MaplePrimes Questions

Apologies for possible double post, it seemingly locked up upon trying to post the first time. 

So before I get as far as to ask for how to get a certain PDE system solved and plotted, I tried to fiddle a little bit around with linear algebra. 

  • First, the file SystemGoesWrong.mw . I have issues with declaring (same result if I remove the with(VectorCalculus)); as far as I can see, EQ0 and EQ00 should be the same, except that I have summed the vector in one of them. And the first that "works", is wrong: it returns a scaling of a vector. How come?
  • But then I copy everything from the heading and down into a worksheet where I was already fighting some linear algebra things (can someone please explain?): SystemDeclaresBut.mw 
    Then EQ0 and EQ00 declare just fine! What is the issue?
  • How do I get Maple to list the equations in "compact" form with vector-valued functions so that I can read and debug?  The actual PDE system I want to solve (numerically, of course), looks as follows: DE4Maple.pdf 
    That was also the reason why I tried to declare procedures (coordinate-wise maximum ...), but I guess that questions on how to extract a solution and plot it in a particular way will be its own posting after I have learned how to declare it.

 

The contents of the first file:


 

restart

# Since I do not have any idea of how to get vectors nicely, ...

... I replace U0, U1, U2 by u,v,w and use difftables U,V,W.  And y1, y2 replaced by y,z.

with(PDEtools):

declare(u(y, z), v(y, z), w(y, z), q1(y, z), r1(y, z), s1(y, z), q2(y, z), r2(y, z), s2(y, z), F1(y, z), F2(y, z)):

u(y, z)*`will now be displayed as`*u

 

v(y, z)*`will now be displayed as`*v

 

w(y, z)*`will now be displayed as`*w

 

q1(y, z)*`will now be displayed as`*q1

 

r1(y, z)*`will now be displayed as`*r1

 

s1(y, z)*`will now be displayed as`*s1

 

q2(y, z)*`will now be displayed as`*q2

 

r2(y, z)*`will now be displayed as`*r2

 

s2(y, z)*`will now be displayed as`*s2

 

F1(y, z)*`will now be displayed as`*F1

 

F2(y, z)*`will now be displayed as`*F2

(1)

``

M := `<|>`(`<,>`(2, -1), `<,>`(-1, 2))

M := Matrix(2, 2, {(1, 1) = 2, (1, 2) = -1, (2, 1) = -1, (2, 2) = 2})

(2)

1/M

Matrix([[2/3, 1/3], [1/3, 2/3]])

(3)

 

# The system

 

EQ0 := VectorCalculus:-`+`(VectorCalculus:-`+`(Typesetting:-delayDotProduct(`<|>`(F1, F2), VectorCalculus:-`+`(Typesetting:-delayDotProduct(1/M, `<,>`(q1, q2)), VectorCalculus:-`-`(`<,>`(U[y], V[z])))), VectorCalculus:-`-`(Typesetting:-delayDotProduct(VectorCalculus:-`*`(1/4, VectorCalculus:-`+`(Typesetting:-delayDotProduct(1/M, `<,>`(q1, q2)), VectorCalculus:-`-`(`<,>`(U[y], V[z])))^%T), VectorCalculus:-`+`(Typesetting:-delayDotProduct(1/M, `<,>`(q1, q2)), VectorCalculus:-`-`(`<,>`(U[y], V[z])))))), VectorCalculus:-`-`(Typesetting:-delayDotProduct(Typesetting:-delayDotProduct(VectorCalculus:-`*`(1/2, `<|>`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`*`(2, F1), U[y]), VectorCalculus:-`-`(s1)), VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`*`(2, F2), V[z]), VectorCalculus:-`-`(s2)))), 1/M), `<,>`(q1, q2))))

