dharr

Dr. David Harrington

6416 Reputation

21 Badges

20 years, 23 days
University of Victoria
Professor or university staff
Victoria, British Columbia, Canada

Social Networks and Content at Maplesoft.com

Maple Application Center
I am a retired professor of chemistry at the University of Victoria, BC, Canada. My research areas are electrochemistry and surface science. I have been a user of Maple since about 1990.

MaplePrimes Activity


These are answers submitted by dharr

You probably know which signs of c__1, c__2 etc to choose the right solution (nicest form of solutions?).

restart;

with(DEtools):

ode1 := diff(c(T),T)=-2*c(T)*(1+beta__c*c(T)^2/p__c(T)^2);
ode2 := diff(p__c(T),T)=2*(1+beta__c*c(T)^2/p__c(T)^2)*p__c(T);
sys := [ode1,ode2]:

diff(c(T), T) = -2*c(T)*(1+beta__c*c(T)^2/p__c(T)^2)

diff(p__c(T), T) = 2*(1+beta__c*c(T)^2/p__c(T)^2)*p__c(T)

First solve the system with beta__c = 0.
We want the solution for non-zero beta__c to reduce to this in the limit of beta__c -> 0.

sys0:=eval(sys,beta__c=0);
dsolve(sys0);

[diff(c(T), T) = -2*c(T), diff(p__c(T), T) = 2*p__c(T)]

{c(T) = c__2*exp(-2*T), p__c(T) = c__1*exp(2*T)}

Now solve the system, with solving order [c(T), p__c(T)] (see ?dsolve,system), where the last one is solved first. Because we didn't use the explicit option, a partial solution is given.

To get the full solution we take any of the first solutions for p__c(T) and substitute into any of the second de's for c(T) - this is what option explicit does.

The de's for c(T) have beta__c in the denominator, which seems to be a problem, but let's proceed.

sol1 := dsolve(sys,[c(T),p__c(T)]);

[{p__c(T) = -((1/2)*I)*(8*c__1*(exp(T))^8+64*c__2)^(1/4), p__c(T) = ((1/2)*I)*(8*c__1*(exp(T))^8+64*c__2)^(1/4), p__c(T) = -(1/2)*(8*c__1*(exp(T))^8+64*c__2)^(1/4), p__c(T) = (1/2)*(8*c__1*(exp(T))^8+64*c__2)^(1/4)}, {c(T) = -(1/2)*2^(1/2)*(beta__c*p__c(T)*(diff(p__c(T), T)-2*p__c(T)))^(1/2)/beta__c, c(T) = (1/2)*2^(1/2)*(beta__c*p__c(T)*(diff(p__c(T), T)-2*p__c(T)))^(1/2)/beta__c}]

We see that for c__2 = 0, the p__c(T) solutions reduces to the beta__c = 0 one, so we can just replace c__2 by c__2*beta (or c__2*beta^2, etc) to get solutions with the right limiting behavior.
(Perhaps c__2 = beta__c is OK? Looks simpler).

sol2:=[eval(dsolve(sys,[c(T),p__c(T)],explicit),c__2=c__2*beta__c)];

[{c(T) = -(1/2)*2^(1/2)*16^(1/2)*(beta__c^2*c__2/(2*c__1*(exp(T))^8+16*c__2*beta__c)^(1/2))^(1/2)/beta__c, p__c(T) = -((1/2)*I)*(8*c__1*(exp(T))^8+64*c__2*beta__c)^(1/4)}, {c(T) = (1/2)*2^(1/2)*16^(1/2)*(beta__c^2*c__2/(2*c__1*(exp(T))^8+16*c__2*beta__c)^(1/2))^(1/2)/beta__c, p__c(T) = -((1/2)*I)*(8*c__1*(exp(T))^8+64*c__2*beta__c)^(1/4)}, {c(T) = -(1/2)*2^(1/2)*16^(1/2)*(beta__c^2*c__2/(2*c__1*(exp(T))^8+16*c__2*beta__c)^(1/2))^(1/2)/beta__c, p__c(T) = ((1/2)*I)*(8*c__1*(exp(T))^8+64*c__2*beta__c)^(1/4)}, {c(T) = (1/2)*2^(1/2)*16^(1/2)*(beta__c^2*c__2/(2*c__1*(exp(T))^8+16*c__2*beta__c)^(1/2))^(1/2)/beta__c, p__c(T) = ((1/2)*I)*(8*c__1*(exp(T))^8+64*c__2*beta__c)^(1/4)}, {c(T) = -2*2^(1/2)*(-beta__c^2*c__2/(2*c__1*(exp(T))^8+16*c__2*beta__c)^(1/2))^(1/2)/beta__c, p__c(T) = -(1/2)*(8*c__1*(exp(T))^8+64*c__2*beta__c)^(1/4)}, {c(T) = (1/2)*2^(1/2)*(-32*beta__c^2*c__2/(8*c__1*(exp(T))^8+64*c__2*beta__c)^(1/2))^(1/2)/beta__c, p__c(T) = -(1/2)*(8*c__1*(exp(T))^8+64*c__2*beta__c)^(1/4)}, {c(T) = -2*(-2*beta__c^2*c__2/(2*c__1*(exp(T))^8+16*c__2*beta__c)^(1/2))^(1/2)/beta__c, p__c(T) = (1/2)*(8*c__1*(exp(T))^8+64*c__2*beta__c)^(1/4)}, {c(T) = (1/2)*(-64*beta__c^2*c__2/(8*c__1*(exp(T))^8+64*c__2*beta__c)^(1/2))^(1/2)/beta__c, p__c(T) = (1/2)*(8*c__1*(exp(T))^8+64*c__2*beta__c)^(1/4)}]

map(odetest,sol2,sys);

[[0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0]]

The denominator issue disappears for beta__c>0.

sol3:=simplify(sol2) assuming beta__c::positive;

[{c(T) = -2*2^(1/2)*(c__2/(2*c__1*exp(8*T)+16*c__2*beta__c)^(1/2))^(1/2), p__c(T) = -((1/2)*I)*2^(1/2)*(2*c__1*exp(8*T)+16*c__2*beta__c)^(1/4)}, {c(T) = 2*2^(1/2)*(c__2/(2*c__1*exp(8*T)+16*c__2*beta__c)^(1/2))^(1/2), p__c(T) = -((1/2)*I)*2^(1/2)*(2*c__1*exp(8*T)+16*c__2*beta__c)^(1/4)}, {c(T) = -2*2^(1/2)*(c__2/(2*c__1*exp(8*T)+16*c__2*beta__c)^(1/2))^(1/2), p__c(T) = ((1/2)*I)*2^(1/2)*(2*c__1*exp(8*T)+16*c__2*beta__c)^(1/4)}, {c(T) = 2*2^(1/2)*(c__2/(2*c__1*exp(8*T)+16*c__2*beta__c)^(1/2))^(1/2), p__c(T) = ((1/2)*I)*2^(1/2)*(2*c__1*exp(8*T)+16*c__2*beta__c)^(1/4)}, {c(T) = -2*2^(1/2)*(-c__2/(2*c__1*exp(8*T)+16*c__2*beta__c)^(1/2))^(1/2), p__c(T) = -(1/2)*2^(1/2)*(2*c__1*exp(8*T)+16*c__2*beta__c)^(1/4)}, {c(T) = 2*2^(1/2)*(-c__2/(2*c__1*exp(8*T)+16*c__2*beta__c)^(1/2))^(1/2), p__c(T) = -(1/2)*2^(1/2)*(2*c__1*exp(8*T)+16*c__2*beta__c)^(1/4)}, {c(T) = -2*2^(1/2)*(-c__2/(2*c__1*exp(8*T)+16*c__2*beta__c)^(1/2))^(1/2), p__c(T) = (1/2)*2^(1/2)*(2*c__1*exp(8*T)+16*c__2*beta__c)^(1/4)}, {c(T) = 2*2^(1/2)*(-c__2/(2*c__1*exp(8*T)+16*c__2*beta__c)^(1/2))^(1/2), p__c(T) = (1/2)*2^(1/2)*(2*c__1*exp(8*T)+16*c__2*beta__c)^(1/4)}]

