MaplePrimes Questions

Hi, 

This thread is more or less related to a previous one about the Statistics:-Sample procedure.
(see https://www.mapleprimes.com/questions/228421-A-Serious-Problem-With-StatisticsSample )
I've just implemented two variant of the Box-Muller procedure to sample normal rvs.
The source is "The art of computer programming", Donald E. Knuth, 2nd edition, p117 (aka "algorithm P").

The first implementation (BoxMuller_1) is basically what D.E. Knuth writes, except that I "vectorize" some operations in order to avoid using an if.. then..else structure (as a minor consequence I generate a little bit more numbers than required).
This procedure uses the build-in Maple's procedure select (please see the link above and acer's and carl love's replies).
It appears to be relatively slow.
More of this CodeTools:-Usage(BoxMuller_1(10^6)) generates a "conenction to kernel lost" for some unknown reason.

The variant named BoxMuller_2 uses sort and ListTools:-BinaryPlace instead of select.
Ir appears to be around 3 times faster than BoxMuller_1, but remains 10 time slower than Statistics:-Sample(..., method=envelope) (here again, see the link above to understand why method=envelope is needed).

I wonder how it could be possible to speed up this procedure. In particular acer showed in one of his reply (again see the link above) how using hfloats can improve the efficiency of a procedure, but I'm very incompetent on this point.
Does anyone have any idea?

Thanks in advance.

PS: this file has been written with Maple 2015.2


 

restart:

BoxMuller_1 := proc(N)
  local V, S, T, L, X1, X2:
  V  := Statistics:-Sample(Uniform(-1, 1), [ceil(2*N/3), 2]):
  S  := V[..,1]^~2 +~ V[..,2]^~2;
  T  := < subs(NULL=infinity, select(`<`, S, 1)) | V >;
  T[.., 1]  := (-2 *~ log~(T[.., 1]) /~ T[.., 1])^~(0.5);
  X1 := select[flatten](type, T[.., 1] *~  T[..,2], 'float');
  X2 := select[flatten](type, T[.., 1] *~  T[..,3], 'float');
  return <X1 , X2>:
end proc:


BoxMuller_2 := proc(N)
  local V1, V2, S, W, u, r, T, X1, X2:
  V1 := Statistics:-Sample(Uniform(-1, 1), ceil(2*N/3)):
  V2 := Statistics:-Sample(Uniform(-1, 1), ceil(2*N/3)):
  S  := V1^~2 +~ V2^~2;
  W  := sort(S, output = [sorted, permutation]):
  u  := ListTools:-BinaryPlace(W[1], 1);
  r  := [$1..u]:
  T  := (-2 *~ log~(W[1][r]) /~ W[1][r])^~(0.5);
  X1 := T *~ V1[W[2][r]];
  X2 := T *~ V2[W[2][r]];
  return <X1 | X2>^+:
end proc:  

CodeTools:-Usage(Statistics:-Sample(Uniform(-1, 1), 10^5)):
CodeTools:-Usage(Statistics:-Sample(Uniform(-1, 1), 10^5, method=envelope)):
# CodeTools:-Usage(BoxMuller_1(10^6)): # generates a "connection to kernel lost" error msg
CodeTools:-Usage(BoxMuller_2(10^6)):

print():
CodeTools:-Usage(BoxMuller_1(10^5)):
CodeTools:-Usage(BoxMuller_2(10^5)):
print():

S1 := BoxMuller_1(10^5):
S2 := BoxMuller_2(10^5):

memory used=1.17MiB, alloc change=0 bytes, cpu time=12.00ms, real time=12.00ms, gc time=0ns
memory used=3.32MiB, alloc change=32.00MiB, cpu time=64.00ms, real time=64.00ms, gc time=0ns

memory used=148.17MiB, alloc change=119.93MiB, cpu time=706.00ms, real time=637.00ms, gc time=14.63ms

 

 

memory used=67.43MiB, alloc change=186.80MiB, cpu time=946.00ms, real time=762.00ms, gc time=285.14ms
memory used=14.81MiB, alloc change=0 bytes, cpu time=67.00ms, real time=62.00ms, gc time=0ns

 