EQ0 := -((1/6)*q1+(1/12)*q2-(1/4)*(diff(u(y, z), y)))*((2/3)*q1+(1/3)*q2-(diff(u(y, z), y)))-((1/12)*q1+(1/6)*q2-(1/4)*(diff(v(y, z), z)))*((1/3)*q1+(2/3)*q2-(diff(v(y, z), z)))+(Vector(1, {(1) = F1*((2/3)*q1+(1/3)*q2-(diff(u(y, z), y)))+F2*((1/3)*q1+(2/3)*q2-(diff(v(y, z), z)))}, attributes = [coords = cartesian]))+(Vector(1, {(1) = -((2/3)*F1+(1/3)*(diff(u(y, z), y))-(1/3)*s1+(1/3)*F2+(1/6)*(diff(v(y, z), z))-(1/6)*s2)*q1-((1/3)*F1+(1/6)*(diff(u(y, z), y))-(1/6)*s1+(2/3)*F2+(1/3)*(diff(v(y, z), z))-(1/3)*s2)*q2}, attributes = [coords = cartesian]))

(4)

EQ00 := `<|>`(F1, F2).(1/M.`<,>`(q1, q2)-`<,>`(U[y], V[z]))-(1/4)*LinearAlgebra:-Transpose(1/M.`<,>`(q1, q2)-`<,>`(U[y], V[z])).(1/M.`<,>`(q1, q2)-`<,>`(U[y], V[z]))-1/2*(2*`<|>`(F1, F2)+`<|>`(U[y], V[z])-`<|>`(s1, s2)).(1/M).`<,>`(q1, q2)

Error, (in rtable/Sum) invalid input: dimensions do not match: Matrix(1 .. 1, 1 .. 2) cannot be added to Vector[row](1 .. 2)

 

``

``


 

Download SystemGoesWrong.mw

 

 

 

... and of the second:

 

 


 

``

Over to some linear algebra.  

 

 

restart; with(LinearAlgebra); with(VectorCalculus)

NULL

LinearAlgebra:-Transpose(`<|>`(3, 4)).`<,>`(2, 3)

18

(1)

VectorCalculus:-DotProduct(VectorCalculus:-`<,>`(3, 4), VectorCalculus:-`<,>`(2, 3))

18

(2)

DotProduct(`<,>`(2, 3), `<|>`(3, 4))

Matrix([[6, 8], [9, 12]])

(3)

Trace(Matrix(%id = 18446746888362217830));

18

(4)

                                                                 

define(normsqbyDot, normsqbyDot(y::Vector) = VectorCalculus:-DotProduct(y, y))

showstat(normsqbyDot)


normsqbyDot := proc()
local theArgs, arg, look, me, cf, term;
   1   me := eval(procname,1);
   2   theArgs := args;
   3   look := tablelook(('procname')(theArgs),'[`/POS`(1,normsqbyDot,1), `/BIND`(1,1,`/y1`::VectorCalculus:-Vector), `/PATTERN`(`/y1`^2)]');
   4   if look <> FAIL then
   5     eval(look,`/FUNCNAME` = procname)
       else
   6     ('procname')(theArgs)
       end if
end proc

 

define, "%1 is assigned", normsqbyMatrixProduct

showstat(normsqbyMatrixProduct)


normsqbyMatrixProduct := proc()
local theArgs, arg, look, me, cf, term;
   1   me := eval(procname,1);
   2   theArgs := args;
   3   look := tablelook(('procname')(theArgs),'[`/POS`(1,normsqbyMatrixProduct,1), `/BIND`(1,1,`/y1`::Matrix), `/PATTERN`(`/y1`^2)]');
   4   if look <> FAIL then
   5     eval(look,`/FUNCNAME` = procname)
       else
   6     ('procname')(theArgs)
       end if
end proc

 

normsqbyDot(`<,>`(2, 3))

Error, (in rtable/Power) exponentiation operation not defined for Vectors

 

normsqbyMatrixProduct(VectorCalculus:-`<,>`(2, 3))

normsqbyMatrixProduct(Vector(2, {(1) = 2, (2) = 3}, attributes = [coords = cartesian]))

(5)

convert(n*ormsqbyMatrixProduct(`<,>`(2, 3)), float)

n*ormsqbyMatrixProduct(Vector(2, {(1) = 2, (2) = 3}, attributes = [coords = cartesian]))

(6)

NULL

# Since I do not have any idea of how to get vectors nicely, ...

... I replace U0, U1, U2 by u,v,w and use difftables U,V,W.  And y1, y2 replaced by y,z.

