Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

Another GCD attempt. Why is there a parse problem? Thanks


 

``

``

restart

"proc GCD3:=proc(n1,n2)    local r, a,b;    a:=n1; b:= n2;    while (a mod b) >0  do       r:=a mod b;      a:=b;      b:=r;   end do;    return b;  end proc;  "

Error, unable to parse

"proc GCD3:=proc(n1,n2)   local r, a,b;  a:=n1; b:= n2;    while (a mod b) >0  do  r:=a mod b;  a:=b;  b:=r;   end do;  return b;  end proc;  "

 

``


 

Download GCD3.mw

Any sugggestions gratefully received

I do know that Maple has a gcd command but I am just experimenting

GCD2.mw
 

``

``

restart

"GED2:=proc(n1 ,n2)     local a,b;     option remember;     a:=n1:b:=n2:     if b = 0 then do         return a ;    else       return GED2(b, a mod b);    end if;  end proc;"

Error, unterminated procedure

"GED2:=proc(n1 ,n2)    local a,b;     option remember;  a:=n1:b:=n2:     if b = 0 then do return a ;    else  return GED2(b, a mod b);    end if;  end proc;"

 

``


 

Download GCD2.mw

 

In an expression I have several terms with different coefficients and permutations of them say

aS+bc + bS+cS- + cb + others etc

I want to order them the way I want, like, say

abcS+ + bcS+cS- +bc  etc

How can I do this?

Happy New Year!

 

I solve ode for simply DC motor system:

J:= 0.01;b:=0.1;K:= 0.01;R:=1;L:=1;
eq1:=J*diff(theta(t),t,t)+b*diff(theta(t),t)=K*i(t):
eq2:=L*diff(i(t),t)+R*i(t)=V-K*diff(theta(t),t):

ICs:= theta(0)=0, D(theta)(0) = 0, D(theta)(0) = 0, i(0) = 0:
sol:=dsolve({eq1,eq2,ICs},numeric,parameters=[V],output=listprocedure):
sol(parameters=[10]):
ode_x1:=sol[2];
ode_x1:=rhs(ode_x1);
ode_x2:=sol[3];
ode_x2:=rhs(ode_x2);

p1:=plot([ode_x1(t),ode_x2(t)],t=0..50,gridlines=true):
plots[display](array([p1]));

I have time wektor and input wektor V in csv file. How to change this code to simulate 

ode solution ode_x1 and ode_x2 with data from file? Now I set V as 

sol(parameters=[10])

and t in 

plot([ode_x1(t),ode_x2(t)],t=0..50,gridlines=true)

Best

Hello everybody.

This is my question. I tried to evaluate a list of polynomial over a list of values. Something like this:

eval([a*x, b*x], x = [p, q, t])

to get something like this:

[[a*p, a*q, a*t], [b*p, b*q, b*t]]

I know this method: eval~(a*x,x=~[p,q,t])  though this works for one polynomial over a list of values. Not precisely, what I am looking for.

I figured out a method that worked defining functions and with ‘apply’ and ‘map’. Here an example:

m:=t->3*2^t:

n:=t->(t+4)^2:

map(apply~,[m,n],[1,2,3]);

[[6, 12, 24], [25, 72, 147]]

However, how can I get this result using the ‘eval’ function.

Thank you all in advanced for any contribution.

restart; _local(gamma); _local(GAMMA); _local(Pi); _local(pi); _local(I); _local(D);
                               I
Warning, The imaginary unit, I, has been renamed _I
b := .45; mu[t] := 1.112; delta := .181; rho := 0.2e-1; beta[k] := .123; sigma := 0.9e-1; alpha := 0.312e-1; gamma := 0.14e-2; phi := .24; xi := .134; A[h] := .576; k[1] := 0.1e-2; beta[c] := 0.1e-1; mu[c] := 0.19e-2; eta := .557; z := .636; phi[c] := 0.57e-1;
                              0.45
                             1.112
                             0.181
                              0.02
                             0.123
                              0.09
                             0.0312
                             0.0014
                              0.24
                             0.134
                             0.576
                             0.001
                              0.01
                             0.0019
                             0.557
                             0.636
                             0.057
ODE1 := diff(B(T), T) = rho*b-mu[t]*B(T)-delta*B(T);
                  d                            
                 --- B(T) = 0.0090 - 1.293 B(T)
                  dT                           
ODE2 := diff(C(T), T) = delta*B(T)-mu[t]*C(T)+1-rho*b-beta[k]*C(T)*H(T)+sigma*C(T);
  d                                                           
 --- C(T) = 0.181 B(T) - 1.022 C(T) + 0.9910 - 0.123 C(T) H(T)
  dT                                                          
ODE3 := diff(D(T), T) = beta[k]*C(T)*H(T)-(mu[t]+alpha+gamma)*C(T)-phi*C(T);
       d                                                 
      --- D(T) = 0.123 C(T) H(T) - 1.1446 C(T) - phi C(T)
       dT                                                
ODE4 := diff(E(T), T) = alpha*D(T)-xi*E(T)-mu[t]*E(T);
               d                                 
              --- E(T) = 0.0312 D(T) - 1.246 E(T)
               dT                                
ODE5 := diff(F(T), T) = phi*D(T)+xi*E(T)-mu[t]*F(T)-sigma*C(T);
    d                                                       
   --- F(T) = phi D(T) + 0.134 E(T) - 1.112 F(T) - 0.09 C(T)
    dT                                                      
ODE6 := diff(G(T), T) = (1-k[1])*A[h]-beta[c]*G(T)*H(T)-mu[c]*H(T)-eta*J(T);
 d                                                             
--- G(T) = 0.575424 - 0.01 G(T) H(T) - 0.0019 H(T) - 0.557 J(T)
 dT                                                            
ODE7 := diff(H(T), T) = k[1]*A[h]+beta[c]*G(T)*H(T)-mu[c]*H(T)-z*H(T);
        d                                                
       --- H(T) = 0.000576 + 0.01 G(T) H(T) - 0.6379 H(T)
        dT                                               
ODE8 := diff(J(T), T) = z*H(T)-(phi[c]+eta)*J(T);
                d                                
               --- J(T) = 0.636 H(T) - 0.614 J(T)
                dT                               
ans := dsolve({ODE1, ODE2, ODE3, ODE4, ODE5, ODE6, ODE7, ODE8, B(0) = B0, C(0) = C0, D(0) = D0, E(0) = E0, F(0) = F0, G(0) = G0, H(0) = H0, J(0) = J0}, numeric, output = listprocedure);
Warning, The use of global variables in numerical ODE problems is deprecated, and will be removed in a future release. Use the 'parameters' argument instead (see ?dsolve,numeric,parameters)
    [T = proc(T)  ...  end;, B(T) = proc(T)  ...  end;,

      C(T) = proc(T)  ...  end;, D(T) = proc(T)  ...  end;,

      E(T) = proc(T)  ...  end;, F(T) = proc(T)  ...  end;,

      G(T) = proc(T)  ...  end;, H(T) = proc(T)  ...  end;,

      J(T) = proc(T)  ...  end;]
B0 := 100; C0 := 90; D0 := 45; E0 := 38; F0 := 100; G0 := 45; H0 := 50; J0 := 20;
                              100
                               90
                               45
                               38
                              100
                               45
                               50
                               20
ans := dsolve([ODE1, ODE2, ODE3, ODE4, ODE5, ODE6, ODE7, ODE8, B(0) = B0, C(0) = C0, D(0) = D0, E(0) = E0, F(0) = F0, G(0) = G0, H(0) = H0, J(0) = J0], numeric, output = listprocedure);
Error, (in f) unable to store 'HFloat(450.486)-HFloat(90.0)*phi' when datatype=float[8]

 

im trying to input this variable with value structure

> xxx := x[2, 0], x[2, 1], x[2, 2], x[1, 0], x[1, 1]

check the type

> whattype(xxx);
exprseq

but when i try to use Get tools from maplets package, its give me error

> xxx:=Get`('xxx1'::exprseq)
invalid argument(s): xxx1::exprseq

is it possible to passing exprseq from maplet input into procedure?
or is there another way to input it (xxx) ?

You are please to check maple file:    robust_rev1.mw



case close, many thanks @tomleslie and @vv

Might be a beginners trap...

How can I evaluate a constant expression or an expression/formula that contains several scientific constants without "Constantin'g' them out like in sample 2)??

1) Example:

Rb := (1/4)*alpha/(Pi*R[infinity])

'real' value of (Rb)??

1) This example works:

evalf(1-Constant(m[e])/Constant(m[p])) -- but it's awful with respect to the simple demand to just divide two known constants..

Can someone explain why it would be reported that degree(0,x)=-infinity, ldegree(0,x)=infinity;
How are these used in an argument?