(1)

if false then
DocumentTools:-Tabulate(
  [
    plots:-display(
      Statistics:-Histogram(S1),
      plot(Statistics:-PDF(Normal(0, 1), x), x=-4..4, color=red,thickness=3)
    ),
    plots:-display(
      Statistics:-Histogram(S2),
      plot(Statistics:-PDF(Normal(0, 1), x), x=-4..4, color=red,thickness=3)
    )
  ], width=60
)
end if:
  

# carl love's procedure with slight modifications t

SampleCheck := proc(X, f, N::posint)
uses St= Statistics;
  local S, M, O, E:
  S:= f(N):
  M:= numelems(S):
  O:= <St:-TallyInto(S, <[$(floor@min-1..ceil@max)(S)]>)>:
  E:= St:-Probability~(X <~ (rhs@lhs)~(O), 'numeric') * M:
  <rhs~(O)[2..] | E[2..] - E[..-2]>
end proc:
 

interface(rtablesize=20):
SampleCheck(Statistics:-RandomVariable(Normal(0,1)), 'BoxMuller_1', 10^5),
SampleCheck(Statistics:-RandomVariable(Normal(0,1)), 'BoxMuller_2', 10^5);

Matrix(11, 2, {(1, 1) = 1, (1, 2) = HFloat(0.029943974977392658), (2, 1) = 5, (2, 2) = HFloat(3.28979552036377), (3, 1) = 121, (3, 2) = HFloat(138.1791685600983), (4, 1) = 2276, (4, 2) = HFloat(2243.2153196005097), (5, 1) = 14488, (5, 2) = HFloat(14245.846696531142), (6, 1) = 35630, (6, 2) = HFloat(35780.43897239682), (7, 1) = 35886, (7, 2) = HFloat(35780.43897239682), (8, 1) = 14071, (8, 2) = HFloat(14245.846696531138), (9, 1) = 2212, (9, 2) = HFloat(2243.2153196005092), (10, 1) = 130, (10, 2) = HFloat(138.1791685601056), (11, 1) = 2, (11, 2) = HFloat(3.2897955203516176)}), Matrix(10, 2, {(1, 1) = 1, (1, 2) = HFloat(3.293310594473029), (2, 1) = 127, (2, 2) = HFloat(138.32680996055558), (3, 1) = 2241, (3, 2) = HFloat(2245.6121457991635), (4, 1) = 14226, (4, 2) = HFloat(14261.068070193269), (5, 1) = 35632, (5, 2) = HFloat(35818.66958395649), (6, 1) = 35864, (6, 2) = HFloat(35818.66958395649), (7, 1) = 14451, (7, 2) = HFloat(14261.068070193272), (8, 1) = 2266, (8, 2) = HFloat(2245.6121457991685), (9, 1) = 125, (9, 2) = HFloat(138.32680996054842), (10, 1) = 1, (10, 2) = HFloat(3.293310594468494)})

(2)

 


 

Download Box-Muller.mw

How to solve this DE by using  Differential transformation method?

diff(f(x),x$3)+1/2 * f(x) *diff(f(x),x$2)=0;

with boundary conditions

  f(0)=1 ; f '(0)= lamda * f ''(0)   and   f ' (x) -> 1  as x -> infinity
where lamda is some constant...

Explore the values of km_digit(n,m) using km_ for all m,0 < or equal to m and less than or equal to 8. 

Look at the output until you can make a conjecture that concerns the pattern obtained.

Hint use km_list(m,6,20) when m is not a multiple of 4 and km_list(m,6,50) when m is a multiple of 4

Hi, 
The choice method=default (the implicit choice) gives dramatically false results as demonstrated here for the sampling of a normal r.v.
It's likely to be the case for any continuous distribution.
In a few words the tails of the distribution are not correctly sampled (far from the mean by 4 standard deviations for a normal r.v., not an extremely rare event in practical applications).

I think the attached file is sufficiently documented for you to understand the problem.