Check the limiting behavior - simplify symbolic is reckless here; should consider each case for different signs of c__1, c__2 etc.

simplify(eval(sol3,beta__c=0),symbolic);

[{c(T) = -2*2^(1/4)*exp(-2*T)*c__2^(1/2)/c__1^(1/4), p__c(T) = -((1/2)*I)*2^(3/4)*c__1^(1/4)*exp(2*T)}, {c(T) = 2*2^(1/4)*exp(-2*T)*c__2^(1/2)/c__1^(1/4), p__c(T) = -((1/2)*I)*2^(3/4)*c__1^(1/4)*exp(2*T)}, {c(T) = -2*2^(1/4)*exp(-2*T)*c__2^(1/2)/c__1^(1/4), p__c(T) = ((1/2)*I)*2^(3/4)*c__1^(1/4)*exp(2*T)}, {c(T) = 2*2^(1/4)*exp(-2*T)*c__2^(1/2)/c__1^(1/4), p__c(T) = ((1/2)*I)*2^(3/4)*c__1^(1/4)*exp(2*T)}, {c(T) = -(2*I)*2^(1/4)*exp(-2*T)*c__2^(1/2)/c__1^(1/4), p__c(T) = -(1/2)*2^(3/4)*c__1^(1/4)*exp(2*T)}, {c(T) = (2*I)*2^(1/4)*exp(-2*T)*c__2^(1/2)/c__1^(1/4), p__c(T) = -(1/2)*2^(3/4)*c__1^(1/4)*exp(2*T)}, {c(T) = -(2*I)*2^(1/4)*exp(-2*T)*c__2^(1/2)/c__1^(1/4), p__c(T) = (1/2)*2^(3/4)*c__1^(1/4)*exp(2*T)}, {c(T) = (2*I)*2^(1/4)*exp(-2*T)*c__2^(1/2)/c__1^(1/4), p__c(T) = (1/2)*2^(3/4)*c__1^(1/4)*exp(2*T)}]

 

Download dsolve.mw

I think I understand better now. You never need to remove anything, just add the latest model to the list if it doesn't match any of the others, or add it as a twin if it does. If that is correct, then this works. Since lists are inefficient, this uses a table containing Arrays for the twins and a Vector (could be an Array) for the list.

KeyModels := Vector(): # unique models (was list l)
Models := table():     # equivalent models (was list of twins)
nkeys := 0:
for n to nmodels do
    # see which key model the new model n is equivalent to
    # by comparing with the existing key models
    # here do it by a random number generator
    r := rand(1 .. nkeys + 1)();
    if r = nkeys + 1 then   # didn't match any
        nkeys := nkeys + 1;
        # new model - record it as key
        # and start a new Array
        KeyModels ,= n; # append to key models
        Models[n] := Array([n]); # or perhaps Array([])
    else                    # matched existing model KeyModelNum
        KeyModelNum := KeyModels[r];
        # add to existing models
        Models[KeyModelNum] ,= n;
    end if;
end do:

restart;

nmodels:=100000;

100000

st:=time():

KeyModels := Vector(): # unique models (was list l)

time()-st;

4.813

Results

KeyModels;

_rtable[36893489746279458924]

Models[4];
Models[28];

Models[4]

Array(%id = 36893489746279460364)

NULL

Download twins.mw

Notes: In principle, you could skip the KeyModels Vector and just use for i,_ in eval(Models) do to iterate through the keys (but not in numerical order). I've anticipated you might want the key model in with the twins, but if not replace Array([n]) with Array([]).

Maple does not properly export .eps for 3D plots (works fine with vector graphics for 2D plots). You can export .pdf from the plot context menu and it will work directly in overleaf with the graphicx package. If you want to do it programmatically you can use the jpeg or png driver, but of course these are bitmap formats (as is the .pdf)..

Most things in linalg have their equivalent in LinearAlgebra, so I wouldn't say it is split in two. Note that the ArrayTools package is restricted to rectangular storage array objects (at least in 2023). For these, ArrayTools:-IsZero is fast.

For sparse (or rectangular) matrices, M-> andmap(`=`,M,0) is a simple alternative.

[Edit: see @sursumCorda's response - andmap is only good for moderately sized rectangular matrices]

The non-dim Lambda is a function of 2 non-dim variables, so you will need 3D plots this time.

[Edit in blue - the choice of variables to eliminate was not working; was always the first 2]

restart;

local gamma:with(LinearAlgebra):

Want to "non-dimensionalize" this expression.

p3 := RootOf((64*gamma^2*sigma__d1^2*sigma__d2^6*sigma__v^2 + 64*gamma^2*sigma__d2^8*sigma__v^2 + 512*sigma__d2^6)*_Z^10 - 2*gamma^6*sigma__d1^2*sigma__v^6 - 8*gamma^5*sigma__d1^2*sigma__v^5*_Z + (-3*gamma^6*sigma__d1^4*sigma__v^6 - 3*gamma^6*sigma__d1^2*sigma__d2^2*sigma__v^6 + 24*gamma^4*sigma__d2^2*sigma__v^4)*_Z^2 + (-12*gamma^5*sigma__d1^4*sigma__v^5 - 52*gamma^5*sigma__d1^2*sigma__d2^2*sigma__v^5 - 48*gamma^5*sigma__d2^4*sigma__v^5 + 32*gamma^3*sigma__d1^2*sigma__v^3 + 160*gamma^3*sigma__d2^2*sigma__v^3)*_Z^3 + (12*gamma^6*sigma__d1^4*sigma__d2^2*sigma__v^6 + 36*gamma^6*sigma__d1^2*sigma__d2^4*sigma__v^6 + 24*gamma^6*sigma__d2^6*sigma__v^6 - 12*gamma^4*sigma__d1^4*sigma__v^4 - 216*gamma^4*sigma__d1^2*sigma__d2^2*sigma__v^4 - 412*gamma^4*sigma__d2^4*sigma__v^4 + 32*gamma^2*sigma__d1^2*sigma__v^2 + 384*gamma^2*sigma__d2^2*sigma__v^2)*_Z^4 + (32*gamma^5*sigma__d1^4*sigma__d2^2*sigma__v^5 + 224*gamma^5*sigma__d1^2*sigma__d2^4*sigma__v^5 + 248*gamma^5*sigma__d2^6*sigma__v^5 - 336*gamma^3*sigma__d1^2*sigma__d2^2*sigma__v^3 - 1392*gamma^3*sigma__d2^4*sigma__v^3 + 384*gamma*sigma__d2^2*sigma__v)*_Z^5 + (4*gamma^6*sigma__d1^6*sigma__d2^2*sigma__v^6 + 16*gamma^6*sigma__d1^4*sigma__d2^4*sigma__v^6 + 16*gamma^6*sigma__d1^2*sigma__d2^6*sigma__v^6 + 4*gamma^6*sigma__d2^8*sigma__v^6 + 16*gamma^4*sigma__d1^4*sigma__d2^2*sigma__v^4 + 512*gamma^4*sigma__d1^2*sigma__d2^4*sigma__v^4 + 1072*gamma^4*sigma__d2^6*sigma__v^4 - 176*gamma^2*sigma__d1^2*sigma__d2^2*sigma__v^2 - 2288*gamma^2*sigma__d2^4*sigma__v^2 + 128*sigma__d2^2)*_Z^6 + (48*gamma^5*sigma__d1^4*sigma__d2^4*sigma__v^5 + 96*gamma^5*sigma__d1^2*sigma__d2^6*sigma__v^5 + 32*gamma^5*sigma__d2^8*sigma__v^5 + 512*gamma^3*sigma__d1^2*sigma__d2^4*sigma__v^3 + 2464*gamma^3*sigma__d2^6*sigma__v^3 - 1792*gamma*sigma__d2^4*sigma__v)*_Z^7 + (32*gamma^4*sigma__d1^4*sigma__d2^4*sigma__v^4 + 208*gamma^4*sigma__d1^2*sigma__d2^6*sigma__v^4 + 96*gamma^4*sigma__d2^8*sigma__v^4 + 192*gamma^2*sigma__d1^2*sigma__d2^4*sigma__v^2 + 3136*gamma^2*sigma__d2^6*sigma__v^2 - 512*sigma__d2^4)*_Z^8 + (192*gamma^3*sigma__d1^2*sigma__d2^6*sigma__v^3 + 128*gamma^3*sigma__d2^8*sigma__v^3 + 2048*gamma*sigma__d2^6*sigma__v)*_Z^9):