Hi guys,

I have a formula such as f(x)=X^2

I want that the software ask value for x and then show the result of f(x)

thanks for any help.

restart;
T := K+F(xi)*F(xi);
                                    2
                           K + F(xi) 
U := alpha[0]+alpha[1]*(m+F(xi))+beta[1]/(m+F(xi))+alpha[2]*(m+F(xi))*(m+F(xi))+beta[2]/(m+F(xi))^2;
                                             beta[1] 
          alpha[0] + alpha[1] (m + F(xi)) + ---------
                                            m + F(xi)

                                   2     beta[2]   
             + alpha[2] (m + F(xi))  + ------------
                                                  2
                                       (m + F(xi)) 
diff(U, xi);
                                / d        \
                        beta[1] |---- F(xi)|
         / d        \           \ dxi      /
alpha[1] |---- F(xi)| - --------------------
         \ dxi      /                  2    
                            (m + F(xi))     

                                                     / d        \
                                           2 beta[2] |---- F(xi)|
                            / d        \             \ dxi      /
   + 2 alpha[2] (m + F(xi)) |---- F(xi)| - ----------------------
                            \ dxi      /                   3     
                                                (m + F(xi))      
d := alpha[1]*T-beta[1]*T/(m+F(xi))^2+2*alpha[2]*(m+F(xi))*T-2*beta[2]*T/(m+F(xi))^3;
                                /         2\
         /         2\   beta[1] \K + F(xi) /
alpha[1] \K + F(xi) / - --------------------
                                       2    
                            (m + F(xi))     

                                                     /         2\
                            /         2\   2 beta[2] \K + F(xi) /
   + 2 alpha[2] (m + F(xi)) \K + F(xi) / - ----------------------
                                                           3     
                                                (m + F(xi))      
diff(d, xi);
                                                  / d        \
                                  2 beta[1] F(xi) |---- F(xi)|
                   / d        \                   \ dxi      /
  2 alpha[1] F(xi) |---- F(xi)| - ----------------------------
                   \ dxi      /                      2        
                                          (m + F(xi))         

                 /         2\ / d        \
       2 beta[1] \K + F(xi) / |---- F(xi)|
                              \ dxi      /
     + -----------------------------------
                             3            
                  (m + F(xi))             

                  / d        \ /         2\
     + 2 alpha[2] |---- F(xi)| \K + F(xi) /
                  \ dxi      /             

                                    / d        \
     + 4 alpha[2] (m + F(xi)) F(xi) |---- F(xi)|
                                    \ dxi      /

                       / d        \
       4 beta[2] F(xi) |---- F(xi)|
                       \ dxi      /
     - ----------------------------
                          3        
               (m + F(xi))         

                 /         2\ / d        \
       6 beta[2] \K + F(xi) / |---- F(xi)|
                              \ dxi      /
     + -----------------------------------
                             4            
                  (m + F(xi))             
collect(%, diff);
  /                                               /         2\
  |                   2 beta[1] F(xi)   2 beta[1] \K + F(xi) /
  |2 alpha[1] F(xi) - --------------- + ----------------------
  |                               2                     3     
  \                    (m + F(xi))           (m + F(xi))      

                  /         2\                               
     + 2 alpha[2] \K + F(xi) / + 4 alpha[2] (m + F(xi)) F(xi)

                                   /         2\\             
       4 beta[2] F(xi)   6 beta[2] \K + F(xi) /| / d        \
     - --------------- + ----------------------| |---- F(xi)|
                   3                     4     | \ dxi      /
        (m + F(xi))           (m + F(xi))      /             
S := (2*alpha[1]*F(xi)-2*beta[1]*F(xi)/(m+F(xi))^2+2*beta[1]*(K+F(xi)^2)/(m+F(xi))^3+2*alpha[2]*(K+F(xi)^2)+4*alpha[2]*(m+F(xi))*F(xi)-4*beta[2]*F(xi)/(m+F(xi))^3+6*beta[2]*(K+F(xi)^2)/(m+F(xi))^4)*T;
  /                                               /         2\
  |                   2 beta[1] F(xi)   2 beta[1] \K + F(xi) /
  |2 alpha[1] F(xi) - --------------- + ----------------------
  |                               2                     3     
  \                    (m + F(xi))           (m + F(xi))      

                  /         2\                               
     + 2 alpha[2] \K + F(xi) / + 4 alpha[2] (m + F(xi)) F(xi)

                                   /         2\\             
       4 beta[2] F(xi)   6 beta[2] \K + F(xi) /| /         2\
     - --------------- + ----------------------| \K + F(xi) /
                   3                     4     |             
        (m + F(xi))           (m + F(xi))      /             
expand((2*w*k*k)*beta*S-(2*A*k*k)*d-2*w*U+k*U*U);
      2                   2               2
-2 A k  alpha[1] K - 2 A k  alpha[1] F(xi) 

          2               3                       
   - 4 A k  alpha[2] F(xi)  - 4 w alpha[2] F(xi) m

   + 2 k alpha[0] alpha[1] m + 2 k alpha[0] alpha[1] F(xi)

     2 k alpha[0] beta[1]                          2
   + -------------------- + 2 k alpha[0] alpha[2] m 
          m + F(xi)                                 

                                2   2 k alpha[0] beta[2]
   + 2 k alpha[0] alpha[2] F(xi)  + --------------------
                                                   2    
                                        (m + F(xi))     

                 2                         3         
   + 2 k alpha[1]  m F(xi) + 2 k alpha[1] m  alpha[2]

                       3            2 k beta[1] beta[2]
   + 2 k alpha[1] F(xi)  alpha[2] + -------------------
                                                  3    
                                       (m + F(xi))     

                 2  3                     2  2      2
   + 4 k alpha[2]  m  F(xi) + 6 k alpha[2]  m  F(xi) 

                 2      3                              2
   + 4 k alpha[2]  F(xi)  m - 2 w alpha[0] + k alpha[0] 

          2                    3        2                2
   + 4 w k  beta alpha[1] F(xi)  + 4 w k  beta alpha[2] K 

                                         2          
           2                    4   2 A k  beta[1] K
   + 12 w k  beta alpha[2] F(xi)  + ----------------
                                                 2  
                                      (m + F(xi))   

          2              2                      
     2 A k  beta[1] F(xi)         2             
   + --------------------- - 4 A k  alpha[2] m K
                    2                           
         (m + F(xi))                            

          2                 2        2                 
   - 4 A k  alpha[2] m F(xi)  - 4 A k  alpha[2] F(xi) K

          2                  2              2
     4 A k  beta[2] K   4 A k  beta[2] F(xi) 
   + ---------------- + ---------------------
                  3                    3     
       (m + F(xi))          (m + F(xi))      

                                     2 k alpha[1] m beta[1]
   + 4 k alpha[0] alpha[2] F(xi) m + ----------------------
                                           m + F(xi)       

                   2               
   + 6 k alpha[1] m  alpha[2] F(xi)

                                  2   2 k alpha[1] m beta[2]
   + 6 k alpha[1] m alpha[2] F(xi)  + ----------------------
                                                      2     
                                           (m + F(xi))      

     2 k alpha[1] F(xi) beta[1]   2 k alpha[1] F(xi) beta[2]
   + -------------------------- + --------------------------
             m + F(xi)                              2       
                                         (m + F(xi))        

                           2                             2
     2 k beta[1] alpha[2] m    2 k beta[1] alpha[2] F(xi) 
   + ----------------------- + ---------------------------
            m + F(xi)                   m + F(xi)         

                   2                             2        
     2 k alpha[2] m  beta[2]   2 k alpha[2] F(xi)  beta[2]
   + ----------------------- + ---------------------------
                     2                           2        
          (m + F(xi))                 (m + F(xi))         

                                                     2 
               2  2             2      2    k beta[1]  
   + k alpha[1]  m  + k alpha[1]  F(xi)  + ------------
                                                      2
                                           (m + F(xi)) 

                                                     2 
               2  4             2      4    k beta[2]  
   + k alpha[2]  m  + k alpha[2]  F(xi)  + ------------
                                                      4
                                           (m + F(xi)) 

                                           2 w beta[1]
   - 2 w alpha[1] m - 2 w alpha[1] F(xi) - -----------
                                            m + F(xi) 

                   2                     2   2 w beta[2] 
   - 2 w alpha[2] m  - 2 w alpha[2] F(xi)  - ------------
                                                        2
                                             (m + F(xi)) 

          2                             2                     2
     4 w k  beta beta[1] F(xi) K   8 w k  beta beta[1] K F(xi) 
   - --------------------------- + ----------------------------
                       2                              3        
            (m + F(xi))                    (m + F(xi))         

                                           2                     
          2                           8 w k  beta beta[2] F(xi) K
   + 8 w k  beta alpha[2] F(xi) m K - ---------------------------
                                                        3        
                                             (m + F(xi))         

           2                     2                               
     24 w k  beta beta[2] K F(xi)         2                      
   + ----------------------------- + 4 w k  beta alpha[1] F(xi) K
                        4                                        
             (m + F(xi))                                         

          2                   3        2               2
     4 w k  beta beta[1] F(xi)    4 w k  beta beta[1] K 
   - -------------------------- + ----------------------
                       2                          3     
            (m + F(xi))                (m + F(xi))      

          2                   4                                 
     4 w k  beta beta[1] F(xi)          2                      2
   + -------------------------- + 16 w k  beta alpha[2] K F(xi) 
                       3                                        
            (m + F(xi))                                         

                                          2                   3
          2                    3     8 w k  beta beta[2] F(xi) 
   + 8 w k  beta alpha[2] F(xi)  m - --------------------------
                                                       3       
                                            (m + F(xi))        

           2               2         2                   4
     12 w k  beta beta[2] K    12 w k  beta beta[2] F(xi) 
   + ----------------------- + ---------------------------
                     4                           4        
          (m + F(xi))                 (m + F(xi))         

     4 k beta[1] alpha[2] F(xi) m   4 k alpha[2] F(xi) m beta[2]
   + ---------------------------- + ----------------------------
              m + F(xi)                                2        
                                            (m + F(xi))         
value(%);
      2                   2               2
-2 A k  alpha[1] K - 2 A k  alpha[1] F(xi) 

          2               3                       
   - 4 A k  alpha[2] F(xi)  - 4 w alpha[2] F(xi) m