with(PDEtools); -1; with(plots)

[animate, animate3d, animatecurve, arrow, changecoords, complexplot, complexplot3d, conformal, conformal3d, contourplot, contourplot3d, coordplot, coordplot3d, densityplot, display, dualaxisplot, fieldplot, fieldplot3d, gradplot, gradplot3d, implicitplot, implicitplot3d, inequal, interactive, interactiveparams, intersectplot, listcontplot, listcontplot3d, listdensityplot, listplot, listplot3d, loglogplot, logplot, matrixplot, multiple, odeplot, pareto, plotcompare, pointplot, pointplot3d, polarplot, polygonplot, polygonplot3d, polyhedra_supported, polyhedraplot, rootlocus, semilogplot, setcolors, setoptions, setoptions3d, shadebetween, spacecurve, sparsematrixplot, surfdata, textplot, textplot3d, tubeplot]

(7)

declare(u(y, z), v(y, z), w(y, z), q1(y, z), r1(y, z), s1(y, z), q2(y, z), r2(y, z), s2(y, z), F1(y, z), F2(y, z)):

u(y, z)*`will now be displayed as`*u

 

v(y, z)*`will now be displayed as`*v

 

w(y, z)*`will now be displayed as`*w

 

q1(y, z)*`will now be displayed as`*q1

 

r1(y, z)*`will now be displayed as`*r1

 

s1(y, z)*`will now be displayed as`*s1

 

q2(y, z)*`will now be displayed as`*q2

 

r2(y, z)*`will now be displayed as`*r2

 

s2(y, z)*`will now be displayed as`*s2

 

F1(y, z)*`will now be displayed as`*F1

 

F2(y, z)*`will now be displayed as`*F2

(8)

NULL

M := `<|>`(`<,>`(2, -1), `<,>`(-1, 2))

M := Matrix(2, 2, {(1, 1) = 2, (1, 2) = -1, (2, 1) = -1, (2, 2) = 2})

(9)

1/M

Matrix([[2/3, 1/3], [1/3, 2/3]])

(10)

 

# The system

 

EQ0 := Typesetting:-delayDotProduct(`<|>`(F1, F2), Typesetting:-delayDotProduct(1/M, `<,>`(q1, q2))+`-`(`<,>`(U[y], V[z])))+`-`(Typesetting:-delayDotProduct(VectorCalculus:-`*`(1/4, (Typesetting:-delayDotProduct(1/M, `<,>`(q1, q2))+`-`(`<,>`(U[y], V[z])))^%T), Typesetting:-delayDotProduct(1/M, `<,>`(q1, q2))+`-`(`<,>`(U[y], V[z]))))+`-`(Typesetting:-delayDotProduct(Typesetting:-delayDotProduct(VectorCalculus:-`*`(1/2, `<|>`(VectorCalculus:-`*`(2, F1)+U[y]+`-`(s1), VectorCalculus:-`*`(2, F2)+V[z]+`-`(s2))), 1/M), `<,>`(q1, q2)))

F1*((2/3)*q1+(1/3)*q2-(diff(u(y, z), y)))+F2*((1/3)*q1+(2/3)*q2-(diff(v(y, z), z)))-((1/6)*q1+(1/12)*q2-(1/4)*(diff(u(y, z), y)))*((2/3)*q1+(1/3)*q2-(diff(u(y, z), y)))-((1/12)*q1+(1/6)*q2-(1/4)*(diff(v(y, z), z)))*((1/3)*q1+(2/3)*q2-(diff(v(y, z), z)))-((2/3)*F1+(1/3)*(diff(u(y, z), y))-(1/3)*s1+(1/3)*F2+(1/6)*(diff(v(y, z), z))-(1/6)*s2)*q1-((1/3)*F1+(1/6)*(diff(u(y, z), y))-(1/6)*s1+(2/3)*F2+(1/3)*(diff(v(y, z), z))-(1/3)*s2)*q2

(11)

