dharr

Dr. David Harrington

6416 Reputation

21 Badges

20 years, 23 days
University of Victoria
Professor or university staff
Victoria, British Columbia, Canada

Social Networks and Content at Maplesoft.com

Maple Application Center
I am a retired professor of chemistry at the University of Victoria, BC, Canada. My research areas are electrochemistry and surface science. I have been a user of Maple since about 1990.

MaplePrimes Activity


These are answers submitted by dharr

Yes, it seems the explicit solution has chosen y(0) = sqrt(2)/2 rather than an arbitrary value.

restart;

interface(version);

`Standard Worksheet Interface, Maple 2024.1, Windows 11, June 25 2024 Build ID 1835466`

Physics:-Version();

`The "Physics Updates" package is not installed`

libname;

"C:\Program Files\Maple 2024\lib"

restart;

ode:=y(x)*diff(y(x),x$2)+diff(y(x),x)^2+1=0;
IC:=D(y)(0)=1;

y(x)*(diff(diff(y(x), x), x))+(diff(y(x), x))^2+1 = 0

(D(y))(0) = 1

General solution has two constants as expected

sol:=dsolve(ode,explicit);

y(x) = (-2*c__1*x-x^2+2*c__2)^(1/2), y(x) = -(-2*c__1*x-x^2+2*c__2)^(1/2)

Requiring D(y)(0)=1 gives one equation that must be satisfied by c__1 and c__2. For the first solution this is

eval(diff(sol[1],x),x=0);
eq1:=rhs(%)=1;

eval(diff(y(x), x), {x = 0}) = -(1/2)*2^(1/2)*c__1/c__2^(1/2)

-(1/2)*2^(1/2)*c__1/c__2^(1/2) = 1

Let's use this to eliminate c2. We find a unique c__1 for each y(0) as expected.

isolate(eq1,c__2);
s1:=eval(sol[1],%);
eval(%,x=0);

c__2 = (1/2)*c__1^2

y(x) = (c__1^2-2*c__1*x-x^2)^(1/2)

y(0) = (c__1^2)^(1/2)

If we take c__1 as -sqrt(2)/2 then the solution is

eval(s1,c__1=-sqrt(2)/2);

y(x) = (1/2+2^(1/2)*x-x^2)^(1/2)

which is the same as the explicit solution

sol1:=dsolve([ode,IC],explicit);
 

y(x) = (1/2+2^(1/2)*x-x^2)^(1/2)

odetest(sol1,[ode,IC,y(0)=sqrt(2)/2]);

[0, 0, 0]

But of course we could have taken any negative value for c__1, e.g. -1 (negative to make D(y)(0) positive, with positive c__2)

eval(s1, c__1=-1);
odetest(%,[ode,IC,y(0)=1]);

y(x) = (-x^2+2*x+1)^(1/2)

[0, 0, 0]

 

Download dsolve_constants.mw

Replace 
 

a[i, j] := -add(a[i, k], k = 1 .. N, k<>i) 

with

a[i, j] := -(add(a[i, k], k = 1 .. N) - a[i, i])

That is, just add all the terms and then remove the term you don't want.

Here are two ways:

with(Degrees):
evalf(17*sind(34)/sind(115));

or

with(Units):
evalf(17*sin(34*Unit(degree))/sin(115*Unit(degree)));

(You can enter the units above with the Units palette.)

For degree minute seconds I think you will have to do the manipulations yourself

As the error message says, the 2nd argument to eval should be an equation, not just the Matrix, i.e., eval(O, something = M)

Here the derivative of X__2 in terms of X__1 and its derivatives. I don't think it will ever be simple.

compact_derivatives.mw

If I run your worksheet, I get different answers than shown; u[3] etc now have their correct values.

As a separate issue, then you set a value for (u[i])[1], which doesn't make sense - now you make tables u[2] etc that are different from the table u, and you undo the assignments you made before.

