Muhammad Usman

235 Reputation

5 Badges

11 years, 160 days
Beijing, China

MaplePrimes Activity


These are questions asked by Muhammad Usman

Dear Users!

Hoped everything going fine with you. I want to make animation of ten solutions as given bellow but fail to do that. Please see it fix the problem. I shall be very thankful to u.
SOLNSuy[1, 1] := 2.5872902469406659197*10^(-20)-.65694549571241255901*y+1.9708364871372376767*y^2-1.3138909914248251176*y^3-1.6010739356637904911*10^(-19)*y^4;
SOLNSuy[2, 1] := -4.002204462000*10^(-20)-1.7879176897079605225*y+5.3637530691192141414*y^2-3.5758353794044226250*y^3-6.8309939211286845440*10^(-12)*y^4;
SOLNSuy[3, 1] := -1.1953264450000*10^(-19)-3.2481690589079594122*y+9.7445071767154794599*y^2-6.4963381177952273213*y^3-1.2292726248071398400*10^(-11)*y^4;
SOLNSuy[4, 1] := -2.6720465500000*10^(-19)-4.9239979672954025921*y+14.771993901873204315*y^2-9.8479959345587718955*y^3-1.9029826928878336000*10^(-11)*y^4;
SOLNSuy[5, 1] := 3.416928541000*10^(-20)-6.7268498492441931137*y+20.180549547714413714*y^2-13.453699698443639810*y^3-2.6580790570532587008*10^(-11)*y^4;
SOLNSuy[6, 1] := -2.554122292000*10^(-20)-8.5884528335125514887*y+25.765358500514014457*y^2-17.176905666966875698*y^3-3.4587270427710613504*10^(-11)*y^4;
SOLNSuy[7, 1] := -9.206107680000*10^(-20)-10.456823708331499352*y+31.370471124965259849*y^2-20.913647416590986491*y^3-4.2774005353527132160*10^(-11)*y^4;
SOLNSuy[8, 1] := 1.9644186790000*10^(-19)-12.293003938471349390*y+36.879011815379230436*y^2-24.586007876856948223*y^3-5.0932823222176363520*10^(-11)*y^4;
SOLNSuy[9, 1] := -3.775112769000*10^(-19)-14.068404975282556550*y+42.205214925807397100*y^2-28.136809950465931724*y^3-5.8908824448577377280*10^(-11)*y^4;
SOLNSuy[10, 1] := 1.146281780000*10^(-19)-15.762658869974768890*y+47.287976609878780960*y^2-31.525317739837422477*y^3-6.6589592851037286400*10^(-11)*y^4;
plots[animate](plot, [SOLNSuy[A, 1], y = 0 .. 1], A = 1 .. 10);

Special request:
@acer @Carl Love @Kitonum @Preben Alsholm

Dear Users!
Hope everyone is fine here. I have some questions about the following code:

Sol := {u[1, 1, 1, 1] = 0.2754389666e-1, u[1, 1, 1, 2] = 0.1305849194e-1, u[1, 1, 1, 3] = 0.2886163307e-2, u[1, 1, 1, 4] = -0.7346547512e-3, u[1, 1, 2, 1] = 0.4659732849e-1, u[1, 1, 2, 2] = 0.1466736306e-1, u[1, 1, 2, 3] = 0.2615590961e-3, u[1, 1, 2, 4] = -0.2999417306e-2, u[1, 2, 1, 1] = 0.4659732850e-1, u[1, 2, 1, 2] = 0.1466736306e-1, u[1, 2, 1, 3] = 0.2615590934e-3, u[1, 2, 1, 4] = -0.2999417305e-2, u[1, 2, 2, 1] = 0.7816751150e-1, u[1, 2, 2, 2] = 0.1319905841e-1, u[1, 2, 2, 3] = -0.3594991974e-2, u[1, 2, 2, 4] = -0.6810219469e-2, u[2, 1, 1, 1] = 0.4277449264e-1, u[2, 1, 1, 2] = -0.7962732407e-2, u[2, 1, 1, 3] = -0.1373208839e-1, u[2, 1, 1, 4] = -0.2756504221e-2, u[2, 1, 2, 1] = 0.7104313232e-1, u[2, 1, 2, 2] = -0.2934293200e-1, u[2, 1, 2, 3] = -0.1500623941e-1, u[2, 1, 2, 4] = -0.3113543133e-2, u[2, 2, 1, 1] = 0.7104313230e-1, u[2, 2, 1, 2] = -0.2934293199e-1, u[2, 2, 1, 3] = -0.1500623942e-1, u[2, 2, 1, 4] = -0.3113543128e-2, u[2, 2, 2, 1] = .1180017068, u[2, 2, 2, 2] = -0.7162229544e-1, u[2, 2, 2, 3] = -0.8898045960e-2, u[2, 2, 2, 4] = -0.9223166732e-2};
My aim is to write all the entries in Sol like the following way