First write the polynomial with variable lambda, and normalize so one of the terms is 1 (arbitrarily take the first one)

p:=expand(subs(_Z=lambda,op(p3))):
pnorm:=expand(%/op(1,%));

1+4*sigma__d2^2/sigma__d1^2+4*sigma__d2^4/sigma__d1^4+sigma__d2^6/sigma__d1^6+12*lambda*sigma__d2^2/(gamma*sigma__d1^2*sigma__v)+24*lambda*sigma__d2^4/(gamma*sigma__d1^4*sigma__v)+8*lambda*sigma__d2^6/(gamma*sigma__d1^6*sigma__v)+8*lambda^2*sigma__d2^2/(gamma^2*sigma__d1^2*sigma__v^2)+52*lambda^2*sigma__d2^4/(gamma^2*sigma__d1^4*sigma__v^2)+24*lambda^2*sigma__d2^6/(gamma^2*sigma__d1^6*sigma__v^2)+48*lambda^3*sigma__d2^4/(gamma^3*sigma__d1^4*sigma__v^3)+32*lambda^3*sigma__d2^6/(gamma^3*sigma__d1^6*sigma__v^3)+3/(lambda^2*sigma__d1^2)+9*sigma__d2^2/(lambda^2*sigma__d1^4)+6*sigma__d2^4/(lambda^2*sigma__d1^6)+16*lambda^4*sigma__d2^4/(gamma^4*sigma__d1^4*sigma__v^4)+16*lambda^4*sigma__d2^6/(gamma^4*sigma__d1^6*sigma__v^4)+8/(gamma*lambda*sigma__d1^2*sigma__v)+56*sigma__d2^2/(gamma*lambda*sigma__d1^4*sigma__v)+62*sigma__d2^4/(gamma*lambda*sigma__d1^6*sigma__v)+4/(gamma^2*sigma__d1^2*sigma__v^2)+128*sigma__d2^2/(gamma^2*sigma__d1^4*sigma__v^2)+268*sigma__d2^4/(gamma^2*sigma__d1^6*sigma__v^2)+128*lambda*sigma__d2^2/(gamma^3*sigma__d1^4*sigma__v^3)+616*lambda*sigma__d2^4/(gamma^3*sigma__d1^6*sigma__v^3)-(3/4)/(lambda^4*sigma__d1^2*sigma__d2^2)-(3/4)/(lambda^4*sigma__d1^4)+48*lambda^2*sigma__d2^2/(gamma^4*sigma__d1^4*sigma__v^4)+784*lambda^2*sigma__d2^4/(gamma^4*sigma__d1^6*sigma__v^4)-3/(gamma*lambda^3*sigma__d1^2*sigma__d2^2*sigma__v)-13/(gamma*lambda^3*sigma__d1^4*sigma__v)-12*sigma__d2^2/(gamma*lambda^3*sigma__d1^6*sigma__v)+512*lambda^3*sigma__d2^4/(gamma^5*sigma__d1^6*sigma__v^5)-3/(gamma^2*lambda^2*sigma__d1^2*sigma__d2^2*sigma__v^2)-54/(gamma^2*lambda^2*sigma__d1^4*sigma__v^2)-103*sigma__d2^2/(gamma^2*lambda^2*sigma__d1^6*sigma__v^2)+128*lambda^4*sigma__d2^4/(gamma^6*sigma__d1^6*sigma__v^6)-84/(gamma^3*lambda*sigma__d1^4*sigma__v^3)-348*sigma__d2^2/(gamma^3*lambda*sigma__d1^6*sigma__v^3)-(1/2)/(lambda^6*sigma__d1^4*sigma__d2^2)-44/(gamma^4*sigma__d1^4*sigma__v^4)-572*sigma__d2^2/(gamma^4*sigma__d1^6*sigma__v^4)-2/(gamma*lambda^5*sigma__d1^4*sigma__d2^2*sigma__v)-448*lambda*sigma__d2^2/(gamma^5*sigma__d1^6*sigma__v^5)+6/(gamma^2*lambda^4*sigma__d1^6*sigma__v^2)-128*lambda^2*sigma__d2^2/(gamma^6*sigma__d1^6*sigma__v^6)+8/(gamma^3*lambda^3*sigma__d1^4*sigma__d2^2*sigma__v^3)+40/(gamma^3*lambda^3*sigma__d1^6*sigma__v^3)+8/(gamma^4*lambda^2*sigma__d1^4*sigma__d2^2*sigma__v^4)+96/(gamma^4*lambda^2*sigma__d1^6*sigma__v^4)+96/(gamma^5*lambda*sigma__d1^6*sigma__v^5)+32/(gamma^6*sigma__d1^6*sigma__v^6)

So all the other terms must now be dimensionless. We use the automated non-dimensionalization procedure of E. Hubert, G, Labahn, Found Comput Math 13 (2013) 479–516, doi:10.1007/s10208-013-9165-9. See also https://youtu.be/Nl2FBAbU1pE

terms:=[op(2..-1,pnorm)]:
allvars:=[indets(p3,name)[],lambda]; #lambda as a true variable is last. A simpler result may occur if the ones to eliminate are first
nvars:=nops(allvars);
nterms:=nops(terms)

[gamma, sigma__d1, sigma__d2, sigma__v, lambda]

5

51

Matrix K contains the exponents of the variables in each term. It has 5 rows but rank 3, so we can eliminate 5 - 3 = 2 variables.

By default these are the first 2 in allvars, so rearrange allvars if you want a different result.

K := Matrix(nvars, nterms, (i, j) -> diff(terms[j], allvars[i])*allvars[i]/terms[j]);
r1 := Rank(K);

_rtable[36893490145425527140]

3

Hubert's matrix A has full row rank, equal to the number of variables to eliminate

H, U := HermiteForm(K, output = ['H', 'U'], method = 'integer'):
Determinant(U):
A := U[-nvars + r1 .. -1, .. ];
A . K: # should be zero
rA := Rank(A);

Matrix(2, 5, {(1, 1) = -1, (1, 2) = 0, (1, 3) = 0, (1, 4) = 1, (1, 5) = 0, (2, 1) = 1, (2, 2) = -1, (2, 3) = -1, (2, 4) = 0, (2, 5) = 1})

2

Calculate matrix W. Procedure ColumnHermiteForm is in startup code

HA, V := ColumnHermiteForm(A):
W := V^(-1):

Vi := V[.., 1 .. rA]:
Vn := V[.., -nvars + rA .. -1]:
Wu := W[1 .. rA, ..]:
Wd := W[-nvars + rA .. -1, ..]:

nondims := table():
nondimvars := table():
for i to nvars - rA do
    nondimvars[i] := cat(allvars[i + rA], __new);
    nondims[i] := nondimvars[i] = mul(`^`~(allvars, V[ .. , i + rA]));
end do:
nondimvars := convert(nondimvars, list);
nondims := convert(nondims, list);

[sigma__d2__new, sigma__v__new, lambda__new]

[sigma__d2__new = sigma__d2/sigma__d1, sigma__v__new = gamma*sigma__d1*sigma__v, lambda__new = sigma__d1*lambda]

rewrites := table():
for i to nvars do
    rewrites[i] := allvars[i] = mul(`^`~(nondimvars, Wd[ .. , i]));
end do:
rewrites := convert(rewrites, list);

[gamma = 1, sigma__d1 = 1, sigma__d2 = sigma__d2__new, sigma__v = sigma__v__new, lambda = lambda__new]