 

restart:


The problem presented here also exists with Maple 2018 and Maple 2019

interface(version)

`Standard Worksheet Interface, Maple 2015.2, Mac OS X, December 21 2015 Build ID 1097895`

(1)

with(Statistics):

X := RandomVariable(Normal(0, 1)):


Generate a sample of X of size 10^6

Here is the R code for those who would like to verify the results and the performances

 

N <- 10^6

R <- 20

Q <- c(0:5)

 

M <- matrix(nrow=R, ncol=length(Q))

 

for (r in c(1:20)) {

  S <- rnorm(N, mean=0, sd=1)

  for (q in Q) {

    M[r, q+1] <-length(S[S>q])

  }

}

 

Expected.Number.of.Outliers <- floor(N - pnorm(Q, mean=0, sd=1) * N)

Observed.Number.of.Outliers <-  round(colMeans(M))

 

Expected.Number.of.Outliers

Observed.Number.of.Outliers

 

Absolute.Differences <- M - kronecker(t(Expected.Number.of.Outliers), rep(1, R))

boxplot(differences)

Remark the loop below takes about 30 seconds to run (to be compared to the 20 minutes
it would take am I used the build-in procedure Select, and to  the 3 seconds R demands).

N := 10^6:
R := 20:

Q  := [$0..5]:
nQ := numelems(Q):
M  := Matrix(R, nQ, 0):

for r from 1 to R do
  S := Sample(X, N):
  for q in Q do
    M[r, q+1] := add(Heaviside~(S -~ q)):
  end do:
end do:

Expected_Number_Of_Outliers := Vector[row](nQ, i -> Probability(X > Q[i], numeric)*N);

Expected_Number_Of_Outliers := Vector[row](6, {(1) = HFloat(500000.0), (2) = HFloat(158655.25393145697), (3) = HFloat(22750.13194817921), (4) = HFloat(1349.8980316301036), (5) = HFloat(31.67124183311998), (6) = HFloat(0.2866515719235352)})

(2)

Observed_Number_Of_Outliers := Mean(M);

Observed_Number_Of_Outliers := Vector[row](6, {(1) = 500291.4, (2) = 158782.3, (3) = 22761.35, (4) = 1349.5, (5) = 51.6, (6) = 1.9}, datatype = float[8])

(3)


While the values of  the Observed_Number_of_Outliers seem to be reasonably correct for q =0, 1, 2 and 3
there are highly suspicious for q = 4 and likely for q = 5 (but N is too small to be categorical)

So let's examine more closely rhe results for q = 4

`q=4`:= convert(M[..,5], list);
 min(`q=4`)

[HFloat(49.0), HFloat(63.0), HFloat(42.0), HFloat(47.0), HFloat(44.0), HFloat(68.0), HFloat(46.0), HFloat(51.0), HFloat(58.0), HFloat(55.0), HFloat(50.0), HFloat(51.0), HFloat(68.0), HFloat(45.0), HFloat(58.0), HFloat(44.0), HFloat(59.0), HFloat(49.0), HFloat(47.0), HFloat(38.0)]

 

HFloat(38.0)

(4)


This means we obtained 20 estimations out of 20 of the probability that X exceeds q=4.
There are only about on chance out of 1 million to get such a result (roughly (1/2)^20 ).

Here is the result R returned for the same quantile q=4

 M[,5]

 [1] 24 37 23 38 30 43 23 30 25 39 25 29 29 36 39 41 35 37 36 34

(9 values out of 20 are less than the expected value of 31.67)

A very simple test based on the Binomial distribution will prove, without any doubt, that the
distribution of the 20 numbers of outliers for q = 4 implies the sampling algorithm is of
is of very poor quality.



Is it possible to obtain correct results with Maple ?


(simulations done below for the case q=4 only)

N := 10^6:
R := 20:

Menv := Vector[column](R, 0):

for r from 1 to R do
  S := Sample(X, N, method=envelope):
  Menv[r] := add(Heaviside~(S -~ 4)):
end do:

`q=4`:= convert(Menv, list);
Mean(Menv);
Variance(Menv);

[HFloat(26.0), HFloat(26.0), HFloat(35.0), HFloat(34.0), HFloat(30.0), HFloat(30.0), HFloat(28.0), HFloat(24.0), HFloat(27.0), HFloat(31.0), HFloat(28.0), HFloat(21.0), HFloat(34.0), HFloat(33.0), HFloat(29.0), HFloat(38.0), HFloat(38.0), HFloat(33.0), HFloat(39.0), HFloat(25.0)]

 

HFloat(30.45)

 

HFloat(24.892105263157895)

(5)



Conclusion, the "default" sampling strategy suffers strong flaw.