EQ00 := VectorCalculus:-`+`(VectorCalculus:-`+`(Typesetting:-delayDotProduct(`<|>`(F1, F2), VectorCalculus:-`+`(Typesetting:-delayDotProduct(1/M, `<,>`(q1, q2)), VectorCalculus:-`-`(`<,>`(U[y], V[z])))), VectorCalculus:-`-`(Typesetting:-delayDotProduct(VectorCalculus:-`*`(1/4, VectorCalculus:-`+`(Typesetting:-delayDotProduct(1/M, `<,>`(q1, q2)), VectorCalculus:-`-`(`<,>`(U[y], V[z])))^%T), VectorCalculus:-`+`(Typesetting:-delayDotProduct(1/M, `<,>`(q1, q2)), VectorCalculus:-`-`(`<,>`(U[y], V[z])))))), VectorCalculus:-`-`(Typesetting:-delayDotProduct(Typesetting:-delayDotProduct(VectorCalculus:-`*`(1/2, VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`*`(2, `<|>`(F1, F2)), `<|>`(U[y], V[z])), VectorCalculus:-`-`(`<|>`(s1, s2)))), 1/M), `<,>`(q1, q2))))

F1*((2/3)*q1+(1/3)*q2-(diff(u(y, z), y)))+F2*((1/3)*q1+(2/3)*q2-(diff(v(y, z), z)))-((1/6)*q1+(1/12)*q2-(1/4)*(diff(u(y, z), y)))*((2/3)*q1+(1/3)*q2-(diff(u(y, z), y)))-((1/12)*q1+(1/6)*q2-(1/4)*(diff(v(y, z), z)))*((1/3)*q1+(2/3)*q2-(diff(v(y, z), z)))-((2/3)*F1+(1/3)*(diff(u(y, z), y))-(1/3)*s1+(1/3)*F2+(1/6)*(diff(v(y, z), z))-(1/6)*s2)*q1-((1/3)*F1+(1/6)*(diff(u(y, z), y))-(1/6)*s1+(2/3)*F2+(1/3)*(diff(v(y, z), z))-(1/3)*s2)*q2

(12)

``

 


 

Download SystemDeclaresBut.mw

 

 

Suppose that I make a simple plot, of a function f(x), such as  p1 := plot( 2*x+1,x=0..4,numpoints=9);

Then logically, the plot p1 contains a table with values (x, f(x)) which are plotted.

HOW can I extract that table of values from the plot p1, and write it to a data file (simple text file), so that I can process the data elsewhere (for example, for making a professional graph from them).

I had scripts who did this up to Maple 13 (or Maple V release 13, if that is the politically correct version), but they do not work anymore with more recent versions.

Many thanks !!

Malte.

first question:

Define a two point distribution:
f1(x):=piecewise(x = 0, 0.3, x = 0.1, 0.7, 0)

Dist1 := Distribution(PDF = f1)

R1 := RandomVariable(Dist1)

Mean(R1)

Why Mean(R1) gives 0? should be 0.07...

If I managed to define antother discrete point distribution say R2. Can I define R:=R1+R2 and then caculate Mean(R) or even plot PDF of R?

 

I solved a system of differential equations and want to declare an integral with variable upper limit ( T(x) ) from a function I got from the system ( r(x) ). I did so, but Maple doesn't recognise it as a function of one variable, because when I put this T(x) into a system, it gives me an error:

Error, (in dsolve/numeric/process_input) input system must be an ODE system, got independent variables {t, x}

Though there is no t in the system, t was an integration variable when I declared T(x).

Where is the mistake?

2.mw

In LPSolve, I have solutions returned in matrix form that contain elements that are negligible (values close to zero).

Is there a simple way to convert and reduce these values to zero in the matrix (rather than return the exact values)?

 

Thanks! 

Is there a way that I can obtain a plot of a set of points like {(2,4),(3,5),(4,7),(5,8),(6,11)} in the domain of the set of positive integers. And the codomain is also the set of positive integers?

And after that is it possible to obtain a polynomial interpolation for three of the points say (2,4),(3,5) and (4,7)?

Thanks a lot in advance.