So the non-dimensionalized p is

newsys := subs(rewrites, p);

64*lambda__new^10*sigma__d2__new^8*sigma__v__new^2+128*lambda__new^9*sigma__d2__new^8*sigma__v__new^3+96*lambda__new^8*sigma__d2__new^8*sigma__v__new^4+32*lambda__new^7*sigma__d2__new^8*sigma__v__new^5+4*lambda__new^6*sigma__d2__new^8*sigma__v__new^6+64*lambda__new^10*sigma__d2__new^6*sigma__v__new^2+192*lambda__new^9*sigma__d2__new^6*sigma__v__new^3+208*lambda__new^8*sigma__d2__new^6*sigma__v__new^4+96*lambda__new^7*sigma__d2__new^6*sigma__v__new^5+16*lambda__new^6*sigma__d2__new^6*sigma__v__new^6+512*lambda__new^10*sigma__d2__new^6+2048*lambda__new^9*sigma__d2__new^6*sigma__v__new+3136*lambda__new^8*sigma__d2__new^6*sigma__v__new^2+32*lambda__new^8*sigma__d2__new^4*sigma__v__new^4+2464*lambda__new^7*sigma__d2__new^6*sigma__v__new^3+48*lambda__new^7*sigma__d2__new^4*sigma__v__new^5+1072*lambda__new^6*sigma__d2__new^6*sigma__v__new^4+16*lambda__new^6*sigma__d2__new^4*sigma__v__new^6+248*lambda__new^5*sigma__d2__new^6*sigma__v__new^5+24*lambda__new^4*sigma__d2__new^6*sigma__v__new^6+192*lambda__new^8*sigma__d2__new^4*sigma__v__new^2+512*lambda__new^7*sigma__d2__new^4*sigma__v__new^3+512*lambda__new^6*sigma__d2__new^4*sigma__v__new^4+4*lambda__new^6*sigma__d2__new^2*sigma__v__new^6+224*lambda__new^5*sigma__d2__new^4*sigma__v__new^5+36*lambda__new^4*sigma__d2__new^4*sigma__v__new^6-512*lambda__new^8*sigma__d2__new^4-1792*lambda__new^7*sigma__d2__new^4*sigma__v__new-2288*lambda__new^6*sigma__d2__new^4*sigma__v__new^2+16*lambda__new^6*sigma__d2__new^2*sigma__v__new^4-1392*lambda__new^5*sigma__d2__new^4*sigma__v__new^3+32*lambda__new^5*sigma__d2__new^2*sigma__v__new^5-412*lambda__new^4*sigma__d2__new^4*sigma__v__new^4+12*lambda__new^4*sigma__d2__new^2*sigma__v__new^6-48*lambda__new^3*sigma__d2__new^4*sigma__v__new^5-176*lambda__new^6*sigma__d2__new^2*sigma__v__new^2-336*lambda__new^5*sigma__d2__new^2*sigma__v__new^3-216*lambda__new^4*sigma__d2__new^2*sigma__v__new^4-52*lambda__new^3*sigma__d2__new^2*sigma__v__new^5-3*lambda__new^2*sigma__d2__new^2*sigma__v__new^6+128*lambda__new^6*sigma__d2__new^2+384*lambda__new^5*sigma__d2__new^2*sigma__v__new+384*lambda__new^4*sigma__d2__new^2*sigma__v__new^2-12*lambda__new^4*sigma__v__new^4+160*lambda__new^3*sigma__d2__new^2*sigma__v__new^3-12*lambda__new^3*sigma__v__new^5+24*lambda__new^2*sigma__d2__new^2*sigma__v__new^4-3*lambda__new^2*sigma__v__new^6+32*lambda__new^4*sigma__v__new^2+32*lambda__new^3*sigma__v__new^3-8*lambda__new*sigma__v__new^5-2*sigma__v__new^6

The naming here is not optimal. sigma__v__new is similar to Gamma previously but with sigma__d1 instead of sigma__d, so Gamma or maybe Gamma_1; lambda__new should be Lamba, and the ratio sigma__d2/sigma__d1 could be some other capital Greek letter, say Psi
So the new Lambda is

newnames:={sigma__d2__new = Psi, sigma__v__new=Gamma};
Lambda := RootOf(eval(newsys,newnames),lambda__new);

{sigma__d2__new = Psi, sigma__v__new = Gamma}

RootOf((64*Gamma^2*Psi^8+64*Gamma^2*Psi^6+512*Psi^6)*_Z^10+(128*Gamma^3*Psi^8+192*Gamma^3*Psi^6+2048*Gamma*Psi^6)*_Z^9+(96*Gamma^4*Psi^8+208*Gamma^4*Psi^6+32*Gamma^4*Psi^4+3136*Gamma^2*Psi^6+192*Gamma^2*Psi^4-512*Psi^4)*_Z^8+(32*Gamma^5*Psi^8+96*Gamma^5*Psi^6+48*Gamma^5*Psi^4+2464*Gamma^3*Psi^6+512*Gamma^3*Psi^4-1792*Gamma*Psi^4)*_Z^7+(4*Gamma^6*Psi^8+16*Gamma^6*Psi^6+16*Gamma^6*Psi^4+1072*Gamma^4*Psi^6+4*Gamma^6*Psi^2+512*Gamma^4*Psi^4+16*Gamma^4*Psi^2-2288*Gamma^2*Psi^4-176*Gamma^2*Psi^2+128*Psi^2)*_Z^6+(248*Gamma^5*Psi^6+224*Gamma^5*Psi^4+32*Gamma^5*Psi^2-1392*Gamma^3*Psi^4-336*Gamma^3*Psi^2+384*Gamma*Psi^2)*_Z^5+(24*Gamma^6*Psi^6+36*Gamma^6*Psi^4+12*Gamma^6*Psi^2-412*Gamma^4*Psi^4-216*Gamma^4*Psi^2-12*Gamma^4+384*Gamma^2*Psi^2+32*Gamma^2)*_Z^4+(-48*Gamma^5*Psi^4-52*Gamma^5*Psi^2-12*Gamma^5+160*Gamma^3*Psi^2+32*Gamma^3)*_Z^3+(-3*Gamma^6*Psi^2-3*Gamma^6+24*Gamma^4*Psi^2)*_Z^2-8*Gamma^5*_Z-2*Gamma^6)

Find how to write the old variables in terms of the new ones, and directly use eval as a check. We only need to eval for the variables that we are not eliminating; the others will automatically disappear

map(lhs,remove(x->rhs(x)=1,rewrites)):
OldToNew := eval(solve(nondims,%)[],newnames);
sigma__d1^4*simplify(eval(p, OldToNew)): # may need to scale to get rid of last of the old variables
RootOf(%,lambda__new):
%-Lambda; # should be zero

[sigma__d2 = Psi*sigma__d1, sigma__v = Gamma/(gamma*sigma__d1), lambda = lambda__new/sigma__d1]

0

allvals:=[allvalues(Lambda)]: # just different index values for the RootOf

plot3d(allvals[1],Gamma=0..10,Psi=0..10);

NULL

Download nondim.mw

The default appears to be 500x500 pixels. If you add the plot option size=[1000,1000] then the exported file will be 1000x1000 pixels.

You need to set up a Table of Contents to load into the help database with HelpTools:-TableOfContents:-Load(TOC,helpdbname);

In the TOC, you set a priority for each entry, so make your overview the highest priority

See here on Mapleprimes for an example.