Download table.mw

"A system of two first order differential equations produces a direction field plot, provided the system is determined to be autonomous. In addition, a single first order differential equation produces a direction field (as it can always be mapped to a system of two first order autonomous differential equations). A system is determined to be autonomous when all terms and factors, other than the differential, are free of the independent variable. "

The syntax is correct, just there are no solutions in this range. Works for -2..2

restart

f := sin(x[1]+x[2])-exp(x[1])*x[2]; g := x[1]^2-x[2]-2; cond := {seq(x[i] = -1 .. 1, i = 1 .. 2)}; fsolve({f, g}, cond)

sin(x[1]+x[2])-exp(x[1])*x[2]

x[1]^2-x[2]-2

{x[1] = -1 .. 1, x[2] = -1 .. 1}

fsolve({sin(x[1]+x[2])-exp(x[1])*x[2], x[1]^2-x[2]-2}, {x[1], x[2]}, {x[1] = -1 .. 1, x[2] = -1 .. 1})

plot3d([f, g], x[1] = -2 .. 2, x[2] = -2 .. 2)

cond2 := {seq(x[i] = -2 .. 2, i = 1 .. 2)}; fsolve({f, g}, cond2)

{x[1] = -2 .. 2, x[2] = -2 .. 2}

{x[1] = -.6687012050, x[2] = -1.552838698}

NULL

Download fsolve.mw

Seems like overkill, but here is one way. As for why, ...
(Note it is complexfreqvar that was s, not statevariable.)

restart;

foo:=proc()
 local stemp;
 if assigned(':-s') then
   stemp := :-s;
   :-s := ':-s';
   DynamicSystems:-SystemOptions('complexfreqvar'=':-sv');
   :-s := stemp;
 else
    DynamicSystems:-SystemOptions('complexfreqvar'=':-sv');
 end if;
 :-sv
end proc:

s:="test";
foo();
s;

"test"

sv

"test"

 

Download dynamic.mw

sol := solve({eq1, eq2, eq3, x + y + z = 1}, {a, b, c, z}, explicit);

I have f(0, 12) taking 44 s, so you might get a result for f(0,30) in managable time.

For future reference please upload your worksheet using the green up-arrow in the Mapleprimes editor.

restart

Use rationals

n1 := 423; x := 16; n2 := 81; y := 35; s1 := 1/10; b1 := 7; beta1 := 21/10; s2 := 1/10; b2 := 7; beta2 := 21/10;

423

16

81

35

1/10

7

21/10

1/10

7

21/10

A := (h, v, r) -> add(add(binomial(n1 - x, j)*binomial(n2 - y, l)*(-1)^(j + l)*GAMMA(s1 + h + 1)*GAMMA(s2 + v + 1)*(-1)^(h + v)*(beta1 - 1)^h*(beta2 - 1)^v/(h!*GAMMA(s1 + 1)*v!*GAMMA(s2 + 1)*(x + b1*s1 + j + b1*h + y + b2*s2 + l + b2*v)*(r + x + b1*s1 + j + b1*v)), j = 0 .. n1 - x), l = 0 .. n2 - y);

Warning, (in A) `l` is implicitly declared local

Warning, (in A) `j` is implicitly declared local

proc (h, v, r) local l, j; options operator, arrow; add(add(binomial(n1-x, j)*binomial(n2-y, l)*(-1)^(l+j)*GAMMA(s1+h+1)*GAMMA(s2+v+1)*(-1)^(h+v)*(beta1-1)^h*(beta2-1)^v/(factorial(h)*GAMMA(s1+1)*factorial(v)*GAMMA(s2+1)*(x+b1*s1+j+b1*h+y+b2*s2+l+b2*v)*(r+x+b1*s1+j+b1*v)), j = 0 .. n1-x), l = 0 .. n2-y) end proc

Result is a rational, but very small value, so will have numerical issues if you use floats

A(2,2,0);evalf(%);