Hello,
How to find the points indicated in the graph of the following function:
(1.25 * y-sqrt (abs (x))) ^ 2 + x ^ 2-1,

I have used the Taks: the Second Derivative Test. Without results, as I show below:

Heart_Critical_Points_and_the_Second_Derivative_Test.mw
 

``

 

Critical Points and the Second Derivative Test

Objective Function f

(1.25*y-sqrt(abs(x)))^2+x^2-1

(1.25*y-abs(x)^(1/2))^2+x^2-1

(1)

smartplot[x, y]((1.25*y-sqrt(abs(x)))^2+x^2-1 = 0)

 

 

 

List of Independent Variables

v := [x, y]

[x, y]

(2)

Equations Nabla(f) = 0

convert(Student[MultivariateCalculus][Gradient]((1.25*y-abs(x)^(1/2))^2+x^2-1, [x, y]), list)

[-(1.25*y-abs(x)^(1/2))*abs(1, x)/abs(x)^(1/2)+2*x, 3.1250*y-2.50*abs(x)^(1/2)]

(3)

Critical Points

temp := remove(has, solve([-(1.25*y-abs(x)^(1/2))*abs(1, x)/abs(x)^(1/2)+2*x, 3.1250*y-2.50*abs(x)^(1/2)], v, Explicit), I); convert({seq(eval(v, temp[k]), k = 1 .. nops(temp))}, list)

[]

(4)

Second Derivative Test

Student[MultivariateCalculus][SecondDerivativeTest]((1.25*y-abs(x)^(1/2))^2+x^2-1, v = [])

LocalMin = [], LocalMax = [], Saddle = []

(5)

Hessians and their Eigenvalues

Temp := [Student[MultivariateCalculus][SecondDerivativeTest]((1.25*y-abs(x)^(1/2))^2+x^2-1, v = [], output = hessian)]; for k to nops(Temp) do Temp[k], convert(LinearAlgebra[Eigenvalues](Temp[k]), list) end do

Error, (in LinearAlgebra:-Eigenvalues) expecting either Matrices of rationals, rational functions, radical functions, algebraic numbers, or algebraic functions, or Matrices of complex(numeric) values

 
 

 

``


 

Download Heart_Critical_Points_and_the_Second_Derivative_Test.mw

 

 

 

Hey. I can't seem to implement the following recursive (piecewise) function:

f:=n->piecewise(n=0,1,n>=1,sum(f(k),k=0..n-1))

This doesn't work..How do I make it work? :( 

Spawned from here.

1. series() shows some strange dependence on the session history, the first call breaking subsequent computations. Also, for F(x, y), the zeroth term is RootOf(F(0, _Z)), even though 1 is the only solution, but for G(x, y), RootOf(G(0, _Z)) is evaluated to 1, even though 1 is not the only solution:

F := (x, y) -> ln((1+x)*y)+exp(x^2*y^2)-x-cos(x):
G := (x, y) -> ln((1+x)*y)+exp(x^2+y-1)-x-cos(x):

series(RootOf(G(x, y), y), x = 0, 5);
                 1-(1/2)*x^2-(1/6)*x^3+(7/48)*x^4+O(x^5)

series(RootOf(G(x, y), y), x = 0, 6);
Error, (in series/RootOf) unable to compute series

forget(series);
series(RootOf(G(x, y), y), x = 0, 6);
           1-(1/2)*x^2-(1/6)*x^3+(7/48)*x^4-(1/60)*x^5+O(x^6)

series(RootOf(F(x, y), y), x = 0, 1);
                         RootOf(ln(_Z)) + O(x)

2. For some reason solve hangs the first time, then returns a result quickly, and apparently doesn't go along well with simplify, because the last output contains an escaped local variable ans. Besides, I'm not sure why solve generates a huge answer. Is it expanding something to a high order? I was expecting just RootOf(_Z+tan(_Z))+O(x).

ser := series(y+tan(y)+x, x = 0, 1);

iser := timelimit(30, solve(ser, y)): # appears to run indefinitely without timelimit
Error, (in ArrayTools:-NumElems) time expired

iser := solve(ser, y): # returns immediately

evalf(iser); # OK
                                             O(x)

evalf(simplify(iser)); # less OK
       .1250000000*(eval(RootOf(_Z+tan(_Z)), [RootOf = ans, tan(_Z) = sin(_Z)/cos(_Z)]))+O(x)

This is in Maple 2017.3.