u[1, 1, 1, 1] := 0.2754389666e-1;

u[1, 1, 1, 2] := 0.1305849194e-1;

u[1, 1, 1, 3] := 0.2886163307e-2;

and so on. For this I used the following logic (op command)

for i from 1 by 1 while i <= 32 do

lhs(op(i, Sol)) := rhs(op(i, Sol))

end do;
But it cant work. Please help me to solve my matter. I shall be greatful to you for your positive response. Please take care and thanks in advance.

Special request

@acer @Carl Love @Kitonum @Preben Alsholm

Dear Users!

Hoped everyone fine here. I have three main questions regarding the maple code given bellow:

restart; with(LinearAlgebra); with(plots);

alpha := 1; beta := 1; theta := 1/2;

UU := sinh(x)*sinh(y)*sinh(z)*exp(-1.*t);

NN := 3; L := 0; R := 1; T := 1; N := NN; Mx := NN; My := NN; Mz := NN; `&Delta;x` := (R-L)/Mx; `&Delta;y` := (R-L)/My; `&Delta;z` := (R-L)/Mz; `&Delta;t` := (R-L)/N;

kappa[1] := 1; kappa[2] := 2/x^2; kappa[3] := 1/x^2; kappa[X] := x^2+y^2+z^2+1; kappa[Y] := x^2+y^2+z^2+1; kappa[Z] := x^2+y^2+z^2+1; kappa[4] := 0; NL := 3;

ics := [seq(seq(seq([u[i, j, k, 0] = eval(UU, [x = i*`&Delta;x`, y = j*`&Delta;y`, z = k*`&Delta;z`, t = 0]), u[i, j, k, -1] = eval(u[i, j, k, 1]-2*`&Delta;t`*(eval(diff(UU, t), t = 0)), [x = i*`&Delta;x`, y = j*`&Delta;y`, z = k*`&Delta;z`, t = 0])][], i = 0 .. Mx), j = 0 .. My), k = 0 .. Mz)];

bcs := [seq(seq(seq([u[0, j, k, n] = eval(UU, [x = 0, y = j*`&Delta;y`, z = k*`&Delta;z`, t = n*`&Delta;t`]), u[Mx, j, k, n] = eval(UU, [x = L, y = j*`&Delta;y`, z = k*`&Delta;z`, t = n*`&Delta;t`])][], j = 0 .. My), k = 0 .. Mz), n = 1 .. N), seq(seq(seq([u[i, 0, k, n] = eval(UU, [x = i*`&Delta;x`, y = 0, z = k*`&Delta;z`, t = n*`&Delta;t`]), u[i, My, k, n] = eval(UU, [x = i*`&Delta;x`, y = L, z = k*`&Delta;z`, t = n*`&Delta;t`])][], i = 1 .. Mx-1), k = 0 .. Mz), n = 1 .. N), seq(seq(seq([u[i, j, 0, n] = eval(UU, [x = i*`&Delta;x`, y = j*`&Delta;y`, z = 0, t = n*`&Delta;t`]), u[i, j, Mz, n] = eval(UU, [x = i*`&Delta;x`, y = j*`&Delta;y`, z = L, t = n*`&Delta;t`])][], i = 1 .. Mx-1), j = 1 .. My-1), n = 1 .. N)];
Sol := {u[1, 1, 1, 1] = 0.2366497936e-1, u[1, 1, 1, 2] = 0.7589975856e-2, u[1, 1, 1, 3] = 0.6029906475e-3, u[1, 1, 2, 1] = 0.3778786317e-1, u[1, 1, 2, 2] = 0.7126415819e-2, u[1, 1, 2, 3] = -0.1197885714e-2, u[1, 2, 1, 1] = 0.3778786315e-1, u[1, 2, 1, 2] = 0.7126415820e-2, u[1, 2, 1, 3] = -0.1197885718e-2, u[1, 2, 2, 1] = 0.6038763054e-1, u[1, 2, 2, 2] = 0.4264591907e-2, u[1, 2, 2, 3] = -0.3509477851e-2, u[2, 1, 1, 1] = 0.3171958616e-1, u[2, 1, 1, 2] = -0.1327161715e-1, u[2, 1, 1, 3] = -0.4628647419e-2, u[2, 1, 2, 1] = 0.4979852397e-1, u[2, 1, 2, 2] = -0.3060811899e-1, u[2, 1, 2, 3] = -0.344914876e-4, u[2, 2, 1, 1] = 0.4979852397e-1, u[2, 2, 1, 2] = -0.3060811898e-1, u[2, 2, 1, 3] = -0.3449150010e-4, u[2, 2, 2, 1] = 0.7882396741e-1, u[2, 2, 2, 2] = -0.6192340018e-1, u[2, 2, 2, 3] = 0.1156615222e-1}