   + 2 k alpha[0] alpha[1] m + 2 k alpha[0] alpha[1] F(xi)

     2 k alpha[0] beta[1]                          2
   + -------------------- + 2 k alpha[0] alpha[2] m 
          m + F(xi)                                 

                                2   2 k alpha[0] beta[2]
   + 2 k alpha[0] alpha[2] F(xi)  + --------------------
                                                   2    
                                        (m + F(xi))     

                 2                         3         
   + 2 k alpha[1]  m F(xi) + 2 k alpha[1] m  alpha[2]

                       3            2 k beta[1] beta[2]
   + 2 k alpha[1] F(xi)  alpha[2] + -------------------
                                                  3    
                                       (m + F(xi))     

                 2  3                     2  2      2
   + 4 k alpha[2]  m  F(xi) + 6 k alpha[2]  m  F(xi) 

                 2      3                              2
   + 4 k alpha[2]  F(xi)  m - 2 w alpha[0] + k alpha[0] 

          2                    3        2                2
   + 4 w k  beta alpha[1] F(xi)  + 4 w k  beta alpha[2] K 

                                         2          
           2                    4   2 A k  beta[1] K
   + 12 w k  beta alpha[2] F(xi)  + ----------------
                                                 2  
                                      (m + F(xi))   

          2              2                      
     2 A k  beta[1] F(xi)         2             
   + --------------------- - 4 A k  alpha[2] m K
                    2                           
         (m + F(xi))                            

          2                 2        2                 
   - 4 A k  alpha[2] m F(xi)  - 4 A k  alpha[2] F(xi) K

          2                  2              2
     4 A k  beta[2] K   4 A k  beta[2] F(xi) 
   + ---------------- + ---------------------
                  3                    3     
       (m + F(xi))          (m + F(xi))      

                                     2 k alpha[1] m beta[1]
   + 4 k alpha[0] alpha[2] F(xi) m + ----------------------
                                           m + F(xi)       

                   2               
   + 6 k alpha[1] m  alpha[2] F(xi)

                                  2   2 k alpha[1] m beta[2]
   + 6 k alpha[1] m alpha[2] F(xi)  + ----------------------
                                                      2     
                                           (m + F(xi))      

     2 k alpha[1] F(xi) beta[1]   2 k alpha[1] F(xi) beta[2]
   + -------------------------- + --------------------------
             m + F(xi)                              2       
                                         (m + F(xi))        

                           2                             2
     2 k beta[1] alpha[2] m    2 k beta[1] alpha[2] F(xi) 
   + ----------------------- + ---------------------------
            m + F(xi)                   m + F(xi)         

                   2                             2        
     2 k alpha[2] m  beta[2]   2 k alpha[2] F(xi)  beta[2]
   + ----------------------- + ---------------------------
                     2                           2        
          (m + F(xi))                 (m + F(xi))         

                                                     2 
               2  2             2      2    k beta[1]  
   + k alpha[1]  m  + k alpha[1]  F(xi)  + ------------
                                                      2
                                           (m + F(xi)) 

                                                     2 
               2  4             2      4    k beta[2]  
   + k alpha[2]  m  + k alpha[2]  F(xi)  + ------------
                                                      4
                                           (m + F(xi)) 

                                           2 w beta[1]
   - 2 w alpha[1] m - 2 w alpha[1] F(xi) - -----------
                                            m + F(xi) 

                   2                     2   2 w beta[2] 
   - 2 w alpha[2] m  - 2 w alpha[2] F(xi)  - ------------
                                                        2
                                             (m + F(xi)) 

          2                             2                     2
     4 w k  beta beta[1] F(xi) K   8 w k  beta beta[1] K F(xi) 
   - --------------------------- + ----------------------------
                       2                              3        
            (m + F(xi))                    (m + F(xi))         

                                           2                     
          2                           8 w k  beta beta[2] F(xi) K
   + 8 w k  beta alpha[2] F(xi) m K - ---------------------------
                                                        3        
                                             (m + F(xi))         

           2                     2                               
     24 w k  beta beta[2] K F(xi)         2                      
   + ----------------------------- + 4 w k  beta alpha[1] F(xi) K
                        4                                        
             (m + F(xi))                                         

          2                   3        2               2
     4 w k  beta beta[1] F(xi)    4 w k  beta beta[1] K 
   - -------------------------- + ----------------------
                       2                          3     
            (m + F(xi))                (m + F(xi))      

          2                   4                                 
     4 w k  beta beta[1] F(xi)          2                      2
   + -------------------------- + 16 w k  beta alpha[2] K F(xi) 
                       3                                        
            (m + F(xi))                                         

                                          2                   3
          2                    3     8 w k  beta beta[2] F(xi) 
   + 8 w k  beta alpha[2] F(xi)  m - --------------------------
                                                       3       
                                            (m + F(xi))        

           2               2         2                   4
     12 w k  beta beta[2] K    12 w k  beta beta[2] F(xi) 
   + ----------------------- + ---------------------------
                     4                           4        
          (m + F(xi))                 (m + F(xi))         

     4 k beta[1] alpha[2] F(xi) m   4 k alpha[2] F(xi) m beta[2]
   + ---------------------------- + ----------------------------
              m + F(xi)                                2        
                                            (m + F(xi))         

expr := simplify(%);
      2                   2               2
-2 A k  alpha[1] K - 2 A k  alpha[1] F(xi) 

          2               3                       
   - 4 A k  alpha[2] F(xi)  - 4 w alpha[2] F(xi) m

   + 2 k alpha[0] alpha[1] m + 2 k alpha[0] alpha[1] F(xi)

     2 k alpha[0] beta[1]                          2
   + -------------------- + 2 k alpha[0] alpha[2] m 
          m + F(xi)                                 

                                2   2 k alpha[0] beta[2]
   + 2 k alpha[0] alpha[2] F(xi)  + --------------------
                                                   2    
                                        (m + F(xi))     

                 2                         3         
   + 2 k alpha[1]  m F(xi) + 2 k alpha[1] m  alpha[2]

                       3            2 k beta[1] beta[2]
   + 2 k alpha[1] F(xi)  alpha[2] + -------------------
                                                  3    
                                       (m + F(xi))     

                 2  3                     2  2      2
   + 4 k alpha[2]  m  F(xi) + 6 k alpha[2]  m  F(xi) 

                 2      3                              2
   + 4 k alpha[2]  F(xi)  m - 2 w alpha[0] + k alpha[0] 

          2                    3        2                2
   + 4 w k  beta alpha[1] F(xi)  + 4 w k  beta alpha[2] K 

                                         2          
           2                    4   2 A k  beta[1] K
   + 12 w k  beta alpha[2] F(xi)  + ----------------
                                                 2  
                                      (m + F(xi))   

          2              2                      
     2 A k  beta[1] F(xi)         2             
   + --------------------- - 4 A k  alpha[2] m K
                    2                           
         (m + F(xi))                            

          2                 2        2                 
   - 4 A k  alpha[2] m F(xi)  - 4 A k  alpha[2] F(xi) K

          2                  2              2
     4 A k  beta[2] K   4 A k  beta[2] F(xi) 
   + ---------------- + ---------------------
                  3                    3     
       (m + F(xi))          (m + F(xi))      

                                     2 k alpha[1] m beta[1]
   + 4 k alpha[0] alpha[2] F(xi) m + ----------------------
                                           m + F(xi)       

                   2               
   + 6 k alpha[1] m  alpha[2] F(xi)

                                  2   2 k alpha[1] m beta[2]
   + 6 k alpha[1] m alpha[2] F(xi)  + ----------------------
                                                      2     
                                           (m + F(xi))      

     2 k alpha[1] F(xi) beta[1]   2 k alpha[1] F(xi) beta[2]
   + -------------------------- + --------------------------
             m + F(xi)                              2       
                                         (m + F(xi))        

                           2                             2
     2 k beta[1] alpha[2] m    2 k beta[1] alpha[2] F(xi) 
   + ----------------------- + ---------------------------
            m + F(xi)                   m + F(xi)         

                   2                             2        
     2 k alpha[2] m  beta[2]   2 k alpha[2] F(xi)  beta[2]
   + ----------------------- + ---------------------------
                     2                           2        
          (m + F(xi))                 (m + F(xi))         

                                                     2 
               2  2             2      2    k beta[1]  
   + k alpha[1]  m  + k alpha[1]  F(xi)  + ------------
                                                      2
                                           (m + F(xi)) 

                                                     2 
               2  4             2      4    k beta[2]  
   + k alpha[2]  m  + k alpha[2]  F(xi)  + ------------
                                                      4
                                           (m + F(xi)) 

                                           2 w beta[1]
   - 2 w alpha[1] m - 2 w alpha[1] F(xi) - -----------
                                            m + F(xi) 

                   2                     2   2 w beta[2] 
   - 2 w alpha[2] m  - 2 w alpha[2] F(xi)  - ------------
                                                        2
                                             (m + F(xi)) 

          2                             2                     2
     4 w k  beta beta[1] F(xi) K   8 w k  beta beta[1] K F(xi) 
   - --------------------------- + ----------------------------
                       2                              3        
            (m + F(xi))                    (m + F(xi))         

                                           2                     
          2                           8 w k  beta beta[2] F(xi) K
   + 8 w k  beta alpha[2] F(xi) m K - ---------------------------
                                                        3        
                                             (m + F(xi))         

           2                     2                               
     24 w k  beta beta[2] K F(xi)         2                      
   + ----------------------------- + 4 w k  beta alpha[1] F(xi) K
                        4                                        
             (m + F(xi))                                         