Hi,

What is the procedure to follow for importing a maple file into Mobius?

Thanks

a := powseries:-powsolve(diff(f(z), z)-f(z)/z = 0);

seq(a(i), i = 0 .. 5);
                        0, 0, 0, 0, 0, 0

Seems that powsolve is constructing the relation k*a(k)-a(k) = 0 and solving it as a(k)=0. I think powsolve should detect such cases (regardless of whether or not they're supported).

Hi

II ve managed to build an expression with one variable 
I me trying to plot this expression on a defined range but maple doesn t not let me.

How do I manage to plot this expression ?

If you have any advise on how to improve my code I m open to comments 

 

Thanks a lot in advance
 

restart


#data

`&varepsilon;c1` := 2.1*10^(-3);

0.2100000000e-2

(1)

`&varepsilon;cu1` := 3.5*10^(-3):

Ecm := 31000:

fcm := 25:

Fy := 500:

Es := 200000:

#geometry

As := 1885:

b := 250:

d := 450:


#coefficients

eta := epsilon/`&varepsilon;c1`:

k := 1.05*Ecm*`&varepsilon;c1`/fcm:

NULL


#formula

 

NULL

`&sigma;c` := proc (epsilon) options operator, arrow; fcm*(k*epsilon/`&varepsilon;c1`-epsilon^2/`&varepsilon;c1`^2)/(1+(k-2)*epsilon/`&varepsilon;c1`) end proc;

proc (epsilon) options operator, arrow; fcm*(k*epsilon/`&varepsilon;c1`-epsilon^2/`&varepsilon;c1`^2)/(1+(k-2)*epsilon/`&varepsilon;c1`) end proc

(2)

plot(`&sigma;c`, 0 .. `&varepsilon;cu1`);

 

NULL

#Pressure as a function of y (y=`&varepsilon;c`*y/x) :

`&sigma;c` := proc (y) options operator, arrow; fcm*(k*`&varepsilon;c`*y/(x*`&varepsilon;c1`)-`&varepsilon;c`^2*y^2/(x^2*`&varepsilon;c1`^2))/(1+(k-2)*`&varepsilon;c`*y/(x*`&varepsilon;c1`)) end proc;

proc (y) options operator, arrow; fcm*(k*`&varepsilon;c`*y/(x*`&varepsilon;c1`)-`&varepsilon;c`^2*y^2/(x^2*`&varepsilon;c1`^2))/(1+(k-2)*`&varepsilon;c`*y/(x*`&varepsilon;c1`)) end proc

(3)

`assuming`([int(`&sigma;c`, 0 .. x)], [0 <= x and x <= (1/2)*d, 0 <= `&varepsilon;c` and `&varepsilon;c` <= 0.35e-2]);

int(25*(1302.000000*`&varepsilon;c`*x/x-226757.3696*`&varepsilon;c`^2*x^2/x^2)/(1+349.6190476*`&varepsilon;c`*x/x), x = 0 .. x)

(4)

C := `assuming`([int(fcm*(k*`&varepsilon;c`*s/(x*`&varepsilon;c1`)-(`&varepsilon;c`*s/(x*`&varepsilon;c1`))^2)*b/(1+(k-2)*`&varepsilon;c`*s/(x*`&varepsilon;c1`)), s = 0 .. x)], [0 < x and x <= (1/2)*d, 0 <= `&varepsilon;c` and `&varepsilon;c` <= 0.35e-2]);

-0.7487980799e-19*x*(0.2706771684e26*`&varepsilon;c`^2+0.1331955800e22*ln(874047619.*`&varepsilon;c`+2500000.)-0.1962210817e23-0.4656771182e24*`&varepsilon;c`)/`&varepsilon;c`

(5)

T := `assuming`([(d-x)*`&varepsilon;c`*Es*As/x], [0 < x and x <= (1/2)*d, 0 <= `&varepsilon;c` and `&varepsilon;c` <= 0.35e-2]);

377000000*(450-x)*`&varepsilon;c`/x

(6)