Using set of points given in ics, bcs and Sol

1. I want to contruct a vector at any time level (by fixing fourth suffix like u[i,j,k,n]) for i = 0..Mx,j=0..My,k=0..Mz and then find its L2 and L[infinity] norms.

2. Next I want contruct a vector by fixing two suffixes like u[i,j,k,n]) for i = 0..Mx,j=0..My and plot a surface in 3D

3. Finally I want to construct a vector by fixing three suffixes like u[i,j,k,n]) for i = 0..Mx, and plot a curve in 2D.

I'm waiting for your positive respone. I shall be very thankfull to you in advance.

Special request to:
@acer @Carl Love @Kitonum @Preben Alsholm

Dear Users!

Hope you would be fine with everything. I want to find the solution of linear algebric equations but fsolve command not working please see and fix this problem. I shall be very thankful.

C[0] := 3.19153824321146142351956847947*tau[1]-19.1492294592687685411174108768*tau[2]+111.703838512401149823184896781*tau[3]+3.19153824321146142351956847947*tau[4]-44.6815354049604599292739587124*tau[5]+622.349957426234977586315853494*tau[6];
C[1] := 51.0646118913833827763130956714*tau[2]-612.775342696600593315757148056*tau[3]+51.0646118913833827763130956714*tau[5]-1429.80913295873471773676667880*tau[6];
C[2] := -1.06073680388443795908856507616+3.19153824321146142351956847947*tau[1]+53.1609155734306093706448370717*tau[2]+1672.89412862088744108725223170*tau[3]+3.19153824321146142351956847947*tau[4]+27.6286096277389179824882892361*tau[5]+1026.57792701153122226218722129*tau[6];
C[3] := -1.08847004231036963538035920033+3.19153824321146142351956847947*tau[1]+62.6399144226357196540662623767*tau[2]+2040.52109049201342887896297462*tau[3]+3.19153824321146142351956847947*tau[4]+37.1076084769440282659097145411*tau[5]+1242.54090729537544551915515930*tau[6];
C[4] := -1.05523181556926815105314303389+3.19153824321146142351956847947*tau[1]+72.7671212023804312453829273862*tau[2]+2472.93216226733267613216245895*tau[3]+3.19153824321146142351956847947*tau[4]+47.2348152566887398572263795506*tau[5]+1512.91667059477930731128800348*tau[6];
C[5] := -.922876006485286011069063957991+3.19153824321146142351956847947*tau[1]+82.9822841707707093164204255644*tau[2]+2971.36790137532483139495115633*tau[3]+3.19153824321146142351956847947*tau[4]+57.4499782250790179282638777288*tau[5]+1847.90980220852701343747673000*tau[6];

fsolve({seq(`$`(C[l1], l1 = 0 .. 5))});