Since you only know M via the equation and not explicitly, implicitplot3d is appropriate.

implicitplot3d.mw

Here's a way that only generates valid possibilities for i, j, k. I'm assuming each of i, j, k is in the range 1..n.

restart

n := 5

5

Compositions of k with 3 parts (sum to k). Need ones that add to k=3, 4, .. n

comps := table([seq(k = Iterator:-Composition(k, parts = 3), k = 3 .. n)])

table( [( 3 ) = _m2362689082336, ( 4 ) = _m2362689084160, ( 5 ) = _m2362722715232 ] )

Check possibilities

for k from 3 to n do lprint(cat("Add to ", k, ":")); Print(comps[k]) end do

Add to 3:
1 1 1
Add to 4:
2 1 1
1 1 2
1 2 1
Add to 5:
3 1 1
2 1 2
2 2 1
1 1 3
1 2 2
1 3 1

Calculate the required sum

add(add(1/mul(comp), `in`(comp, comps[k])), k = 3 .. n)

17/4

So work this out for the first few n.
If we are going to do all of them we can avoid duplicate iterators and incrementally accumulate sums.

s := 0; for n to 10 do comps := Iterator:-Composition(n, parts = 3); s := s+add(1/mul(comp), `in`(comp, comps)); print(n, s) end do

1, 0

2, 0

3, 1

4, 5/2

5, 17/4

6, 49/8

7, 967/120

8, 801/80

9, 4523/378

10, 84095/6048

NULL

Download compositions.mw

restart;

q:=hypergeom([1, 1, 3/2], [5/2, 5/2, 3, 3], -(x/2)**2);

hypergeom([1, 1, 3/2], [5/2, 5/2, 3, 3], -(1/4)*x^2)

Note sure about the assumptions - choose one root.
Often conversions work when the argument is simple.

itr:=u=-x^2/4;
tr:=x=solve(u=-x^2/4,x)[1];

u = -(1/4)*x^2

x = 2*(-u)^(1/2)

qu:=PDEtools:-dchange(tr,q);

hypergeom([1, 1, 3/2], [5/2, 5/2, 3, 3], u)

convert(qu, StandardFunctions);
q2:=PDEtools:-dchange(itr,%,simplify);

-(-108*u+27)/u^2+(1/2)*(-18*u^(1/2)+27)*exp(2*u^(1/2))/u^2+(1/2)*(18*u^(1/2)+27)*exp(-2*u^(1/2))/u^2+(18*u-36*u^(1/2)+9)*(-gamma-ln(-2*u^(1/2))-Ei(1, -2*u^(1/2)))/u^2+(18*u+36*u^(1/2)+9)*(-gamma-ln(2*u^(1/2))-Ei(1, 2*u^(1/2)))/u^2

36*(-12+2*(x^2+4*(-x^2)^(1/2)-2)*Ei(1, -(-x^2)^(1/2))+2*(x^2+4*(-x^2)^(1/2)-2)*ln(-(-x^2)^(1/2))+2*(3+(-x^2)^(1/2))*exp(-(-x^2)^(1/2))+2*(x^2-4*(-x^2)^(1/2)-2)*Ei(1, (-x^2)^(1/2))+2*(3-(-x^2)^(1/2))*exp((-x^2)^(1/2))-4*ln(-x^2)*(-x^2)^(1/2)+(x^2-2)*ln(-x^2)+4*(-3+gamma)*x^2-8*gamma)/x^4

NULL

Download dchange.mw

If I understand what you want, Dirac can do this for you. Note that aside frim the infinitesimal time interval aspect @C_R mentioned, the ifelse immediately finds that t is not 1 and so Inf =0 after the ifelse statement is executed.

restart;

k12:=0.0452821;
k21:=0.0641682;
k1x:=0.00426118;
Dose:=484;
#Inj:=ifelse(t=1,Dose,0);

ode_sys:=diff(SA2(t),t)=SA1(t)*k12-SA2(t)*k21,
         diff(SA1(t),t)=Dose*Dirac(t-1)-k1x*SA1(t);

ics:=SA2(0)=0,SA1(0)=0;

0.452821e-1

0.641682e-1

0.426118e-2

484

diff(SA2(t), t) = 0.452821e-1*SA1(t)-0.641682e-1*SA2(t), diff(SA1(t), t) = 484*Dirac(t-1)-0.426118e-2*SA1(t)

SA2(0) = 0, SA1(0) = 0

Solution1:=dsolve({ode_sys,ics},{SA1(t),SA2(t)},type=numeric);