          2                   3        2               2
     4 w k  beta beta[1] F(xi)    4 w k  beta beta[1] K 
   - -------------------------- + ----------------------
                       2                          3     
            (m + F(xi))                (m + F(xi))      

          2                   4                                 
     4 w k  beta beta[1] F(xi)          2                      2
   + -------------------------- + 16 w k  beta alpha[2] K F(xi) 
                       3                                        
            (m + F(xi))                                         

                                          2                   3
          2                    3     8 w k  beta beta[2] F(xi) 
   + 8 w k  beta alpha[2] F(xi)  m - --------------------------
                                                       3       
                                            (m + F(xi))        

           2               2         2                   4
     12 w k  beta beta[2] K    12 w k  beta beta[2] F(xi) 
   + ----------------------- + ---------------------------
                     4                           4        
          (m + F(xi))                 (m + F(xi))         

     4 k beta[1] alpha[2] F(xi) m   4 k alpha[2] F(xi) m beta[2]
   + ---------------------------- + ----------------------------
              m + F(xi)                                2        
                                            (m + F(xi))         

temp := algsubs(m+F(xi) = freeze(m+F(xi)), numer(expr));
/        2            4                    2                    
\4 beta k  w freeze/R0  alpha[2] + 4 beta k  w freeze/R0 beta[1]

              2          \      4   /        2            5      
   + 12 beta k  w beta[2]/ F(xi)  + \8 beta k  w freeze/R0  alpha

                2            4         
  [2] + 4 beta k  w freeze/R0  alpha[1]

             2            2        
   - 4 beta k  w freeze/R0  beta[1]

             2                    \      3   /          2   
   - 8 beta k  w freeze/R0 beta[2]/ F(xi)  + \8 K beta k  w 

           4                 2          5         
  freeze/R0  alpha[2] - 4 A k  freeze/R0  alpha[2]

          2          4                 2          2        
   - 2 A k  freeze/R0  alpha[1] + 2 A k  freeze/R0  beta[1]

          2                                  2               
   + 8 w k  beta beta[1] K freeze/R0 + 24 w k  beta beta[2] K

          2                  \      2   /          2            5 
   + 4 A k  beta[2] freeze/R0/ F(xi)  + \8 K beta k  w freeze/R0  

                       2            4         
  alpha[2] + 4 K beta k  w freeze/R0  alpha[1]

               2            2        
   - 4 K beta k  w freeze/R0  beta[1]

               2                    \      
   - 8 K beta k  w freeze/R0 beta[2]/ F(xi)

               2          8              6         2
   + k alpha[2]  freeze/R0  + k freeze/R0  alpha[1] 

                  6                         5         
   - 2 w freeze/R0  alpha[2] - 2 w freeze/R0  alpha[1]

              4           2              4           
   + freeze/R0  k alpha[0]  - 2 freeze/R0  w alpha[0]

                                    7
   + 2 k alpha[1] alpha[2] freeze/R0 

                  6                  
   + 2 k freeze/R0  alpha[0] alpha[2]

                  5                  
   + 2 k freeze/R0  alpha[0] alpha[1]

                  5                 
   + 2 k freeze/R0  alpha[2] beta[1]

                4                   
   + 2 freeze/R0  k alpha[1] beta[1]

                4                   
   + 2 freeze/R0  k alpha[2] beta[2]

                  3                 
   + 2 k freeze/R0  alpha[0] beta[1]

                  3                 
   + 2 k freeze/R0  alpha[1] beta[2]

                  2                 
   + 2 k freeze/R0  alpha[0] beta[2]

            2          5                       4    2           
   - 4 A K k  freeze/R0  alpha[2] - 2 freeze/R0  A k  alpha[1] K

            2          2        
   + 2 A K k  freeze/R0  beta[1]

                4    2                2
   + 4 freeze/R0  w k  beta alpha[2] K 

          2               2                          3        
   + 4 w k  beta beta[1] K  freeze/R0 - 2 w freeze/R0  beta[1]

                2        2                2        
   + k freeze/R0  beta[1]  - 2 w freeze/R0  beta[2]

          2                                                    
   + 4 A k  beta[2] K freeze/R0 + 2 k beta[1] beta[2] freeze/R0

              2         2               2
   + k beta[2]  + 12 w k  beta beta[2] K 
thaw(collect(temp, freeze(m+F(xi)))/denom(expr));
     1       /          2            8
------------ \k alpha[2]  (m + F(xi)) 
           4                          
(m + F(xi))                           

                                      7              6 /         
   + 2 k alpha[1] alpha[2] (m + F(xi))  + (m + F(xi))  \2 k alpha

                           2               \   /       3       2   
  [0] alpha[2] + k alpha[1]  - 2 w alpha[2]/ + \8 F(xi)  beta k  w 

                             2           
  alpha[2] + 8 K F(xi) beta k  w alpha[2]

              2  2                   2         
   - 4 A F(xi)  k  alpha[2] - 4 A K k  alpha[2]

                                                                \ 
   + 2 k alpha[0] alpha[1] + 2 k alpha[2] beta[1] - 2 w alpha[1]/ 

             5   /     2                    4
  (m + F(xi))  + \4 w k  beta alpha[2] F(xi) 

          2                    3
   + 4 w k  beta alpha[1] F(xi) 

     /          2                   2         \      2
   + \8 K beta k  w alpha[2] - 2 A k  alpha[1]/ F(xi) 

          2                                   2               
   + 4 w k  beta alpha[1] F(xi) K + k alpha[0]  - 2 w alpha[0]

   + 2 k alpha[1] beta[1] + 2 k alpha[2] beta[2]

          2                   2                2\            4   
   - 2 A k  alpha[1] K + 4 w k  beta alpha[2] K / (m + F(xi))  + 

  (2 k alpha[0] beta[1] + 2 k alpha[1] beta[2] - 2 w beta[1]) 

             3   /      2                   3
  (m + F(xi))  + \-4 w k  beta beta[1] F(xi) 

          2                             2              2
   - 4 w k  beta beta[1] F(xi) K + 2 A k  beta[1] F(xi) 

          2                                             2
   + 2 A k  beta[1] K + 2 k alpha[0] beta[2] + k beta[1] 

                \            2   /     2                   4
   - 2 w beta[2]/ (m + F(xi))  + \4 w k  beta beta[1] F(xi) 

          2                   3
   - 8 w k  beta beta[2] F(xi) 

     /          2                  2        \      2
   + \8 K beta k  w beta[1] + 4 A k  beta[2]/ F(xi) 

          2                             2               2
   - 8 w k  beta beta[2] F(xi) K + 4 w k  beta beta[1] K 

          2                                \            
   + 4 A k  beta[2] K + 2 k beta[1] beta[2]/ (m + F(xi))

           2                   4         2                     2
   + 12 w k  beta beta[2] F(xi)  + 24 w k  beta beta[2] K F(xi) 

           2               2            2\
   + 12 w k  beta beta[2] K  + k beta[2] /
collect(%, F(xi));
     1       //         2                        2\      8   /   
------------ \\12 beta k  w alpha[2] + k alpha[2] / F(xi)  + \56 
           4                                                     
(m + F(xi))                                                      

        2                        2                   2         
  beta k  m w alpha[2] + 4 beta k  w alpha[1] - 4 A k  alpha[2]

                   2                        \      7   /         
   + 8 k m alpha[2]  + 2 k alpha[1] alpha[2]/ F(xi)  + \104 beta 

   2  2                         2           
  k  m  w alpha[2] + 16 K beta k  w alpha[2]

              2                      2           
   + 16 beta k  m w alpha[1] - 20 A k  m alpha[2]

           2         2        2         
   + 28 k m  alpha[2]  - 2 A k  alpha[1]

   + 14 k m alpha[1] alpha[2] + 2 k alpha[0] alpha[2]

               2               \      6   /             2  3
   + k alpha[1]  - 2 w alpha[2]/ F(xi)  + \56 k alpha[2]  m 

                             2
   + 42 k alpha[1] alpha[2] m 

         /                                  2               \
   + 6 m \2 k alpha[0] alpha[2] + k alpha[1]  - 2 w alpha[2]/

           2                3         2                  
   + 96 w k  beta alpha[2] m  + 40 w k  beta alpha[2] K m

           2           2          2         
   - 40 A k  alpha[2] m  - 4 A K k  alpha[2]

   + 2 k alpha[0] alpha[1] + 2 k alpha[2] beta[1] - 2 w alpha[1]

          2                
   + 4 w k  beta alpha[1] K

       /          2                   2         \  
   + 4 \8 K beta k  w alpha[2] - 2 A k  alpha[1]/ m

           2                2\      5   /             2  4
   + 24 w k  beta alpha[1] m / F(xi)  + \70 k alpha[2]  m 

                    3         
   + 70 k alpha[1] m  alpha[2]

         2 /                                  2               \     
   + 15 m  \2 k alpha[0] alpha[2] + k alpha[1]  - 2 w alpha[2]/ + 5 

  /        2                                 
  \-4 A K k  alpha[2] + 2 k alpha[0] alpha[1]

                                        \  
   + 2 k alpha[2] beta[1] - 2 w alpha[1]/ m

           2                  2         2           3
   + 80 w k  beta alpha[2] K m  - 40 A k  alpha[2] m 

           2                4        2                2
   + 44 w k  beta alpha[2] m  + 4 w k  beta alpha[2] K 

          2                        2                       
   - 2 A k  alpha[1] K + k alpha[0]  + 2 k alpha[1] beta[1]

   + 2 k alpha[2] beta[2] - 2 w alpha[0]