Special request to:
@acer @Carl Love @Kitonum @Preben Alsholm

Dear Users!
Hope you all are fine with everything. How we can identify the same equations from a number of equations using maple command, like
Eq1:=5.09295817894067*`&tau;u`[1, 1]-30.5577490736439*`&tau;u`[2, 1]+178.253536262923*`&tau;u`[3, 1]-30.5577490736439*`&tau;u`[1, 2]+183.346494441862*`&tau;u`[2, 2]-1069.52121757753*`&tau;u`[3, 2]+178.253536262923*`&tau;u`[1, 3]-1069.52121757753*`&tau;u`[2, 3]+6238.87376920228*`&tau;u`[3, 3];
Eq2:=5.09295817894067*`&tau;u`[1, 1]+10.1859163578814*`&tau;u`[2, 1]+15.2788745368241*`&tau;u`[3, 1]-30.5577490736439*`&tau;u`[1, 2]-61.1154981472883*`&tau;u`[2, 2]-91.6732472209439*`&tau;u`[3, 2]+178.253536262923*`&tau;u`[1, 3]+356.507072525849*`&tau;u`[2, 3]+534.760608788841*`&tau;u`[3, 3]-3/7;
Eq3:=5.09295817894067*`&tau;u`[1, 1]-30.5577490736439*`&tau;u`[2, 1]+178.253536262923*`&tau;u`[3, 1]+10.1859163578814*`&tau;u`[1, 2]-61.1154981472883*`&tau;u`[2, 2]+356.507072525849*`&tau;u`[3, 2]+15.2788745368241*`&tau;u`[1, 3]-91.6732472209439*`&tau;u`[2, 3]+534.760608788841*`&tau;u`[3, 3]-9/7;
Eq4:=5.09295817894067*`&tau;u`[1, 1]+10.1859163578814*`&tau;u`[2, 1]+15.2788745368241*`&tau;u`[3, 1]+10.1859163578814*`&tau;u`[1, 2]+20.3718327157631*`&tau;u`[2, 2]+30.5577490736484*`&tau;u`[3, 2]+15.2788745368241*`&tau;u`[1, 3]+30.5577490736484*`&tau;u`[2, 3]+45.8366236104784*`&tau;u`[3, 3]-12/7;
Eq5:=5.09295817894067*`&tau;u`[1, 1]-30.5577490736439*`&tau;u`[2, 1]+178.253536262923*`&tau;u`[3, 1]+50.9295817894067*`&tau;u`[1, 2]-305.577490736439*`&tau;u`[2, 2]+1782.53536262923*`&tau;u`[3, 2]+504.202859715131*`&tau;u`[1, 3]-3025.21715829077*`&tau;u`[2, 3]+17647.1000900295*`&tau;u`[3, 3]-18/7;
Eq6:=5.09295817894067*`&tau;u`[1, 1]+10.1859163578814*`&tau;u`[2, 1]+15.2788745368241*`&tau;u`[3, 1]+50.9295817894067*`&tau;u`[1, 2]+101.859163578814*`&tau;u`[2, 2]+152.788745368241*`&tau;u`[3, 2]+504.202859715131*`&tau;u`[1, 3]+1008.40571943027*`&tau;u`[2, 3]+1512.60857914560*`&tau;u`[3, 3]-3;
Eq7:=5.09295817894067*`&tau;u`[1, 1]+10.1859163578814*`&tau;u`[2, 1]+15.2788745368241*`&tau;u`[3, 1]-30.5577490736439*`&tau;u`[1, 2]-61.1154981472883*`&tau;u`[2, 2]-91.6732472209439*`&tau;u`[3, 2]+178.253536262923*`&tau;u`[1, 3]+356.507072525849*`&tau;u`[2, 3]+534.760608788841*`&tau;u`[3, 3]-3/7;
Eq8:=5.09295817894067*`&tau;u`[1, 1]+10.1859163578814*`&tau;u`[2, 1]+15.2788745368241*`&tau;u`[3, 1]+10.1859163578814*`&tau;u`[1, 2]+20.3718327157631*`&tau;u`[2, 2]+30.5577490736484*`&tau;u`[3, 2]+15.2788745368241*`&tau;u`[1, 3]+30.5577490736484*`&tau;u`[2, 3]+45.8366236104784*`&tau;u`[3, 3]-12/7;
Eq9:=41.7622570673196*`&tau;u`[3, 1]+41.7622570673196*`&tau;u`[1, 3]+15.2788745368220*`&tau;u`[1, 1]+83.5245141346398*`&tau;u`[2, 3]+30.5577490736443*`&tau;u`[2, 1]+113.063671572516*`&tau;u`[3, 3]+83.5245141346398*`&tau;u`[3, 2]+30.5577490736443*`&tau;u`[1, 2]+61.1154981472892*`&tau;u`[2, 2];
In above equations Eq2 and Eq7; Eq4 and Eq8 are same. If I have set of 100 equation how I can identify similar equations?
@acer @Kitonum @Preben Alsholm

First 8 9 10 11 12 13 14 Last Page 10 of 38