``

x := `assuming`([solve(C = T, x)], [0 < x and x <= (1/2)*d, 0 <= `&varepsilon;c` and `&varepsilon;c` <= 0.35e-2]);

868.0577815*(0.2900000000e12*`&varepsilon;c`+(-0.7297483689e24*`&varepsilon;c`^2+0.1400157114e23*`&varepsilon;c`-0.4004807874e20*ln(874047619.*`&varepsilon;c`+2500000.)+0.5899803379e21)^(1/2))*`&varepsilon;c`/(0.2706771684e13*`&varepsilon;c`^2+133195580.*ln(874047619.*`&varepsilon;c`+2500000.)-0.4656771182e11*`&varepsilon;c`-1962210817.), -868.0577815*(-0.2900000000e12*`&varepsilon;c`+(-0.7297483689e24*`&varepsilon;c`^2+0.1400157114e23*`&varepsilon;c`-0.4004807874e20*ln(874047619.*`&varepsilon;c`+2500000.)+0.5899803379e21)^(1/2))*`&varepsilon;c`/(0.2706771684e13*`&varepsilon;c`^2+133195580.*ln(874047619.*`&varepsilon;c`+2500000.)-0.4656771182e11*`&varepsilon;c`-1962210817.)

(7)

``

``

``

l

(8)

plot(l, `&varepsilon;c` = 0 .. 0.34e-2)

Error, (in plot) expected a range but received `&varepsilon;c` = 0 .. 0.34e-2

 

``

NULL


 

Download HW1_-_EC2_strain-pressure_graph.mw
 

restart


#data

`&varepsilon;c1` := 2.1*10^(-3);

0.2100000000e-2

(1)

`&varepsilon;cu1` := 3.5*10^(-3):

Ecm := 31000:

fcm := 25:

Fy := 500:

Es := 200000:

#geometry

As := 1885:

b := 250:

d := 450:


#coefficients

eta := epsilon/`&varepsilon;c1`:

k := 1.05*Ecm*`&varepsilon;c1`/fcm:

NULL


#formula

 

NULL

`&sigma;c` := proc (epsilon) options operator, arrow; fcm*(k*epsilon/`&varepsilon;c1`-epsilon^2/`&varepsilon;c1`^2)/(1+(k-2)*epsilon/`&varepsilon;c1`) end proc;

proc (epsilon) options operator, arrow; fcm*(k*epsilon/`&varepsilon;c1`-epsilon^2/`&varepsilon;c1`^2)/(1+(k-2)*epsilon/`&varepsilon;c1`) end proc

(2)

plot(`&sigma;c`, 0 .. `&varepsilon;cu1`);

 

NULL

#Pressure as a function of y (y=`&varepsilon;c`*y/x) :

`&sigma;c` := proc (y) options operator, arrow; fcm*(k*`&varepsilon;c`*y/(x*`&varepsilon;c1`)-`&varepsilon;c`^2*y^2/(x^2*`&varepsilon;c1`^2))/(1+(k-2)*`&varepsilon;c`*y/(x*`&varepsilon;c1`)) end proc;

proc (y) options operator, arrow; fcm*(k*`&varepsilon;c`*y/(x*`&varepsilon;c1`)-`&varepsilon;c`^2*y^2/(x^2*`&varepsilon;c1`^2))/(1+(k-2)*`&varepsilon;c`*y/(x*`&varepsilon;c1`)) end proc

(3)

`assuming`([int(`&sigma;c`, 0 .. x)], [0 <= x and x <= (1/2)*d, 0 <= `&varepsilon;c` and `&varepsilon;c` <= 0.35e-2]);

int(25*(1302.000000*`&varepsilon;c`*x/x-226757.3696*`&varepsilon;c`^2*x^2/x^2)/(1+349.6190476*`&varepsilon;c`*x/x), x = 0 .. x)

(4)

C := `assuming`([int(fcm*(k*`&varepsilon;c`*s/(x*`&varepsilon;c1`)-(`&varepsilon;c`*s/(x*`&varepsilon;c1`))^2)*b/(1+(k-2)*`&varepsilon;c`*s/(x*`&varepsilon;c1`)), s = 0 .. x)], [0 < x and x <= (1/2)*d, 0 <= `&varepsilon;c` and `&varepsilon;c` <= 0.35e-2]);