proc (x_rkf45) local _res, _dat, _vars, _solnproc, _xout, _ndsol, _pars, _n, _i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; if 1 < nargs then error "invalid input: too many arguments" end if; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then _xout := evalf[_EnvDSNumericSaveDigits](x_rkf45) else _xout := evalf(x_rkf45) end if; _dat := Array(1..4, {(1) = proc (_xin) local _xout, _dtbl, _dat, _vmap, _x0, _y0, _val, _dig, _n, _ne, _nd, _nv, _pars, _ini, _par, _i, _j, _k, _src; option `Copyright (c) 2002 by Waterloo Maple Inc. All rights reserved.`; table( [( "complex" ) = false ] ) _xout := _xin; _pars := []; _dtbl := array( 1 .. 4, [( 1 ) = (array( 1 .. 28, [( 1 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 2 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 3 ) = ([Array(1..5, 1..21, {(1, 1) = 1.0, (1, 2) = 2.0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .999999800002, (1, 6) = .0, (1, 7) = 1.0, (1, 8) = undefined, (1, 9) = undefined, (1, 10) = 1.0, (1, 11) = undefined, (1, 12) = undefined, (1, 13) = undefined, (1, 14) = undefined, (1, 15) = undefined, (1, 16) = undefined, (1, 17) = undefined, (1, 18) = undefined, (1, 19) = undefined, (1, 20) = undefined, (1, 21) = undefined, (2, 1) = 2.0, (2, 2) = 2.0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .999999999998, (2, 6) = .0, (2, 7) = 1.0, (2, 8) = undefined, (2, 9) = undefined, (2, 10) = 1.0, (2, 11) = undefined, (2, 12) = undefined, (2, 13) = undefined, (2, 14) = undefined, (2, 15) = undefined, (2, 16) = undefined, (2, 17) = undefined, (2, 18) = undefined, (2, 19) = undefined, (2, 20) = undefined, (2, 21) = undefined, (3, 1) = 3.0, (3, 2) = 2.0, (3, 3) = .0, (3, 4) = .0, (3, 5) = 1.000000000002, (3, 6) = .0, (3, 7) = 1.0, (3, 8) = undefined, (3, 9) = undefined, (3, 10) = 1.0, (3, 11) = undefined, (3, 12) = undefined, (3, 13) = undefined, (3, 14) = undefined, (3, 15) = undefined, (3, 16) = undefined, (3, 17) = undefined, (3, 18) = undefined, (3, 19) = undefined, (3, 20) = undefined, (3, 21) = undefined, (4, 1) = 4.0, (4, 2) = 2.0, (4, 3) = .0, (4, 4) = .0, (4, 5) = 1.000000199998, (4, 6) = .0, (4, 7) = 1.0, (4, 8) = undefined, (4, 9) = undefined, (4, 10) = 1.0, (4, 11) = undefined, (4, 12) = undefined, (4, 13) = undefined, (4, 14) = undefined, (4, 15) = undefined, (4, 16) = undefined, (4, 17) = undefined, (4, 18) = undefined, (4, 19) = undefined, (4, 20) = undefined, (4, 21) = undefined, (5, 1) = 4.0, (5, 2) = .0, (5, 3) = 100.0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (5, 8) = undefined, (5, 9) = undefined, (5, 10) = 0.10e-6, (5, 11) = undefined, (5, 12) = .0, (5, 13) = undefined, (5, 14) = .0, (5, 15) = .0, (5, 16) = undefined, (5, 17) = undefined, (5, 18) = undefined, (5, 19) = undefined, (5, 20) = undefined, (5, 21) = undefined}, datatype = float[8], order = C_order), proc (t, Y, Ypre, n, EA) EA[1, 8+2*n] := 1; EA[2, 8+2*n] := 1; EA[3, 8+2*n] := 1; EA[4, 8+2*n] := 1; 0 end proc, proc (e, t, Y, Ypre) return 0 end proc, Array(1..4, 1..2, {(1, 1) = undefined, (1, 2) = undefined, (2, 1) = undefined, (2, 2) = undefined, (3, 1) = undefined, (3, 2) = undefined, (4, 1) = undefined, (4, 2) = undefined}, datatype = float[8], order = C_order)]), ( 4 ) = (Array(1..65, {(1) = 2, (2) = 2, (3) = 0, (4) = 0, (5) = 0, (6) = 0, (7) = 1, (8) = 0, (9) = 0, (10) = 0, (11) = 0, (12) = 0, (13) = 0, (14) = 0, (15) = 0, (16) = 4, (17) = 0, (18) = 29, (19) = 30000, (20) = 0, (21) = 0, (22) = 1, (23) = 4, (24) = 0, (25) = 1, (26) = 15, (27) = 1, (28) = 0, (29) = 1, (30) = 3, (31) = 3, (32) = 0, (33) = 1, (34) = 0, (35) = 0, (36) = 0, (37) = 0, (38) = 0, (39) = 0, (40) = 0, (41) = 0, (42) = 0, (43) = 1, (44) = 0, (45) = 0, (46) = 0, (47) = 0, (48) = 0, (49) = 0, (50) = 50, (51) = 1, (52) = 0, (53) = 0, (54) = 0, (55) = 0, (56) = 0, (57) = 0, (58) = 0, (59) = 10000, (60) = 0, (61) = 1000, (62) = 0, (63) = 0, (64) = -1, (65) = 0}, datatype = integer[8])), ( 5 ) = (Array(1..28, {(1) = .0, (2) = 0.10e-5, (3) = .0, (4) = 0.500001e-14, (5) = .0, (6) = 0.10e-5, (7) = .0, (8) = 0.10e-5, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = 1.0, (14) = .0, (15) = .49999999999999, (16) = .0, (17) = 1.0, (18) = 1.0, (19) = .0, (20) = .0, (21) = 1.0, (22) = 1.0, (23) = .0, (24) = .0, (25) = 0.10e-14, (26) = .0, (27) = .0, (28) = .0}, datatype = float[8], order = C_order)), ( 6 ) = (Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order)), ( 7 ) = ([Array(1..4, 1..7, {(1, 1) = .0, (1, 2) = .203125, (1, 3) = .3046875, (1, 4) = .75, (1, 5) = .8125, (1, 6) = .40625, (1, 7) = .8125, (2, 1) = 0.6378173828125e-1, (2, 2) = .0, (2, 3) = .279296875, (2, 4) = .27237892150878906, (2, 5) = -0.9686851501464844e-1, (2, 6) = 0.1956939697265625e-1, (2, 7) = .5381584167480469, (3, 1) = 0.31890869140625e-1, (3, 2) = .0, (3, 3) = -.34375, (3, 4) = -.335235595703125, (3, 5) = .2296142578125, (3, 6) = .41748046875, (3, 7) = 11.480712890625, (4, 1) = 0.9710520505905151e-1, (4, 2) = .0, (4, 3) = .40350341796875, (4, 4) = 0.20297467708587646e-1, (4, 5) = -0.6054282188415527e-2, (4, 6) = -0.4770040512084961e-1, (4, 7) = .77858567237854}, datatype = float[8], order = C_order), Array(1..6, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = 1.0, (2, 1) = .25, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = 1.0, (3, 1) = .1875, (3, 2) = .5625, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = 2.0, (4, 1) = .23583984375, (4, 2) = -.87890625, (4, 3) = .890625, (4, 4) = .0, (4, 5) = .0, (4, 6) = .2681884765625, (5, 1) = .1272735595703125, (5, 2) = -.5009765625, (5, 3) = .44921875, (5, 4) = -0.128936767578125e-1, (5, 5) = .0, (5, 6) = 0.626220703125e-1, (6, 1) = -0.927734375e-1, (6, 2) = .626220703125, (6, 3) = -.4326171875, (6, 4) = .1418304443359375, (6, 5) = -0.861053466796875e-1, (6, 6) = .3131103515625}, datatype = float[8], order = C_order), Array(1..6, {(1) = .0, (2) = .386, (3) = .21, (4) = .63, (5) = 1.0, (6) = 1.0}, datatype = float[8], order = C_order), Array(1..6, {(1) = .25, (2) = -.1043, (3) = .1035, (4) = -0.362e-1, (5) = .0, (6) = .0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 1.544, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = .9466785280815533, (3, 2) = .25570116989825814, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = 3.3148251870684886, (4, 2) = 2.896124015972123, (4, 3) = .9986419139977808, (4, 4) = .0, (4, 5) = .0, (5, 1) = 1.2212245092262748, (5, 2) = 6.019134481287752, (5, 3) = 12.537083329320874, (5, 4) = -.687886036105895, (5, 5) = .0, (6, 1) = 1.2212245092262748, (6, 2) = 6.019134481287752, (6, 3) = 12.537083329320874, (6, 4) = -.687886036105895, (6, 5) = 1.0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = -5.6688, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = -2.4300933568337584, (3, 2) = -.20635991570891224, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = -.10735290581452621, (4, 2) = -9.594562251021896, (4, 3) = -20.470286148096154, (4, 4) = .0, (4, 5) = .0, (5, 1) = 7.496443313968615, (5, 2) = -10.246804314641219, (5, 3) = -33.99990352819906, (5, 4) = 11.708908932061595, (5, 5) = .0, (6, 1) = 8.083246795922411, (6, 2) = -7.981132988062785, (6, 3) = -31.52159432874373, (6, 4) = 16.319305431231363, (6, 5) = -6.0588182388340535}, datatype = float[8], order = C_order), Array(1..3, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 10.126235083446911, (2, 2) = -7.487995877607633, (2, 3) = -34.800918615557414, (2, 4) = -7.9927717075687275, (2, 5) = 1.0251377232956207, (3, 1) = -.6762803392806898, (3, 2) = 6.087714651678606, (3, 3) = 16.43084320892463, (3, 4) = 24.767225114183653, (3, 5) = -6.5943891257167815}, datatype = float[8], order = C_order)]), ( 9 ) = ([Array(1..2, {(1) = .1, (2) = .1}, datatype = float[8], order = C_order), Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order), Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order), Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order), Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order), Array(1..2, 1..2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0}, datatype = float[8], order = C_order), Array(1..2, 1..2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0}, datatype = float[8], order = C_order), Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order), Array(1..2, 1..2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0}, datatype = float[8], order = C_order), Array(1..2, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0}, datatype = float[8], order = C_order), Array(1..2, {(1) = 0, (2) = 0}, datatype = integer[8]), Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order), Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order), Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order), Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order), Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..2, {(1) = 0, (2) = 0}, datatype = integer[8])]), ( 8 ) = ([Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order), Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order), Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order), 0, 0]), ( 11 ) = (Array(1..6, 0..2, {(1, 1) = .0, (1, 2) = .0, (2, 0) = .0, (2, 1) = .0, (2, 2) = .0, (3, 0) = .0, (3, 1) = .0, (3, 2) = .0, (4, 0) = .0, (4, 1) = .0, (4, 2) = .0, (5, 0) = .0, (5, 1) = .0, (5, 2) = .0, (6, 0) = .0, (6, 1) = .0, (6, 2) = .0}, datatype = float[8], order = C_order)), ( 10 ) = ([proc (N, X, Y, YP) option `[Y[1] = SA1(t), Y[2] = SA2(t)]`; YP[1] := 484*piecewise(X < 4999999/5000000, 0, X < 1, -24999995000000+25000000000000*X, X < 5000001/5000000, 25000005000000-25000000000000*X, 0)-0.426118e-2*Y[1]; YP[2] := 0.452821e-1*Y[1]-0.641682e-1*Y[2]; 0 end proc, -1, 0, 0, 0, 0, proc (t, Y, Ypre, n, EA) EA[1, 8+2*n] := 1; EA[2, 8+2*n] := 1; EA[3, 8+2*n] := 1; EA[4, 8+2*n] := 1; 0 end proc, proc (e, t, Y, Ypre) return 0 end proc, 0, 0, 0, 0]), ( 13 ) = (), ( 12 ) = (), ( 15 ) = ("rkf45"), ( 14 ) = ([0, 0]), ( 18 ) = ([]), ( 19 ) = (0), ( 16 ) = ([0, 0, 0, 0, 0, 0, []]), ( 17 ) = ([proc (N, X, Y, YP) option `[Y[1] = SA1(t), Y[2] = SA2(t)]`; YP[1] := 484*piecewise(X < 4999999/5000000, 0, X < 1, -24999995000000+25000000000000*X, X < 5000001/5000000, 25000005000000-25000000000000*X, 0)-0.426118e-2*Y[1]; YP[2] := 0.452821e-1*Y[1]-0.641682e-1*Y[2]; 0 end proc, -1, 0, 0, 0, 0, proc (t, Y, Ypre, n, EA) EA[1, 8+2*n] := 1; EA[2, 8+2*n] := 1; EA[3, 8+2*n] := 1; EA[4, 8+2*n] := 1; 0 end proc, proc (e, t, Y, Ypre) return 0 end proc, 0, 0, 0, 0]), ( 22 ) = (0), ( 23 ) = (0), ( 20 ) = ([]), ( 21 ) = (0), ( 27 ) = (""), ( 26 ) = (Array(1..0, {})), ( 25 ) = (Array(1..0, {})), ( 24 ) = (0), ( 28 ) = (0)  ] ))  ] ); _y0 := Array(0..2, {(1) = 0., (2) = 0.}); _vmap := array( 1 .. 2, [( 1 ) = (1), ( 2 ) = (2)  ] ); _x0 := _dtbl[1][5][5]; _n := _dtbl[1][4][1]; _ne := _dtbl[1][4][3]; _nd := _dtbl[1][4][4]; _nv := _dtbl[1][4][16]; if not type(_xout, 'numeric') then if member(_xout, ["start", "left", "right"]) then if _Env_smart_dsolve_numeric = true or _dtbl[1][4][10] = 1 then if _xout = "left" then if type(_dtbl[2], 'table') then return _dtbl[2][5][1] end if elif _xout = "right" then if type(_dtbl[3], 'table') then return _dtbl[3][5][1] end if end if end if; return _dtbl[1][5][5] elif _xout = "method" then return _dtbl[1][15] elif _xout = "storage" then return evalb(_dtbl[1][4][10] = 1) elif _xout = "leftdata" then if not type(_dtbl[2], 'array') then return NULL else return eval(_dtbl[2]) end if elif _xout = "rightdata" then if not type(_dtbl[3], 'array') then return NULL else return eval(_dtbl[3]) end if elif _xout = "enginedata" then return eval(_dtbl[1]) elif _xout = "enginereset" then _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); return NULL elif _xout = "initial" then return procname(_y0[0]) elif _xout = "laxtol" then return _dtbl[`if`(member(_dtbl[4], {2, 3}), _dtbl[4], 1)][5][18] elif _xout = "numfun" then return `if`(member(_dtbl[4], {2, 3}), _dtbl[_dtbl[4]][4][18], 0) elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return procname(_y0[0]), [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "last" then if _dtbl[4] <> 2 and _dtbl[4] <> 3 or _x0-_dtbl[_dtbl[4]][5][1] = 0. then error "no information is available on last computed point" else _xout := _dtbl[_dtbl[4]][5][1] end if elif _xout = "function" then if _dtbl[1][4][33]-2. = 0 then return eval(_dtbl[1][10], 1) else return eval(_dtbl[1][10][1], 1) end if elif _xout = "map" then return copy(_vmap) elif type(_xin, `=`) and type(rhs(_xin), 'list') and member(lhs(_xin), {"initial", "parameters", "initial_and_parameters"}) then _ini, _par := [], []; if lhs(_xin) = "initial" then _ini := rhs(_xin) elif lhs(_xin) = "parameters" then _par := rhs(_xin) elif select(type, rhs(_xin), `=`) <> [] then _par, _ini := selectremove(type, rhs(_xin), `=`) elif nops(rhs(_xin)) < nops(_pars)+1 then error "insufficient data for specification of initial and parameters" else _par := rhs(_xin)[-nops(_pars) .. -1]; _ini := rhs(_xin)[1 .. -nops(_pars)-1] end if; _xout := lhs(_xout); _i := false; if _par <> [] then _i := `dsolve/numeric/process_parameters`(_n, _pars, _par, _y0) end if; if _ini <> [] then _i := `dsolve/numeric/process_initial`(_n-_ne, _ini, _y0, _pars, _vmap) or _i end if; if _i then `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars); if _Env_smart_dsolve_numeric = true and type(_y0[0], 'numeric') and _dtbl[1][4][10] <> 1 then procname("right") := _y0[0]; procname("left") := _y0[0] end if end if; if _xout = "initial" then return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)] elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] else return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)], [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] end if elif _xin = "eventstop" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then return 0 end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 100 and 100 <= _dtbl[5-_i][4][9] then _i := 5-_i; _dtbl[4] := _i; _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) elif 100 <= _dtbl[_i][4][9] then _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) else return 0 end if elif _xin = "eventstatus" then if _nv = 0 then error "this solution has no events" end if; _i := [selectremove(proc (a) options operator, arrow; _dtbl[1][3][1][a, 7] = 1 end proc, {seq(_j, _j = 1 .. round(_dtbl[1][3][1][_nv+1, 1]))})]; return ':-enabled' = _i[1], ':-disabled' = _i[2] elif _xin = "eventclear" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then error "no events to clear" end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 100 and 100 < _dtbl[5-_i][4][9] then _dtbl[4] := 5-_i; _i := 5-_i end if; if _dtbl[_i][4][9] < 100 then error "no events to clear" elif _nv < _dtbl[_i][4][9]-100 then error "event error condition cannot be cleared" else _j := _dtbl[_i][4][9]-100; if irem(round(_dtbl[_i][3][1][_j, 4]), 2) = 1 then error "retriggerable events cannot be cleared" end if; _j := round(_dtbl[_i][3][1][_j, 1]); for _k to _nv do if _dtbl[_i][3][1][_k, 1] = _j then if _dtbl[_i][3][1][_k, 2] = 3 then error "range events cannot be cleared" end if; _dtbl[_i][3][1][_k, 8] := _dtbl[_i][3][1][_nv+1, 8] end if end do; _dtbl[_i][4][17] := 0; _dtbl[_i][4][9] := 0; if _dtbl[1][4][10] = 1 then if _i = 2 then try procname(procname("left")) catch:  end try else try procname(procname("right")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and member(lhs(_xin), {"eventdisable", "eventenable"}) then if _nv = 0 then error "this solution has no events" end if; if type(rhs(_xin), {('list')('posint'), ('set')('posint')}) then _i := {op(rhs(_xin))} elif type(rhs(_xin), 'posint') then _i := {rhs(_xin)} else error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; if select(proc (a) options operator, arrow; _nv < a end proc, _i) <> {} then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _k := {}; for _j to _nv do if member(round(_dtbl[1][3][1][_j, 1]), _i) then _k := `union`(_k, {_j}) end if end do; _i := _k; if lhs(_xin) = "eventdisable" then _dtbl[4] := 0; _j := [evalb(assigned(_dtbl[2]) and member(_dtbl[2][4][17], _i)), evalb(assigned(_dtbl[3]) and member(_dtbl[3][4][17], _i))]; for _k in _i do _dtbl[1][3][1][_k, 7] := 0; if assigned(_dtbl[2]) then _dtbl[2][3][1][_k, 7] := 0 end if; if assigned(_dtbl[3]) then _dtbl[3][3][1][_k, 7] := 0 end if end do; if _j[1] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[2][3][4][_k, 1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to defined init `, _dtbl[2][3][4][_k, 1]); _dtbl[2][3][1][_k, 8] := _dtbl[2][3][4][_k, 1] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to rate hysteresis init `, _dtbl[2][5][24]); _dtbl[2][3][1][_k, 8] := _dtbl[2][5][24] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to