Remark: it's well known that one of the best method to sample normal random variables
is Box-Mueller's: why it has not been programmed by default ?

 

 


 

Download Bug_Normal_Sampler.mw


 

I have to do a homework on the euler explicite and when I am trying to test it I get an erreor can someone help me please :)

restart;
eulerexp := proc (fin, condin, h, tmax)

local i, n, j, tab, N; N := tmax/h;

for j to 5 do

tab[1, j] := condin[1, j]

end do;

for n from 2 to N do

tab[n, 1] := tab[n-1, 1]+h;

tab[n, 2] = tab[n-1, 2]+h*fin[1](tab[n-1, 1], tab[n-1, 2], tab[n-1, 3], tab[n-1, 4], tab[n-1, 5]);

tab[n, 3] = tab[n-1, 3]+h*fin[2](tab[n-1, 1], tab[n-1, 2], tab[n-1, 3], tab[n-1, 4], tab[n-1, 5]);

tab[n, 4] = tab[n-1, 4]+h*fin[3](tab[n-1, 1], tab[n-1, 2], tab[n-1, 3], tab[n-1, 4], tab[n-1, 5]);

tab[n, 5] = tab[n-1, 5]+h*fin[4](tab[n-1, 1], tab[n-1, 2], tab[n-1, 3], tab[n-1, 4], tab[n-1, 5]);

end do;

return tab end proc;

condin := [25, 1, 2, 3, 4];
                        [25, 1, 2, 3, 4]


fin := proc (t, w, x, y, z) options operator, arrow; [2*t-4*w+5*x-6*y-z, x, z, t] end proc;
(t, w, x, y, z) -> [2 t - 4 w + 5 x - 6 y - z, x, z, t]

h := .1;
                              0.1
tmax := 20;
                               20


eulerexp(fin, condin, h, tmax);
Error, (in eulerexp) invalid subscript selector


 

I've always had this issue. 1. Double click to highlight term to get help on. 2. Hit F1 3. Help pops up and I have to type in that term and find the info.

 

Why can't maple just combine all these steps? I've tried F2, various alt's, ctrl's, and shift combos and nothing... Surely something as basic as this has a hot key? And ideally I'd like to assign F1 to it!

 

The  plots help page contains an entry for ternaryplot. But it is empty (Maple 2018&2019) and there is no such command.
Does somebody know about it?

restart;
Digits:=4:
n:=11:
M := 2:
Le := 5:
Lb := 2:
L:= 1:
l := 0.5:
Pr := 1:
Pe := 2:
Nt := 0.5:
Nb := 0.8:
F[0]:=0:
F[1]:=l*F[2]:
F[2]:=a:
T[0]:=1:
T[1]:=b:
d:=k->piecewise(k<>0,0,k=0,1):
for k from 0 to n do F[k+3]:=-1/(d(k)+(k+1)*(k+2)*F(k+2))*((sum(F[k-m]*(m+1)*(m+2)*F[m+2],m=0..k))-(sum((k-m+1)*(m+1)*F[k-m+1]*F[m+1],m=0..k))-M*(k+1)*F[k+1])*(factorial(k)/factorial(k+3));
T[k+2]:=-1*(Pr/(k+1)*(k+2))*((sum(F[k-m]*(m+1)*T[m+1],m=0..k))+Nt*(sum((k-m+1)*(m+1)*T[k-m+1]*T[m+1],m=0..k))+Nb*(sum((k-m+1)*(m+1)*T[k+1]*F[k-m+1],m=0..k))) end do: 
f:=sum(F[k]*y^k,k=0..n); 
t:=sum(T[k]*y^k,k=0..n); 
with(numapprox):
pade(diff(f,y),y,[4,4]):
pade(t,y,[4,4]):
solve({limit(pade(diff(f,y),y,[4,4]),y=infinity)=0.,limit(pade(t,y,[4,4]),y=infinity)=0.,[a,b]);

I'm new to using Maple and am trying to create the procedure above. My code so far:

with(combinat):
g:=proc(n)
 local x; local setG; local setG2;
    for x from 1 to n do
        setG:={seq(x+1,x=1..n-1)}; setG2:=choose(setG,3); nops(setG2);
    end do;
end proc; 

Although this doesn't seem to work even though

setG:={seq(x+1,x=1..5)}; setG2:=choose(setG,3); nops(setG2);

Any help would be greatly appreciated!! 