11727199469241514779864393729287999595266717038898384405454822453889989726964576758757729551099323484694782170822448350244634045448648056150840927233527350118380124119264858615283201523602923810903830006171445640638533014964609388484372553536841310967853824558690932280088151544584971199415788181111551306532754880119508566210291084045598562471540440317095151211911113829813243986384020095260781211101363284506805774438303489939264952762167438202379620004245323297602579179457497328410039101743209644168235298998961095392278935981336337925654946855818892100272459692432824817768478928223155226897063053135874218725475831316965225841532156062303907670391646481346412180543470550738955412983380825233032396184376956505282354537912590976013025195012646732190615857238658037431378033943474292755126953125/6382265268317256219633710058998499818340873590563036702803822950484199699636302738462052037083809489945501654638778705432982835407262106422716055822223400225220629848888603203921980303115472012139298206087469920885254016501522878034151924440738350864243996392880003254552368644323922787997879524243559004914030851003740366052093558872264913393738584398643237741388376227019971696955206515106578177861348809414199987981935214749218771677333981945489142846776730080142869549055976924435701756372241817375336920507491648219754129346141714754707551648893025832772408084923821700316568058764587634659823042662378587917652228685077432247136823506786967161644710468316981814899035776299987989971099597861998466613316946045883428522261542320902882571202585668513207901611181230727412654811333329187224660577277205763279177427978308304241574151519438327049907892296647014672715620294656

0.1837466632e-77

Compare with a floating point calculation!

A(2, 2, 0.)

-0.3955624180e121

B := (h, v, r) -> add(add(binomial(n1 - x, j)*binomial(n2 - y, l)*(-1)^(j + l)*GAMMA(s1 + v + 1)*GAMMA(s2 + h + 1)*(-1)^(h + v)*(beta1 - 1)^v*(beta2 - 1)^h/(v!*GAMMA(s1 + 1)*h!*GAMMA(s2 + 1)*(y + b2*s2 + l + b2*h + x + b1*s1 + j + b1*v)*(y + b2*s2 + l + b2*h - r)), j = 0 .. n1 - x), l = 0 .. n2 - y);

Warning, (in B) `l` is implicitly declared local

Warning, (in B) `j` is implicitly declared local

proc (h, v, r) local l, j; options operator, arrow; add(add(binomial(n1-x, j)*binomial(n2-y, l)*(-1)^(l+j)*GAMMA(s1+v+1)*GAMMA(s2+h+1)*(-1)^(h+v)*(beta1-1)^v*(beta2-1)^h/(factorial(v)*GAMMA(s1+1)*factorial(h)*GAMMA(s2+1)*(y+b2*s2+l+b2*h+x+b1*s1+j+b1*v)*(y+b2*s2+l+b2*h-r)), j = 0 .. n1-x), l = 0 .. n2-y) end proc

f := (r, upto) -> sum(sum(A(h, v, r) + B(h, v, r), v = 0 .. upto), h = 0 .. upto);

proc (r, upto) options operator, arrow; sum(sum(A(h, v, r)+B(h, v, r), v = 0 .. upto), h = 0 .. upto) end proc

s := CodeTools:-Usage(f(0,12)):

memory used=14.57GiB, alloc change=214.03MiB, cpu time=32.14s, real time=44.15s, gc time=24.25s

s;

114249022902597666588491400529505235216742049616231180869631619194167698464302221521109360278934161699249264126826236228253701293270492644550135177145016349814982113455183820820735876815796463679992519208283503642450130209375877055834771405738601458875577451563602032933837943025767731232207854934759236939341322568521090401156938484109405395425106996068885180201446511126644125409694777192264543924174126949778005106553840262917702653247531868774015140088404720078587672388076732410686714770939922375245824000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000/4478112673625161634402912271274057087521425782459964471363322850631457597742398047074088546911131451856756368982860023346654177624065136219112870362974132591633772922976976016146648645581986021657025573763585023497503972196876316120665545360282282680322522472194461718178716824852465782992306776138047404097571796261065850414338472933710797700189622470162561730240651195333635833352277583626670180879730361251512986788399320104862652482661166302364468264845833967133426250993316566352774199352462247496894848151055424852777184106477710417868463737767180212637570654326336497085984319988974445914462490654328034321182352155451367268612522705340661230039301539950445376032066380305314154637436491880112866704742279027028488977660000585169277423676424285496535951865146024850581707926633898571343437487693846692653268159361127272552016275556640003360341921899571661034103268149587939236207824679329125781964757872174171342424591595209864084608515982176191174973912465653082613424079377178453298484585210385316658608895204147668705453968995722653400843313999068483592478297363991

evalf(s);

