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+z*(Int(-(2*I)*tt^2*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))+(2*I)*tt^2*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+Int(-2*exp((-1)*.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2)))-2*exp(.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2)))+2*tt*exp((-1)*.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2)))+2*tt*exp(.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2))), tt = -500 .. z))*(z^2*(Int(-(2*I)*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))+(2*I)*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+z*(Int((4*I)*tt*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))-(4*I)*tt*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+z*(Int(-2*exp((-1)*.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2)))-2*exp(.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+Int(-(2*I)*tt^2*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))+(2*I)*tt^2*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))+2*tt*exp((-1)*.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2)))+2*tt*exp(.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2))), tt = -500 .. z))-1)*v)-I*(z^2*(Int(-(2*I)*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))+(2*I)*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+z*(Int((4*I)*tt*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))-(4*I)*tt*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+z*(Int(-(2*I)*tt^2*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))+(2*I)*tt^2*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+Int(-2*exp((-1)*.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2)))-2*exp(.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2)))+2*tt*exp((-1)*.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2)))+2*tt*exp(.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2))), tt = -500 .. z))*((-1/2+(1/2)*p^2*v^2+1/sqrt(b^2+z^2))*(z^2*(Int(-(2*I)*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))+(2*I)*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+z*(Int((4*I)*tt*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))-(4*I)*tt*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+z*(Int(-2*exp((-1)*.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2)))-2*exp(.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+Int(-(2*I)*tt^2*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))+(2*I)*tt^2*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))+2*tt*exp((-1)*.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2)))+2*tt*exp(.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+Int((-1)*2.*tt*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v*exp(sqrt(b^2+tt^2)))+2.*tt*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v*exp(sqrt(b^2+tt^2)))+(-1)*2.*I*exp((-1)*.5*I*v*tt)/exp(sqrt(b^2+tt^2)), tt = -500 .. z)+z*(Int(2.*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v*exp(sqrt(b^2+tt^2)))+(-1)*2.*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v*exp(sqrt(b^2+tt^2))), tt = -500 .. z)))/(((z^2*(Int(-(2*I)*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))+(2*I)*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+z*(Int((4*I)*tt*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))-(4*I)*tt*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+z*(Int(-(2*I)*tt^2*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))+(2*I)*tt^2*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+Int(-2*exp((-1)*.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2)))-2*exp(.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2)))+2*tt*exp((-1)*.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2)))+2*tt*exp(.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2))), tt = -500 .. z))*(z^2*(Int(-(2*I)*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))+(2*I)*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+z*(Int((4*I)*tt*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))-(4*I)*tt*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+z*(Int(-2*exp((-1)*.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2)))-2*exp(.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+Int(-(2*I)*tt^2*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))+(2*I)*tt^2*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))+2*tt*exp((-1)*.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2)))+2*tt*exp(.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2))), tt = -500 .. z))-1)*v)) end proc:

``

K := proc (z) local t; if not z::numeric then return ('procname')(args) end if; evalf(I*((-1/2+(1/2)*q^2*v^2+1/sqrt(b^2+z^2))*(z^2*(Int(-(2*I)*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))+(2*I)*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+z*(Int((4*I)*tt*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))-(4*I)*tt*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+z*(Int(-(2*I)*tt^2*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))+(2*I)*tt^2*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+Int(-2*exp((-1)*.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2)))-2*exp(.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2)))+2*tt*exp((-1)*.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2)))+2*tt*exp(.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+Int(2*tt*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v*exp(sqrt(b^2+tt^2)))-2*tt*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v*exp(sqrt(b^2+tt^2)))+(2*I)*exp((-1)*.5*I*v*tt)/exp(sqrt(b^2+tt^2)), tt = -500 .. z)+z*(Int(-2*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v*exp(sqrt(b^2+tt^2)))+2*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v*exp(sqrt(b^2+tt^2))), tt = -500 .. z)))/(((z^2*(Int(-(2*I)*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))+(2*I)*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+z*(Int((4*I)*tt*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))-(4*I)*tt*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+z*(Int(-(2*I)*tt^2*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))+(2*I)*tt^2*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+Int(-2*exp((-1)*.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2)))-2*exp(.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2)))+2*tt*exp((-1)*.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2)))+2*tt*exp(.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2))), tt = -500 .. z))*(z^2*(Int(-(2*I)*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))+(2*I)*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+z*(Int((4*I)*tt*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))-(4*I)*tt*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+z*(Int(-2*exp((-1)*.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2)))-2*exp(.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+Int(-(2*I)*tt^2*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))+(2*I)*tt^2*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))+2*tt*exp((-1)*.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2)))+2*tt*exp(.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2))), tt = -500 .. z))-1)*v)-I*(z^2*(Int(-(2*I)*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))+(2*I)*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+z*(Int((4*I)*tt*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))-(4*I)*tt*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+z*(Int(-(2*I)*tt^2*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))+(2*I)*tt^2*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+Int(-2*exp((-1)*.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2)))-2*exp(.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2)))+2*tt*exp((-1)*.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2)))+2*tt*exp(.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2))), tt = -500 .. z))*(-1/2+(1/2)*q^2*v^2+1/sqrt(b^2+z^2)-(1/4)*(exp(-2*sqrt(b^2+z^2))*(2*sqrt(b^2+z^2)+2)-2)/(Pi^2*sqrt(b^2+z^2)))/(((z^2*(Int(-(2*I)*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))+(2*I)*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+z*(Int((4*I)*tt*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))-(4*I)*tt*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+z*(Int(-(2*I)*tt^2*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))+(2*I)*tt^2*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+Int(-2*exp((-1)*.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2)))-2*exp(.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2)))+2*tt*exp((-1)*.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2)))+2*tt*exp(.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2))), tt = -500 .. z))*(z^2*(Int(-(2*I)*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))+(2*I)*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+z*(Int((4*I)*tt*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))-(4*I)*tt*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+z*(Int(-2*exp((-1)*.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2)))-2*exp(.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2))), tt = -500 .. z))+Int(-(2*I)*tt^2*exp((-1)*.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))+(2*I)*tt^2*exp(.5*I*v*tt)/(sqrt(b^2+tt^2)*v^2*exp(sqrt(b^2+tt^2)))+2*tt*exp((-1)*.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2)))+2*tt*exp(.5*I*v*tt)/(v*exp(sqrt(b^2+tt^2))), tt = -500 .. z))-1)*v)) end proc:

NULL

NULL

sys := {diff(X(z), z) = Physics:-`*`(H(z), Y(z))+Physics:-`*`(L(z), X(z)), diff(Y(z), z) = Physics:-`*`(G(z), Y(z))+Physics:-`*`(K(z), X(z))}

{diff(X(z), z) = H(z)*Y(z)+L(z)*X(z), diff(Y(z), z) = G(z)*Y(z)+K(z)*X(z)}

(4)

IC_1 := {X(-500) = 0, Y(-500) = 1}

{X(-500) = 0, Y(-500) = 1}

(5)

dsol3 := dsolve(`union`(sys, IC_1), numeric, method = dverk78, output = procedurelist, known = [H, L, G, K])