-0.7487980799e-19*x*(0.2706771684e26*`&varepsilon;c`^2+0.1331955800e22*ln(874047619.*`&varepsilon;c`+2500000.)-0.1962210817e23-0.4656771182e24*`&varepsilon;c`)/`&varepsilon;c`

(5)

T := `assuming`([(d-x)*`&varepsilon;c`*Es*As/x], [0 < x and x <= (1/2)*d, 0 <= `&varepsilon;c` and `&varepsilon;c` <= 0.35e-2]);

377000000*(450-x)*`&varepsilon;c`/x

(6)

``

x := `assuming`([solve(C = T, x)], [0 < x and x <= (1/2)*d, 0 <= `&varepsilon;c` and `&varepsilon;c` <= 0.35e-2]);

868.0577815*(0.2900000000e12*`&varepsilon;c`+(-0.7297483689e24*`&varepsilon;c`^2+0.1400157114e23*`&varepsilon;c`-0.4004807874e20*ln(874047619.*`&varepsilon;c`+2500000.)+0.5899803379e21)^(1/2))*`&varepsilon;c`/(0.2706771684e13*`&varepsilon;c`^2+133195580.*ln(874047619.*`&varepsilon;c`+2500000.)-0.4656771182e11*`&varepsilon;c`-1962210817.), -868.0577815*(-0.2900000000e12*`&varepsilon;c`+(-0.7297483689e24*`&varepsilon;c`^2+0.1400157114e23*`&varepsilon;c`-0.4004807874e20*ln(874047619.*`&varepsilon;c`+2500000.)+0.5899803379e21)^(1/2))*`&varepsilon;c`/(0.2706771684e13*`&varepsilon;c`^2+133195580.*ln(874047619.*`&varepsilon;c`+2500000.)-0.4656771182e11*`&varepsilon;c`-1962210817.)

(7)

``

``

``

l

(8)

plot(l, `&varepsilon;c` = 0 .. 0.34e-2)

Error, (in plot) expected a range but received `&varepsilon;c` = 0 .. 0.34e-2

 

``

NULL


 

Download HW1_-_EC2_strain-pressure_graph.mw

 

 

This is my first time in this forum, so I hope I use the correct conventions. If not please notice me. 

  1. When a light body orbits a heavy body under the influence of gravity (e.g. a planet around the Sun), Newton’s laws show that the orbit is restricted to a two-dimensional plane and is given by the differential equation

    d2/d(φ)2(1/r(φ)) + 1/r(φ) = GM/h2

    Here, (r, φ) is the path of the light body in polar coordinates, M is the mass of the heavy body, G is the gravitational constant, and h is a constant related to the angular velocity of the light body (h = r2φ ̇). The heavy body can be considered to be approximately stationary and located at the origin.

    Use Maple to solve this differential equation numerically, taking M = 1, G = 1, h = 1 with initial conditions

    r(0)=2/3, r′(0)=dr/dφ (0) = 0

    Using polar coordinates, create a plot of the orbit (r(φ), φ) for
    0 ≤ φ < 2π. You should observe a perfect ellipse.

  2. Since I am not a frequent maple user, I hope somebody can help me here

0=(1−p)π+φV+δR−(μ+λ+ϑ)S

0=pπ+ϑS−(μ+ϵλ+φ)V

0=ρλS+ρϵλV+(1−q)ηI−(μ+β+χ)C

0=(1−ρ)λS+(1−ρ)ϵλV+χC−(μ+α+η)I

0=βC+qηI−(μ+δ)R

Anybody know how to solve using coding for all the variable S,V,C,I,R

 I am trying to solve 2 equations in maple:

 1/  solve({1<x or x<3 or x>5});

 {x=x}    solution is correct

 2/  solve({1<x or x<3 or x<5});

 {x<5}    solution is wrong

 How do I have solution correct is {x=x} in Maple?

 Please teach me about this.

 Thank you very much!

First 901 902 903 904 905 906 907 Last Page 903 of 2433