 

I am studying the motion of a beam coupled to piezoelectric strips. This continuous system is modelled by two DE:

YI*diff(w(x,t), x$4)-N[0]*cos(2*omega*t)*diff(w(x,t), x$2)+c*diff(w(x,t), t)+`&rho;A`*diff(w(x,t), t$2)+C[em,m]*v(t) = 0;

And:

C[p]*diff(v(t), t)+1/R[l]*v(t) = C[em,e]*(D[1,2](w)(0,t)-D[1,2](w)(ell,t));
 

where "w(x,t)" stands for the beam's vibration and "v(t)" means the electric voltage, which is constant throught the beam. I would like to numerically solve both DE simultaneosly, but maple will not let me do it. I would like to know why. I am getting the following error:

Error, (in pdsolve/numeric/process_PDEs) number of dependent variables and number of PDE must be the same
 

I suppose it is because "w(x,t)" depends on "x" and "t", while "v(t)" depends solely on time, but I am not sure. Could someone help me out? Here is my current code:

restart:
with(PDEtools):
declare(w(x,t), v(t)):

YI*diff(w(x,t), x$4)-N[0]*cos(2*omega*t)*diff(w(x,t), x$2)+c*diff(w(x,t), t)+`&rho;A`*diff(w(x,t), t$2)+C[em,m]*v(t) = 0;
pde1:= subs([YI = 1e4, N[0] = 5e3, c = 300, omega = 3.2233993, C[em,m] = 1], %):
ibc1:= w(0,t) = 0, D[1,1](w)(0,t) = 0, w(ell,t) = 0, D[1,1](w)(ell,t) = 0, D[2](w)(x,0) = 0, w(x,0) = sin(Pi*x/ell):

C[p]*diff(v(t), t)+1/R[l]*v(t) = C[em,e]*(D[1,2](w)(0,t)-D[1,2](w)(ell,t));
pde2:= subs([C[p] = 10, R[l] = 1000, C[em,e] = 1, ell = 5], %):
ibc2:= v(0) = 0:

pdsolve({pde1, pde2}, {ibc1, ibc2}, numeric);

Thanks.

Hello everyone!

I'm interesting in "zcoloring" funciton in colorscheme option.

I wrote simple programm which compares two results: spectrogram of signal drawn with "colormap" list and spectrogram which was plotted with zcoloring function. I use red, green, blue functions to construct JET-colormap: list and expressions in "zcoloring".

My result:

As I understand, when I use:

colorscheme = ["zcoloring", [z-> Red color function(z), z-> Green color function(z), z-> Blue color function(z)], colorspace = "RGB"]

Maple plots z-value with color RGB color coordinates defined from "zcoloring". For example, if "zcoloring" is

colorscheme = ["zcoloring", [z-> 5*z, z-> 3*z, z-> 2*z], colorspace = "RGB"]

and z value is 10, then 10 value will correspond [50,30,20]-RGB color.

My test program:

Spectrogram_zcoloring.mw

Spectrogram of my test signal:

list_test.txt

with(LinearAlgebra); A := `

D[1,2](1/x);

 

what does this mean?

How do I find where 𝑓(𝑥) = (2*𝑥 ^2) tan(2*𝑥), is discontinuous in the interval [0,2𝜋], and find the discontinuities. I know you need ot use the commands: discount(f(x),x), iscont(f(x),x=a..b,’open’), iscont(f(x),x=a..b,’close’) and fdiscont(f(x),x=a..b, resolution) which will help me find the list of ranges, each of width resolution, in which there appears to be a discontinuity in the function or its first derivative.However, what is next ?

First 619 620 621 622 623 624 625 Last Page 621 of 2431