           2                  
   + 16 w k  beta alpha[1] K m

       /          2                   2         \  2
   + 6 \8 K beta k  w alpha[2] - 2 A k  alpha[1]/ m 

           2                3        2               
   + 16 w k  beta alpha[1] m  - 4 w k  beta beta[1] m

          2                2             \      4   /     
   + 2 A k  beta[1] + 4 w k  beta beta[2]/ F(xi)  + \56 k 

          2  5                           4
  alpha[2]  m  + 70 k alpha[1] alpha[2] m 

         3 /                                  2               \      
   + 20 m  \2 k alpha[0] alpha[2] + k alpha[1]  - 2 w alpha[2]/ + 10 

  /        2                                 
  \-4 A K k  alpha[2] + 2 k alpha[0] alpha[1]

                                        \  2
   + 2 k alpha[2] beta[1] - 2 w alpha[1]/ m 

           2                  3         2           4
   + 80 w k  beta alpha[2] K m  - 20 A k  alpha[2] m 

          2                5     /   2       2           
   + 8 w k  beta alpha[2] m  + 4 \4 K  beta k  w alpha[2]

            2                      2                       
   - 2 A K k  alpha[1] + k alpha[0]  + 2 k alpha[1] beta[1]

                                        \  
   + 2 k alpha[2] beta[2] - 2 w alpha[0]/ m

           2                  2
   + 24 w k  beta alpha[1] K m 

       /          2                   2         \  3
   + 4 \8 K beta k  w alpha[2] - 2 A k  alpha[1]/ m 

          2                4                       
   + 4 w k  beta alpha[1] m  + 2 k alpha[0] beta[1]

                                               2               2
   + 2 k alpha[1] beta[2] - 2 w beta[1] - 4 w k  beta beta[1] m 

          2                       2          
   + 4 w k  beta beta[1] K + 4 A k  beta[1] m

          2                       2        \      3   /     
   - 8 w k  beta beta[2] m + 4 A k  beta[2]/ F(xi)  + \28 k 

          2  6                           5
  alpha[2]  m  + 42 k alpha[1] alpha[2] m 

         4 /                                  2               \      
   + 15 m  \2 k alpha[0] alpha[2] + k alpha[1]  - 2 w alpha[2]/ + 10 

  /        2                                 
  \-4 A K k  alpha[2] + 2 k alpha[0] alpha[1]

                                        \  3
   + 2 k alpha[2] beta[1] - 2 w alpha[1]/ m 

           2                  4        2           5     /   2 
   + 40 w k  beta alpha[2] K m  - 4 A k  alpha[2] m  + 6 \4 K  

        2                     2                      2
  beta k  w alpha[2] - 2 A K k  alpha[1] + k alpha[0] 

                                                               \ 
   + 2 k alpha[1] beta[1] + 2 k alpha[2] beta[2] - 2 w alpha[0]/ 

   2         2                  3
  m  + 16 w k  beta alpha[1] K m 

     /          2                   2         \  4
   + \8 K beta k  w alpha[2] - 2 A k  alpha[1]/ m 

   + 3 (2 k alpha[0] beta[1] + 2 k alpha[1] beta[2] - 2 w beta[1]

             2                         2          2
  ) m - 8 w k  beta beta[1] K m + 2 A k  beta[1] m 

          2                                             2
   + 2 A k  beta[1] K + 2 k alpha[0] beta[2] + k beta[1] 

                         2               
   - 2 w beta[2] + 16 w k  beta beta[2] K

     /          2                  2        \  \      2   /    
   + \8 K beta k  w beta[1] + 4 A k  beta[2]/ m/ F(xi)  + \8 k 

          2  7                           6
  alpha[2]  m  + 14 k alpha[1] alpha[2] m 

        5 /                                  2               \     
   + 6 m  \2 k alpha[0] alpha[2] + k alpha[1]  - 2 w alpha[2]/ + 5 

  /        2                                 
  \-4 A K k  alpha[2] + 2 k alpha[0] alpha[1]

                                        \  4
   + 2 k alpha[2] beta[1] - 2 w alpha[1]/ m 

          2                  5     /   2       2           
   + 8 w k  beta alpha[2] K m  + 4 \4 K  beta k  w alpha[2]

            2                      2                       
   - 2 A K k  alpha[1] + k alpha[0]  + 2 k alpha[1] beta[1]

                                        \  3
   + 2 k alpha[2] beta[2] - 2 w alpha[0]/ m 

          2                  4
   + 4 w k  beta alpha[1] K m 

   + 3 (2 k alpha[0] beta[1] + 2 k alpha[1] beta[2] - 2 w beta[1]

     2     /       2                                           2
  ) m  + 2 \2 A K k  beta[1] + 2 k alpha[0] beta[2] + k beta[1] 

                \          2                 2
   - 2 w beta[2]/ m - 4 w k  beta beta[1] K m 

          2               2        2                 
   + 4 w k  beta beta[1] K  - 8 w k  beta beta[2] K m

          2                                \      
   + 4 A k  beta[2] K + 2 k beta[1] beta[2]/ F(xi)

        8         2        7                  
   + k m  alpha[2]  + 2 k m  alpha[1] alpha[2]

      6 /                                  2               \   /
   + m  \2 k alpha[0] alpha[2] + k alpha[1]  - 2 w alpha[2]/ + \
        2                                                        
-4 A K k  alpha[2] + 2 k alpha[0] alpha[1] + 2 k alpha[2] beta[1]

                 \  5   /   2       2           
   - 2 w alpha[1]/ m  + \4 K  beta k  w alpha[2]

            2                      2                       
   - 2 A K k  alpha[1] + k alpha[0]  + 2 k alpha[1] beta[1]

                                        \  4
   + 2 k alpha[2] beta[2] - 2 w alpha[0]/ m 

   + (2 k alpha[0] beta[1] + 2 k alpha[1] beta[2] - 2 w beta[1]) 

   3   /       2                                           2
  m  + \2 A K k  beta[1] + 2 k alpha[0] beta[2] + k beta[1] 

                \  2   /   2       2                    2        
   - 2 w beta[2]/ m  + \4 K  beta k  w beta[1] + 4 A K k  beta[2]

                        \           2               2
   + 2 k beta[1] beta[2]/ m + 12 w k  beta beta[2] K 

