Thomas Dean

327 Reputation

10 Badges

19 years, 286 days

MaplePrimes Activity


These are questions asked by Thomas Dean

I use maple 2016 on linux with X.  When minimized, the maple icon is very small.  Also, the help icon is very small.

Are larger icons available?

The maple icon is ./bin/Maple2016.png.  I can not find the help icon.  Any ideas?

I have a PDE with boundary conditions, from a NASA paper.  I always seem to have problems expressing the bc.

PDE := diff(u(x, t), t) = (1/4)*exp(2)*exp(-u(x, t))*(diff(diff(u(x, t), x), x))/(x^2+2);

The initial/boundary conditions are

@t=0, u(x, t) = 2-2*ln(-x^2+2)

@x=0, diff(u(x,t),x)=0  ## this is the bc I have problem expressing

@x=1, u(x,t) = 2+ln(1+t)

The exact solution given in the paper:

2 + ln(1+t) - 2*ln(2-x^2)

I tried

ics := u(x, 0) = 2*(1-ln(2-x^2));

bcs := D[1](u(0,t))=0, u(1,t)=2+ln(1+t);

PDEtools[Solve]([PDE,ics,bcs]); ## no solution

How do I do this?

Tom Dean

I have several maple worksheets (from the web) that have discussion blocks mixed within executable blocks.

All the executable blocks are delineated with a single '[' at the left while the discussion blocks do not.

How do I do this?

Tom Dean

I attempted to show that two lines are parallel.  I started with a problem in Geometry for which I do not have the solution.

I tried several ways with Maple to show this to be true.  Most of the time, I ended when maple could not determine if a-b = c-d, etc.

brg_proof.txt contains a statement of the problem and my latest maple code.

Question: How should I approach the proof, by the compass and straight edge method?  Is this possible in maple?

intersection in the geometry package does not seem to recognize assume.

restart: with(geometry):

assume(p[1]<>0, p[2]<>0, p[3]<>0);
assume(q[1]<>0, q[2]<>0, q[3]<>0);
point(T,[p[1],q[1]]);
point(U,[p[2],q[2]]);
point(V,[p[3],q[3]]);
point(Op,[0,0]);

line(OT,[Op,T]);
line(OU,[Op,U]);
line(OV,[Op,V]);

point(B,2*q[2],solve(subs(x=2*q[2],Equation(OU)),y));
coordinates(B);
IsOnLine(B,OU);

PerpendicularLine(AD,B,OT);
ArePerpendicular(AD,OT);
sol:=solve({Equation(AD),Equation(OT)},{x,y});
eval(x,sol);
point(A,eval(x,sol),eval(y,sol));  ## the intersection exists
intersection(xA,AD,OT); ## fails
about(p[1]),about(q[1]);

First 10 11 12 13 14 15 Page 12 of 15