0.2551276201e-55

NULL

Download sum.mw

Maple likes the expanded form and one has to "fake it" in order to see exactly what you want. These sorts of manipulations can usually be done, but are not easy and IMO not worth the effort. Maple likes two fewer parentheses - isn't that good?

restart

p := 9*csc(theta)^2+9

9*csc(theta)^2+9

Use of %* instead of * stops the automatic multiplication

q := content(p)*%*primpart(p); value(q)

`%*`(9, csc(theta)^2+1)

9*csc(theta)^2+9

Less ugly but more complicated

InertForm:-Display(content(p)*%*primpart(p), inert = false)

0, "%1 is not a command in the %2 package", _Hold, Typesetting

NULL

Download content.mw

Your code uses u in three different ways: as a procedure, as indexed variables, and as a 2-dimensional Array(1..40, 0..4). These should be using different symbols. By the time you enter eval_derivatives, u is the Array, and the other uses are gone. Then you use u[0], which means the zeroth row of the Array. But the rows start at 1, so you get the error message.

Also, I see later in eval_derivatives, you use T1i[i, k - j], when T1i is a 1D Array.

By default, Maple assumes generic values of the coefficients. For special values, one needs to work harder. Here is one way to do it.

Edit: solve([eq1, eq2], [A__1, A__2, w], explicit) works also.

SolveTools:-PolynomialSystem([eq1, eq2], [A__1, A__2, w], explicit)

restart

eq1 := A__1*(w^2-3*w__0^2)+A__2*w__0^2;
eq2 := A__1*w__0^2+A__2*(w^2-w__0^2)NULL

A__1*(w^2-3*w__0^2)+A__2*w__0^2

A__1*w__0^2+A__2*(w^2-w__0^2)

If we treat it as a polynomial system

SolveTools:-PolynomialSystem([eq1, eq2], [A__1, A__2, w], explicit)

{A__1 = 0, A__2 = 0, w = w}, {A__1 = -A__2*(1+2^(1/2)), A__2 = A__2, w = (2+2^(1/2))^(1/2)*w__0}, {A__1 = -A__2*(1+2^(1/2)), A__2 = A__2, w = -(2+2^(1/2))^(1/2)*w__0}, {A__1 = -A__2*(1-2^(1/2)), A__2 = A__2, w = (2-2^(1/2))^(1/2)*w__0}, {A__1 = -A__2*(1-2^(1/2)), A__2 = A__2, w = -(2-2^(1/2))^(1/2)*w__0}

NULL

Download solve.mw

I rewrote this as a table. You don't say if you want all possible p and q sets for each expression, or just one. The following shows both possibilities. As I told you before, you were not properly detecting duplicates because the same expression was appearing in slightly different forms. evalc is enough to make a canonical form here; simplify is more obvious but too expensive.

There are various changes that could be make depending on how you want the output.

restart;

result:=table(sparse=NULL): #sparse=NULL only required if accumulating
phi := (p__1, p__2, p__3, p__4, q__1, q__2, q__3, q__4, xi) -> evalc((p__1*cosh(q__1*xi) - p__2*sinh(q__2*xi))/(p__3*cosh(q__3*xi) + p__4*sinh(q__4*xi)));
for p__1 in [1, -1, I, -I] do
    for p__2 in [1, -1, I, -I] do
        for p__3 in [1, -1, I, -I] do
            for p__4 in [ 0] do
                for q__1 in [ I, -I] do
                    for q__2 in [ I, -I] do
                        for q__3 in [1] do
                            for q__4 in [ I, -I] do
                                # next line overwrites if we get the same result
                                result[phi(p__1, p__2, p__3, p__4, q__1, q__2, q__3, q__4, xi)] := [p__1, p__2, p__3, p__4, q__1, q__2, q__3, q__4];
                                # OR, next line accumulates all possibilities
                                #result[phi(p__1, p__2, p__3, p__4, q__1, q__2, q__3, q__4, xi)] ,= [p__1, p__2, p__3, p__4, q__1, q__2, q__3, q__4];
                            od:
                       od:
                    od:
                od:
            od:
         od:
     od:
od:

proc (p__1, p__2, p__3, p__4, q__1, q__2, q__3, q__4, xi) options operator, arrow; evalc((p__1*cosh(q__1*xi)-p__2*sinh(q__2*xi))/(p__3*cosh(q__3*xi)+p__4*sinh(q__4*xi))) end proc