              2\
   + k beta[2] /
solve({k*m^8*alpha[2]^2+2*k*m^7*alpha[1]*alpha[2]+m^6*(2*k*alpha[0]*alpha[2]+k*alpha[1]^2-2*w*alpha[2])+(-4*A*K*k^2*alpha[2]+2*k*alpha[0]*alpha[1]+2*k*alpha[2]*beta[1]-2*w*alpha[1])*m^5+(4*K^2*beta*k^2*w*alpha[2]-2*A*K*k^2*alpha[1]+k*alpha[0]^2+2*k*alpha[1]*beta[1]+2*k*alpha[2]*beta[2]-2*w*alpha[0])*m^4+(2*k*alpha[0]*beta[1]+2*k*alpha[1]*beta[2]-2*w*beta[1])*m^3+(2*A*K*k^2*beta[1]+2*k*alpha[0]*beta[2]+k*beta[1]^2-2*w*beta[2])*m^2+(4*K^2*beta*k^2*w*beta[1]+4*A*K*k^2*beta[2]+2*k*beta[1]*beta[2])*m+12*w*k^2*beta*beta[2]*K^2+k*beta[2]^2 = 0, 56*k*alpha[2]^2*m^3+42*k*alpha[1]*alpha[2]*m^2+6*m*(2*k*alpha[0]*alpha[2]+k*alpha[1]^2-2*w*alpha[2])+96*w*k^2*beta*alpha[2]*m^3+40*w*k^2*beta*alpha[2]*K*m-40*A*k^2*alpha[2]*m^2-4*A*K*k^2*alpha[2]+2*k*alpha[0]*alpha[1]+2*k*alpha[2]*beta[1]-2*w*alpha[1]+4*w*k^2*beta*alpha[1]*K+(4*(8*K*beta*k^2*w*alpha[2]-2*A*k^2*alpha[1]))*m+24*w*k^2*beta*alpha[1]*m^2 = 0, 8*k*alpha[2]^2*m^7+14*k*alpha[1]*alpha[2]*m^6+6*m^5*(2*k*alpha[0]*alpha[2]+k*alpha[1]^2-2*w*alpha[2])+(5*(-4*A*K*k^2*alpha[2]+2*k*alpha[0]*alpha[1]+2*k*alpha[2]*beta[1]-2*w*alpha[1]))*m^4+8*w*k^2*beta*alpha[2]*K*m^5+(4*(4*K^2*beta*k^2*w*alpha[2]-2*A*K*k^2*alpha[1]+k*alpha[0]^2+2*k*alpha[1]*beta[1]+2*k*alpha[2]*beta[2]-2*w*alpha[0]))*m^3+4*w*k^2*beta*alpha[1]*K*m^4+(3*(2*k*alpha[0]*beta[1]+2*k*alpha[1]*beta[2]-2*w*beta[1]))*m^2+(2*(2*A*K*k^2*beta[1]+2*k*alpha[0]*beta[2]+k*beta[1]^2-2*w*beta[2]))*m-4*w*k^2*beta*beta[1]*K*m^2+4*K^2*beta*k^2*w*beta[1]-8*w*k^2*beta*beta[2]*K*m+4*A*K*k^2*beta[2]+2*k*beta[1]*beta[2] = 0, 28*k*alpha[2]^2*m^6+42*k*alpha[1]*alpha[2]*m^5+15*m^4*(2*k*alpha[0]*alpha[2]+k*alpha[1]^2-2*w*alpha[2])+(10*(-4*A*K*k^2*alpha[2]+2*k*alpha[0]*alpha[1]+2*k*alpha[2]*beta[1]-2*w*alpha[1]))*m^3+40*w*k^2*beta*alpha[2]*K*m^4-4*A*k^2*alpha[2]*m^5+(6*(4*K^2*beta*k^2*w*alpha[2]-2*A*K*k^2*alpha[1]+k*alpha[0]^2+2*k*alpha[1]*beta[1]+2*k*alpha[2]*beta[2]-2*w*alpha[0]))*m^2+16*w*k^2*beta*alpha[1]*K*m^3+(8*K*beta*k^2*w*alpha[2]-2*A*k^2*alpha[1])*m^4+(3*(2*k*alpha[0]*beta[1]+2*k*alpha[1]*beta[2]-2*w*beta[1]))*m-8*w*k^2*beta*beta[1]*K*m+2*A*k^2*beta[1]*m^2+2*A*K*k^2*beta[1]+2*k*alpha[0]*beta[2]+k*beta[1]^2-2*w*beta[2]+16*w*k^2*beta*beta[2]*K+(8*K*beta*k^2*w*beta[1]+4*A*k^2*beta[2])*m = 0, 56*k*alpha[2]^2*m^5+70*k*alpha[1]*alpha[2]*m^4+20*m^3*(2*k*alpha[0]*alpha[2]+k*alpha[1]^2-2*w*alpha[2])+(10*(-4*A*K*k^2*alpha[2]+2*k*alpha[0]*alpha[1]+2*k*alpha[2]*beta[1]-2*w*alpha[1]))*m^2+80*w*k^2*beta*alpha[2]*K*m^3-20*A*k^2*alpha[2]*m^4+8*w*k^2*beta*alpha[2]*m^5+(4*(4*K^2*beta*k^2*w*alpha[2]-2*A*K*k^2*alpha[1]+k*alpha[0]^2+2*k*alpha[1]*beta[1]+2*k*alpha[2]*beta[2]-2*w*alpha[0]))*m+24*w*k^2*beta*alpha[1]*K*m^2+(4*(8*K*beta*k^2*w*alpha[2]-2*A*k^2*alpha[1]))*m^3+4*w*k^2*beta*alpha[1]*m^4+2*k*alpha[0]*beta[1]+2*k*alpha[1]*beta[2]-2*w*beta[1]-4*w*k^2*beta*beta[1]*m^2+4*K*beta*k^2*w*beta[1]+4*A*k^2*beta[1]*m-8*w*k^2*beta*beta[2]*m+4*A*k^2*beta[2] = 0, (0*k)*alpha[2]^2*m^4+70*k*alpha[1]*m^3*alpha[2]+15*m^2*(2*k*alpha[0]*alpha[2]+k*alpha[1]^2-2*w*alpha[2])+(5*(-4*A*K*k^2*alpha[2]+2*k*alpha[0]*alpha[1]+2*k*alpha[2]*beta[1]-2*w*alpha[1]))*m+80*w*k^2*beta*alpha[2]*K*m^2-40*A*k^2*alpha[2]*m^3+44*w*k^2*beta*alpha[2]*m^4+4*K^2*beta*k^2*w*alpha[2]-2*A*K*k^2*alpha[1]+k*alpha[0]^2+2*k*alpha[1]*beta[1]+2*k*alpha[2]*beta[2]-2*w*alpha[0]+16*w*k^2*beta*alpha[1]*K*m+(6*(8*K*beta*k^2*w*alpha[2]-2*A*k^2*alpha[1]))*m^2+16*w*k^2*beta*alpha[1]*m^3-4*w*k^2*beta*beta[1]*m+2*A*k^2*beta[1]+4*w*k^2*beta*beta[2] = 0, 12*beta*k^2*w*alpha[2]+k*alpha[2]^2 = 0, 56*beta*k^2*m*w*alpha[2]+4*beta*k^2*w*alpha[1]-4*A*k^2*alpha[2]+8*k*m*alpha[2]^2+2*k*alpha[1]*alpha[2] = 0, 104*beta*k^2*m^2*w*alpha[2]+16*K*beta*k^2*w*alpha[2]+16*beta*k^2*m*w*alpha[1]-20*A*k^2*m*alpha[2]+28*k*m^2*alpha[2]^2-2*A*k^2*alpha[1]+14*k*m*alpha[1]*alpha[2]+2*k*alpha[0]*alpha[2]+k*alpha[1]^2-2*w*alpha[2] = 0}, {k, m, w, alpha[0], alpha[1], alpha[2], beta[1], beta[2]});
 

Recently I examined a piece of code of mine in an attempt to possibly convert it to another language as it is a numeric code and as such slower in Maple than I'd like it to run. In doing this I ran across the following strangeness, here reproduced in a minimum working example (file attached).

Consider this trivial integral:

x1:=Int(3.52*10^8, ti = 0 .. 1);
(4)

and also this one:

x2:=sin(2*Pi*x1);
(5)

I can then evaluate (4) and take sine(2Pi * the evaluation of (4)):

value(x1);
(6)

sin(2*Pi*(6));
(7)

Hmm... let's evaluate x2, which should be the same, right

value(x2);
0.00000556012229902952                                                              (8)

Oddly enough, it is not. Now the reason they are not 0 is due to round-off error (running the same sheet with Digits := 40 confirms that); but at the same time, (6) is in fact exact. More oddly, if I wrap the input leading to (7) in evalf() then it outputs 0., i.e. exact and correct. I suspect the problem must lie in the different treatments of Pi in the three cases.

I am not ready to call this behaviour a bug since I can see that different ways of evaluating what is essentially the same expression leads to a diffferent round-off. What strikes me is the relatively large errors in this case. The sheet was run with Digits being 15 (my default set in my .mapleinint), I initially expected somewhat more accuracy in the sine function than a mere 6 digits or so. On second thought, however, what is going on seems to be that the evaluation of the integral must be numerical and the large no. of cycles limits the accuracy; if one replaces 3.52E8 (a float) with 352E6 (an exact number) then (7) becomes 0 (exact) while (8) remains at the above value. Why

evalf(sin(2*Pi*(6)))

yields an exact value I do not quite understand.

So, caveat computor once again. This example, while it may look contrived, actually arose from a real-world case I was dealing with (the 352E6 is a frequency in Hz, in my actual application it can vary in time therefore the integration to get the no. of cycles in a given time interval). One annoyance here is that the "right" way to do this is not obvious, at least not to me.

M.D.

integration_test.mw

Hello everyone,

I am beginner to use MAPLE. I am trying write a mathematical variable such as x. I was trying to calculate simple mathematical equation like "3+5", it is ok. However, when I try to write a variable eqn like "x+4-3", Maple gives nothing. If I double press enter it skips this code without any blue answer.

Please help, I tried 2018.0 2018.0 and 2017 and no result.

Thank You

Atakan Zeybek

Given the 2 equations below...

-T*sin(theta(t)) = m*(diff(X(t), t, t)+L*(diff(theta(t), t, t))*cos(theta(t))-L*(diff(theta(t), t))^2*sin(theta(t)))

 T*cos(theta(t))-m*g = m*(diff(Y(t), t, t)+L*(diff(theta(t), t, t))*sin(theta(t))+L*(diff(theta(t), t))^2*cos(theta(t)))

which command(s) will eliminate T and m to give the ODE below?

 L*diff(theta(t), x, x)+(diff(X(t), x, x))*cos(theta)+(diff(Y(t), x, x)+g)*sin(theta) = 0

 

 

restart;
T := K+F(xi)*F(xi);
                                    2
                           K + F(xi) 
U := alpha[0]+alpha[1]*(m+F(xi))+beta[1]/(m+F(xi))+alpha[2]*(m+F(xi))*(m+F(xi))+beta[2]/(m+F(xi))^2;
                                             beta[1] 
          alpha[0] + alpha[1] (m + F(xi)) + ---------
                                            m + F(xi)

                                   2     beta[2]   
             + alpha[2] (m + F(xi))  + ------------
                                                  2
                                       (m + F(xi)) 
diff(U, xi);
                                / d        \
                        beta[1] |---- F(xi)|
         / d        \           \ dxi      /
alpha[1] |---- F(xi)| - --------------------
         \ dxi      /                  2    
                            (m + F(xi))     

                                                     / d        \
                                           2 beta[2] |---- F(xi)|
                            / d        \             \ dxi      /
   + 2 alpha[2] (m + F(xi)) |---- F(xi)| - ----------------------
                            \ dxi      /                   3     
                                                (m + F(xi))      
d := alpha[1]*T-beta[1]*T/(m+F(xi))^2+2*alpha[2]*(m+F(xi))*T-2*beta[2]*T/(m+F(xi))^3;
                                /         2\
         /         2\   beta[1] \K + F(xi) /
alpha[1] \K + F(xi) / - --------------------
                                       2    
                            (m + F(xi))     

                                                     /         2\
                            /         2\   2 beta[2] \K + F(xi) /
   + 2 alpha[2] (m + F(xi)) \K + F(xi) / - ----------------------
                                                           3     
                                                (m + F(xi))      
diff(d, xi);
                                                  / d        \
                                  2 beta[1] F(xi) |---- F(xi)|
                   / d        \                   \ dxi      /
  2 alpha[1] F(xi) |---- F(xi)| - ----------------------------
                   \ dxi      /                      2        
                                          (m + F(xi))         

                 /         2\ / d        \
       2 beta[1] \K + F(xi) / |---- F(xi)|
                              \ dxi      /
     + -----------------------------------
                             3            
                  (m + F(xi))             

                  / d        \ /         2\
     + 2 alpha[2] |---- F(xi)| \K + F(xi) /
                  \ dxi      /             

                                    / d        \
     + 4 alpha[2] (m + F(xi)) F(xi) |---- F(xi)|
                                    \ dxi      /

                       / d        \
       4 beta[2] F(xi) |---- F(xi)|
                       \ dxi      /
     - ----------------------------
                          3        
               (m + F(xi))         

                 /         2\ / d        \
       6 beta[2] \K + F(xi) / |---- F(xi)|
                              \ dxi      /
     + -----------------------------------
                             4            
                  (m + F(xi))             
collect(%, diff);
  /                                               /         2\
  |                   2 beta[1] F(xi)   2 beta[1] \K + F(xi) /
  |2 alpha[1] F(xi) - --------------- + ----------------------
  |                               2                     3     
  \                    (m + F(xi))           (m + F(xi))      

                  /         2\                               
     + 2 alpha[2] \K + F(xi) / + 4 alpha[2] (m + F(xi)) F(xi)

                                   /         2\\             
       4 beta[2] F(xi)   6 beta[2] \K + F(xi) /| / d        \
     - --------------- + ----------------------| |---- F(xi)|
                   3                     4     | \ dxi      /
        (m + F(xi))           (m + F(xi))      /             
S := (2*alpha[1]*F(xi)-2*beta[1]*F(xi)/(m+F(xi))^2+2*beta[1]*(K+F(xi)^2)/(m+F(xi))^3+2*alpha[2]*(K+F(xi)^2)+4*alpha[2]*(m+F(xi))*F(xi)-4*beta[2]*F(xi)/(m+F(xi))^3+6*beta[2]*(K+F(xi)^2)/(m+F(xi))^4)*T;
  /                                               /         2\
  |                   2 beta[1] F(xi)   2 beta[1] \K + F(xi) /
  |2 alpha[1] F(xi) - --------------- + ----------------------
  |                               2                     3     
  \                    (m + F(xi))           (m + F(xi))      

                  /         2\                               
     + 2 alpha[2] \K + F(xi) / + 4 alpha[2] (m + F(xi)) F(xi)

                                   /         2\\             
       4 beta[2] F(xi)   6 beta[2] \K + F(xi) /| /         2\
     - --------------- + ----------------------| \K + F(xi) /
                   3                     4     |             
        (m + F(xi))           (m + F(xi))      /             
expand((2*w*k*k)*beta*S-(2*A*k*k)*d-2*w*U+k*U*U);
      2                   2               2
-2 A k  alpha[1] K - 2 A k  alpha[1] F(xi) 

          2               3                       
   - 4 A k  alpha[2] F(xi)  - 4 w alpha[2] F(xi) m

   + 2 k alpha[0] alpha[1] m + 2 k alpha[0] alpha[1] F(xi)

     2 k alpha[0] beta[1]                          2
   + -------------------- + 2 k alpha[0] alpha[2] m 
          m + F(xi)                                 

                                2   2 k alpha[0] beta[2]
   + 2 k alpha[0] alpha[2] F(xi)  + --------------------
                                                   2    
                                        (m + F(xi))     

                 2                         3         
   + 2 k alpha[1]  m F(xi) + 2 k alpha[1] m  alpha[2]

                       3            2 k beta[1] beta[2]
   + 2 k alpha[1] F(xi)  alpha[2] + -------------------
                                                  3    
                                       (m + F(xi))     

                 2  3                     2  2      2
   + 4 k alpha[2]  m  F(xi) + 6 k alpha[2]  m  F(xi) 

                 2      3                              2
   + 4 k alpha[2]  F(xi)  m - 2 w alpha[0] + k alpha[0] 

          2                    3        2                2
   + 4 w k  beta alpha[1] F(xi)  + 4 w k  beta alpha[2] K 

                                         2          
           2                    4   2 A k  beta[1] K
   + 12 w k  beta alpha[2] F(xi)  + ----------------
                                                 2  
                                      (m + F(xi))   

          2              2                      
     2 A k  beta[1] F(xi)         2             
   + --------------------- - 4 A k  alpha[2] m K
                    2                           
         (m + F(xi))                            

          2                 2        2                 
   - 4 A k  alpha[2] m F(xi)  - 4 A k  alpha[2] F(xi) K

          2                  2              2
     4 A k  beta[2] K   4 A k  beta[2] F(xi) 
   + ---------------- + ---------------------
                  3                    3     
       (m + F(xi))          (m + F(xi))      

                                     2 k alpha[1] m beta[1]
   + 4 k alpha[0] alpha[2] F(xi) m + ----------------------
                                           m + F(xi)       

                   2               
   + 6 k alpha[1] m  alpha[2] F(xi)

                                  2   2 k alpha[1] m beta[2]
   + 6 k alpha[1] m alpha[2] F(xi)  + ----------------------
                                                      2     
                                           (m + F(xi))      

     2 k alpha[1] F(xi) beta[1]   2 k alpha[1] F(xi) beta[2]
   + -------------------------- + --------------------------
             m + F(xi)                              2       
                                         (m + F(xi))        

                           2                             2
     2 k beta[1] alpha[2] m    2 k beta[1] alpha[2] F(xi) 
   + ----------------------- + ---------------------------
            m + F(xi)                   m + F(xi)         

                   2                             2        
     2 k alpha[2] m  beta[2]   2 k alpha[2] F(xi)  beta[2]
   + ----------------------- + ---------------------------
                     2                           2        
          (m + F(xi))                 (m + F(xi))         

                                                     2 
               2  2             2      2    k beta[1]  
   + k alpha[1]  m  + k alpha[1]  F(xi)  + ------------
                                                      2
                                           (m + F(xi)) 

                                                     2 
               2  4             2      4    k beta[2]  
   + k alpha[2]  m  + k alpha[2]  F(xi)  + ------------
                                                      4
                                           (m + F(xi)) 

                                           2 w beta[1]
   - 2 w alpha[1] m - 2 w alpha[1] F(xi) - -----------
                                            m + F(xi) 

                   2                     2   2 w beta[2] 
   - 2 w alpha[2] m  - 2 w alpha[2] F(xi)  - ------------
                                                        2
                                             (m + F(xi)) 

          2                             2                     2
     4 w k  beta beta[1] F(xi) K   8 w k  beta beta[1] K F(xi) 
   - --------------------------- + ----------------------------
                       2                              3        
            (m + F(xi))                    (m + F(xi))         

                                           2                     
          2                           8 w k  beta beta[2] F(xi) K
   + 8 w k  beta alpha[2] F(xi) m K - ---------------------------
                                                        3        
                                             (m + F(xi))         

           2                     2                               
     24 w k  beta beta[2] K F(xi)         2                      
   + ----------------------------- + 4 w k  beta alpha[1] F(xi) K
                        4                                        
             (m + F(xi))                                         

          2                   3        2               2
     4 w k  beta beta[1] F(xi)    4 w k  beta beta[1] K 
   - -------------------------- + ----------------------
                       2                          3     
            (m + F(xi))                (m + F(xi))      

          2                   4                                 
     4 w k  beta beta[1] F(xi)          2                      2
   + -------------------------- + 16 w k  beta alpha[2] K F(xi) 
                       3                                        
            (m + F(xi))                                         

                                          2                   3
          2                    3     8 w k  beta beta[2] F(xi) 
   + 8 w k  beta alpha[2] F(xi)  m - --------------------------
                                                       3       
                                            (m + F(xi))        

           2               2         2                   4
     12 w k  beta beta[2] K    12 w k  beta beta[2] F(xi) 
   + ----------------------- + ---------------------------
                     4                           4        
          (m + F(xi))                 (m + F(xi))         

     4 k beta[1] alpha[2] F(xi) m   4 k alpha[2] F(xi) m beta[2]
   + ---------------------------- + ----------------------------
              m + F(xi)                                2        
                                            (m + F(xi))         
value(%);
      2                   2               2
-2 A k  alpha[1] K - 2 A k  alpha[1] F(xi) 

          2               3                       
   - 4 A k  alpha[2] F(xi)  - 4 w alpha[2] F(xi) m

   + 2 k alpha[0] alpha[1] m + 2 k alpha[0] alpha[1] F(xi)

     2 k alpha[0] beta[1]                          2
   + -------------------- + 2 k alpha[0] alpha[2] m 
          m + F(xi)                                 

                                2   2 k alpha[0] beta[2]
   + 2 k alpha[0] alpha[2] F(xi)  + --------------------
                                                   2    
                                        (m + F(xi))     

                 2                         3         
   + 2 k alpha[1]  m F(xi) + 2 k alpha[1] m  alpha[2]

                       3            2 k beta[1] beta[2]
   + 2 k alpha[1] F(xi)  alpha[2] + -------------------
                                                  3    
                                       (m + F(xi))     

                 2  3                     2  2      2
   + 4 k alpha[2]  m  F(xi) + 6 k alpha[2]  m  F(xi) 

                 2      3                              2
   + 4 k alpha[2]  F(xi)  m - 2 w alpha[0] + k alpha[0] 

          2                    3        2                2
   + 4 w k  beta alpha[1] F(xi)  + 4 w k  beta alpha[2] K 

                                         2          
           2                    4   2 A k  beta[1] K
   + 12 w k  beta alpha[2] F(xi)  + ----------------
                                                 2  
                                      (m + F(xi))   