All the expressions

exprns:=[indices(result,'nolist')];
print("Number of possibilities is ",numelems(exprns));

[(-cos(xi)+sin(xi))/cosh(xi), -sin(xi)/cosh(xi)-I*cos(xi)/cosh(xi), -cos(xi)/cosh(xi)+I*sin(xi)/cosh(xi), I*(-cos(xi)+sin(xi))/cosh(xi), cos(xi)/cosh(xi)-I*sin(xi)/cosh(xi), I*(cos(xi)-sin(xi))/cosh(xi), cos(xi)/cosh(xi)+I*sin(xi)/cosh(xi), (cos(xi)+sin(xi))/cosh(xi), sin(xi)/cosh(xi)+I*cos(xi)/cosh(xi), -cos(xi)/cosh(xi)-I*sin(xi)/cosh(xi), sin(xi)/cosh(xi)-I*cos(xi)/cosh(xi), (cos(xi)-sin(xi))/cosh(xi), -sin(xi)/cosh(xi)+I*cos(xi)/cosh(xi), (-cos(xi)-sin(xi))/cosh(xi), I*(-cos(xi)-sin(xi))/cosh(xi), I*(cos(xi)+sin(xi))/cosh(xi)]

"Number of possibilities is ", 16

Find the corresponding p and q values. For just one

result[(-cos(xi) + sin(xi))*I/cosh(xi)];
result[exprns[3]];

[-I, -1, 1, 0, -I, I, 1, -I]

[-I, -I, I, 0, -I, I, 1, -I]

For all of them

[entries(result,pairs)];

[(-cos(xi)+sin(xi))/cosh(xi) = [-I, -1, I, 0, -I, I, 1, -I], -sin(xi)/cosh(xi)-I*cos(xi)/cosh(xi) = [-I, -I, 1, 0, -I, I, 1, -I], -cos(xi)/cosh(xi)+I*sin(xi)/cosh(xi) = [-I, -I, I, 0, -I, I, 1, -I], I*(-cos(xi)+sin(xi))/cosh(xi) = [-I, -1, 1, 0, -I, I, 1, -I], cos(xi)/cosh(xi)-I*sin(xi)/cosh(xi) = [-I, -I, -I, 0, -I, I, 1, -I], I*(cos(xi)-sin(xi))/cosh(xi) = [-I, -1, -1, 0, -I, I, 1, -I], cos(xi)/cosh(xi)+I*sin(xi)/cosh(xi) = [-I, -I, -I, 0, -I, -I, 1, -I], (cos(xi)+sin(xi))/cosh(xi) = [-I, -1, -I, 0, -I, -I, 1, -I], sin(xi)/cosh(xi)+I*cos(xi)/cosh(xi) = [-I, -I, -1, 0, -I, I, 1, -I], -cos(xi)/cosh(xi)-I*sin(xi)/cosh(xi) = [-I, -I, I, 0, -I, -I, 1, -I], sin(xi)/cosh(xi)-I*cos(xi)/cosh(xi) = [-I, -I, 1, 0, -I, -I, 1, -I], (cos(xi)-sin(xi))/cosh(xi) = [-I, -1, -I, 0, -I, I, 1, -I], -sin(xi)/cosh(xi)+I*cos(xi)/cosh(xi) = [-I, -I, -1, 0, -I, -I, 1, -I], (-cos(xi)-sin(xi))/cosh(xi) = [-I, -1, I, 0, -I, -I, 1, -I], I*(-cos(xi)-sin(xi))/cosh(xi) = [-I, -1, 1, 0, -I, -I, 1, -I], I*(cos(xi)+sin(xi))/cosh(xi) = [-I, -1, -1, 0, -I, -I, 1, -I]]

NULL

Download generate_solution3.mw

1 2 3 4 5 6 7 Last Page 2 of 67