          2              2                      
     2 A k  beta[1] F(xi)         2             
   + --------------------- - 4 A k  alpha[2] m K
                    2                           
         (m + F(xi))                            

          2                 2        2                 
   - 4 A k  alpha[2] m F(xi)  - 4 A k  alpha[2] F(xi) K

          2                  2              2
     4 A k  beta[2] K   4 A k  beta[2] F(xi) 
   + ---------------- + ---------------------
                  3                    3     
       (m + F(xi))          (m + F(xi))      

                                     2 k alpha[1] m beta[1]
   + 4 k alpha[0] alpha[2] F(xi) m + ----------------------
                                           m + F(xi)       

                   2               
   + 6 k alpha[1] m  alpha[2] F(xi)

                                  2   2 k alpha[1] m beta[2]
   + 6 k alpha[1] m alpha[2] F(xi)  + ----------------------
                                                      2     
                                           (m + F(xi))      

     2 k alpha[1] F(xi) beta[1]   2 k alpha[1] F(xi) beta[2]
   + -------------------------- + --------------------------
             m + F(xi)                              2       
                                         (m + F(xi))        

                           2                             2
     2 k beta[1] alpha[2] m    2 k beta[1] alpha[2] F(xi) 
   + ----------------------- + ---------------------------
            m + F(xi)                   m + F(xi)         

                   2                             2        
     2 k alpha[2] m  beta[2]   2 k alpha[2] F(xi)  beta[2]
   + ----------------------- + ---------------------------
                     2                           2        
          (m + F(xi))                 (m + F(xi))         

                                                     2 
               2  2             2      2    k beta[1]  
   + k alpha[1]  m  + k alpha[1]  F(xi)  + ------------
                                                      2
                                           (m + F(xi)) 

                                                     2 
               2  4             2      4    k beta[2]  
   + k alpha[2]  m  + k alpha[2]  F(xi)  + ------------
                                                      4
                                           (m + F(xi)) 

                                           2 w beta[1]
   - 2 w alpha[1] m - 2 w alpha[1] F(xi) - -----------
                                            m + F(xi) 

                   2                     2   2 w beta[2] 
   - 2 w alpha[2] m  - 2 w alpha[2] F(xi)  - ------------
                                                        2
                                             (m + F(xi)) 

          2                             2                     2
     4 w k  beta beta[1] F(xi) K   8 w k  beta beta[1] K F(xi) 
   - --------------------------- + ----------------------------
                       2                              3        
            (m + F(xi))                    (m + F(xi))         

                                           2                     
          2                           8 w k  beta beta[2] F(xi) K
   + 8 w k  beta alpha[2] F(xi) m K - ---------------------------
                                                        3        
                                             (m + F(xi))         

           2                     2                               
     24 w k  beta beta[2] K F(xi)         2                      
   + ----------------------------- + 4 w k  beta alpha[1] F(xi) K
                        4                                        
             (m + F(xi))                                         

          2                   3        2               2
     4 w k  beta beta[1] F(xi)    4 w k  beta beta[1] K 
   - -------------------------- + ----------------------
                       2                          3     
            (m + F(xi))                (m + F(xi))      

          2                   4                                 
     4 w k  beta beta[1] F(xi)          2                      2
   + -------------------------- + 16 w k  beta alpha[2] K F(xi) 
                       3                                        
            (m + F(xi))                                         

                                          2                   3
          2                    3     8 w k  beta beta[2] F(xi) 
   + 8 w k  beta alpha[2] F(xi)  m - --------------------------
                                                       3       
                                            (m + F(xi))        

           2               2         2                   4
     12 w k  beta beta[2] K    12 w k  beta beta[2] F(xi) 
   + ----------------------- + ---------------------------
                     4                           4        
          (m + F(xi))                 (m + F(xi))         

     4 k beta[1] alpha[2] F(xi) m   4 k alpha[2] F(xi) m beta[2]
   + ---------------------------- + ----------------------------
              m + F(xi)                                2        
                                            (m + F(xi))         
simplify(%);
      2                   2               2
-2 A k  alpha[1] K - 2 A k  alpha[1] F(xi) 

          2               3                       
   - 4 A k  alpha[2] F(xi)  - 4 w alpha[2] F(xi) m

   + 2 k alpha[0] alpha[1] m + 2 k alpha[0] alpha[1] F(xi)

     2 k alpha[0] beta[1]                          2
   + -------------------- + 2 k alpha[0] alpha[2] m 
          m + F(xi)                                 

                                2   2 k alpha[0] beta[2]
   + 2 k alpha[0] alpha[2] F(xi)  + --------------------
                                                   2    
                                        (m + F(xi))     

                 2                         3         
   + 2 k alpha[1]  m F(xi) + 2 k alpha[1] m  alpha[2]

                       3            2 k beta[1] beta[2]
   + 2 k alpha[1] F(xi)  alpha[2] + -------------------
                                                  3    
                                       (m + F(xi))     

                 2  3                     2  2      2
   + 4 k alpha[2]  m  F(xi) + 6 k alpha[2]  m  F(xi) 

                 2      3                              2
   + 4 k alpha[2]  F(xi)  m - 2 w alpha[0] + k alpha[0] 

          2                    3        2                2
   + 4 w k  beta alpha[1] F(xi)  + 4 w k  beta alpha[2] K 

                                         2          
           2                    4   2 A k  beta[1] K
   + 12 w k  beta alpha[2] F(xi)  + ----------------
                                                 2  
                                      (m + F(xi))   

          2              2                      
     2 A k  beta[1] F(xi)         2             
   + --------------------- - 4 A k  alpha[2] m K
                    2                           
         (m + F(xi))                            

          2                 2        2                 
   - 4 A k  alpha[2] m F(xi)  - 4 A k  alpha[2] F(xi) K

          2                  2              2
     4 A k  beta[2] K   4 A k  beta[2] F(xi) 
   + ---------------- + ---------------------
                  3                    3     
       (m + F(xi))          (m + F(xi))      

                                     2 k alpha[1] m beta[1]
   + 4 k alpha[0] alpha[2] F(xi) m + ----------------------
                                           m + F(xi)       

                   2               
   + 6 k alpha[1] m  alpha[2] F(xi)

                                  2   2 k alpha[1] m beta[2]
   + 6 k alpha[1] m alpha[2] F(xi)  + ----------------------
                                                      2     
                                           (m + F(xi))      

     2 k alpha[1] F(xi) beta[1]   2 k alpha[1] F(xi) beta[2]
   + -------------------------- + --------------------------
             m + F(xi)                              2       
                                         (m + F(xi))        

                           2                             2
     2 k beta[1] alpha[2] m    2 k beta[1] alpha[2] F(xi) 
   + ----------------------- + ---------------------------
            m + F(xi)                   m + F(xi)         

                   2                             2        
     2 k alpha[2] m  beta[2]   2 k alpha[2] F(xi)  beta[2]
   + ----------------------- + ---------------------------
                     2                           2        
          (m + F(xi))                 (m + F(xi))         

                                                     2 
               2  2             2      2    k beta[1]  
   + k alpha[1]  m  + k alpha[1]  F(xi)  + ------------
                                                      2
                                           (m + F(xi)) 

                                                     2 
               2  4             2      4    k beta[2]  
   + k alpha[2]  m  + k alpha[2]  F(xi)  + ------------
                                                      4
                                           (m + F(xi)) 

                                           2 w beta[1]
   - 2 w alpha[1] m - 2 w alpha[1] F(xi) - -----------
                                            m + F(xi) 

                   2                     2   2 w beta[2] 
   - 2 w alpha[2] m  - 2 w alpha[2] F(xi)  - ------------
                                                        2
                                             (m + F(xi)) 

          2                             2                     2
     4 w k  beta beta[1] F(xi) K   8 w k  beta beta[1] K F(xi) 
   - --------------------------- + ----------------------------
                       2                              3        
            (m + F(xi))                    (m + F(xi))         

                                           2                     
          2                           8 w k  beta beta[2] F(xi) K
   + 8 w k  beta alpha[2] F(xi) m K - ---------------------------
                                                        3        
                                             (m + F(xi))         

           2                     2                               
     24 w k  beta beta[2] K F(xi)         2                      
   + ----------------------------- + 4 w k  beta alpha[1] F(xi) K
                        4                                        
             (m + F(xi))                                         

          2                   3        2               2
     4 w k  beta beta[1] F(xi)    4 w k  beta beta[1] K 
   - -------------------------- + ----------------------
                       2                          3     
            (m + F(xi))                (m + F(xi))      

          2                   4                                 
     4 w k  beta beta[1] F(xi)          2                      2
   + -------------------------- + 16 w k  beta alpha[2] K F(xi) 
                       3                                        
            (m + F(xi))                                         

                                          2                   3
          2                    3     8 w k  beta beta[2] F(xi) 
   + 8 w k  beta alpha[2] F(xi)  m - --------------------------
                                                       3       
                                            (m + F(xi))        

           2               2         2                   4
     12 w k  beta beta[2] K    12 w k  beta beta[2] F(xi) 
   + ----------------------- + ---------------------------
                     4                           4        
          (m + F(xi))                 (m + F(xi))         

     4 k beta[1] alpha[2] F(xi) m   4 k alpha[2] F(xi) m beta[2]
   + ---------------------------- + ----------------------------
              m + F(xi)                                2        
                                            (m + F(xi))         

collect(%, m+F(xi));
Error, (in collect) cannot collect m+F(xi)
 

5 6 7 8 9 10 11 Last Page 7 of 1500