initial init `, _x0); _dtbl[2][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to fireinitial init `, _x0-1); _dtbl[2][3][1][_k, 8] := _x0-1 end if end do; _dtbl[2][4][17] := 0; _dtbl[2][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("left")) end if end if; if _j[2] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[3][3][4][_k, 2], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to defined init `, _dtbl[3][3][4][_k, 2]); _dtbl[3][3][1][_k, 8] := _dtbl[3][3][4][_k, 2] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to rate hysteresis init `, _dtbl[3][5][24]); _dtbl[3][3][1][_k, 8] := _dtbl[3][5][24] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to initial init `, _x0); _dtbl[3][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to fireinitial init `, _x0+1); _dtbl[3][3][1][_k, 8] := _x0+1 end if end do; _dtbl[3][4][17] := 0; _dtbl[3][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("right")) end if end if else for _k in _i do _dtbl[1][3][1][_k, 7] := 1 end do; _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); _dtbl[4] := 0; if _dtbl[1][4][10] = 1 then if _x0 <= procname("right") then try procname(procname("right")) catch:  end try end if; if procname("left") <= _x0 then try procname(procname("left")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and lhs(_xin) = "eventfired" then if not type(rhs(_xin), 'list') then error "'eventfired' must be specified as a list" end if; if _nv = 0 then error "this solution has no events" end if; if _dtbl[4] <> 2 and _dtbl[4] <> 3 then error "'direction' must be set prior to calling/setting 'eventfired'" end if; _i := _dtbl[4]; _val := NULL; if not assigned(_EnvEventRetriggerWarned) then _EnvEventRetriggerWarned := false end if; for _k in rhs(_xin) do if type(_k, 'integer') then _src := _k elif type(_k, 'integer' = 'anything') and type(evalf(rhs(_k)), 'numeric') then _k := lhs(_k) = evalf[max(Digits, 18)](rhs(_k)); _src := lhs(_k) else error "'eventfired' entry is not valid: %1", _k end if; if _src < 1 or round(_dtbl[1][3][1][_nv+1, 1]) < _src then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _src := {seq(`if`(_dtbl[1][3][1][_j, 1]-_src = 0., _j, NULL), _j = 1 .. _nv)}; if nops(_src) <> 1 then error "'eventfired' can only be set/queried for root-finding events and time/interval events" end if; _src := _src[1]; if _dtbl[1][3][1][_src, 2] <> 0. and _dtbl[1][3][1][_src, 2]-2. <> 0. then error "'eventfired' can only be set/queried for root-finding events and time/interval events" elif irem(round(_dtbl[1][3][1][_src, 4]), 2) = 1 then if _EnvEventRetriggerWarned = false then WARNING(`'eventfired' has no effect on events that retrigger`) end if; _EnvEventRetriggerWarned := true end if; if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then _val := _val, undefined elif type(_dtbl[_i][3][4][_src, _i-1], 'undefined') or _i = 2 and _dtbl[2][3][1][_src, 8] < _dtbl[2][3][4][_src, 1] or _i = 3 and _dtbl[3][3][4][_src, 2] < _dtbl[3][3][1][_src, 8] then _val := _val, _dtbl[_i][3][1][_src, 8] else _val := _val, _dtbl[_i][3][4][_src, _i-1] end if; if type(_k, `=`) then if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then error "cannot set event code for a rate hysteresis event" end if; userinfo(3, {'events', 'eventreset'}, `manual set event code `, _src, ` to value `, rhs(_k)); _dtbl[_i][3][1][_src, 8] := rhs(_k); _dtbl[_i][3][4][_src, _i-1] := rhs(_k) end if end do; return [_val] elif type(_xin, `=`) and lhs(_xin) = "direction" then if not member(rhs(_xin), {-1, 1, ':-left', ':-right'}) then error "'direction' must be specified as either '1' or 'right' (positive) or '-1' or 'left' (negative)" end if; _src := `if`(_dtbl[4] = 2, -1, `if`(_dtbl[4] = 3, 1, undefined)); _i := `if`(member(rhs(_xin), {1, ':-right'}), 3, 2); _dtbl[4] := _i; _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if; return _src elif _xin = "eventcount" then if _dtbl[1][3][1] = 0 or _dtbl[4] <> 2 and _dtbl[4] <> 3 then return 0 else return round(_dtbl[_dtbl[4]][3][1][_nv+1, 12]) end if elif type(_xin, `=`) and lhs(_xin) = "setdatacallback" then if not type(rhs(_xin), 'nonegint') then error "data callback must be a nonnegative integer (address)" end if; _dtbl[1][28] := rhs(_xin) else return "procname" end if end if; if _xout = _x0 then return [_x0, seq(evalf(_dtbl[1][6][_vmap[_i]]), _i = 1 .. _n-_ne)] end if; _i := `if`(_x0 <= _xout, 3, 2); if _xin = "last" and 0 < _dtbl[_i][4][9] and _dtbl[_i][4][9] < 100 then _dat := eval(_dtbl[_i], 2); _j := _dat[4][20]; return [_dat[11][_j, 0], seq(_dat[11][_j, _vmap[_i]], _i = 1 .. _n-_ne-_nd), seq(_dat[8][1][_vmap[_i]], _i = _n-_ne-_nd+1 .. _n-_ne)] end if; if not type(_dtbl[_i], 'array') then _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if end if; if _xin <> "last" then if 0 < 0 then if `dsolve/numeric/checkglobals`(op(_dtbl[1][14]), _pars, _n, _y0) then `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars, _i) end if end if; if _dtbl[1][4][7] = 0 then error "parameters must be initialized before solution can be computed" end if end if; _dat := eval(_dtbl[_i], 2); _dtbl[4] := _i; try _src := `dsolve/numeric/SC/IVPrun`(_dat, _xout) catch: userinfo(2, `dsolve/debug`, print(`Exception in solnproc:`, [lastexception][2 .. -1])); error  end try; if _dat[17] <> _dtbl[1][17] then _dtbl[1][17] := _dat[17]; _dtbl[1][10] := _dat[10] end if; if _src = 0 and 100 < _dat[4][9] then _val := _dat[3][1][_nv+1, 8] else _val := _dat[11][_dat[4][20], 0] end if; if _src <> 0 or _dat[4][9] <= 0 then _dtbl[1][5][1] := _xout else _dtbl[1][5][1] := _val end if; if _i = 3 and _val < _xout then Rounding := -infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further right of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further right of %1, maxfun limit exceeded (see ?dsolve,maxfun for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further right of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further right of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif _dat[4][9] = 6 then error "cannot evaluate the solution further right of %1, cannot downgrade delay storage for problems with delay derivative order > 1, try increasing delaypts", evalf[8](_val) elif _dat[4][9] = 10 then error "cannot evaluate the solution further right of %1, interrupt requested", evalf[8](_val) elif 100 < _dat[4][9] then if _dat[4][9]-100 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further right of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-100, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further right of %1", evalf[8](_val) end if elif _i = 2 and _xout < _val then Rounding := infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further left of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further left of %1, maxfun limit exceeded (see ?dsolve,maxfun for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further left of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further left of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif _dat[4][9] = 6 then error "cannot evaluate the solution further left of %1, cannot downgrade delay storage for problems with delay derivative order > 1, try increasing delaypts", evalf[8](_val) elif _dat[4][9] = 10 then error "cannot evaluate the solution further right of %1, interrupt requested", evalf[8](_val) elif 100 < _dat[4][9] then if _dat[4][9]-100 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further left of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-100, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further left of %1", evalf[8](_val) end if end if; if _EnvInFsolve = true then _dig := _dat[4][26]; if type(_EnvDSNumericSaveDigits, 'posint') then _dat[4][26] := _EnvDSNumericSaveDigits else _dat[4][26] := Digits end if; _Env_dsolve_SC_native := true; if _dat[4][25] = 1 then _i := 1; _dat[4][25] := 2 else _i := _dat[4][25] end if; _val := `dsolve/numeric/SC/IVPval`(_dat, _xout, _src); _dat[4][25] := _i; _dat[4][26] := _dig; [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] else Digits := _dat[4][26]; _val := `dsolve/numeric/SC/IVPval`(eval(_dat, 2), _xout, _src); [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] end if end proc, (2) = Array(0..0, {}), (3) = [t, SA1(t), SA2(t)], (4) = []}); _vars := _dat[3]; _pars := map(rhs, _dat[4]); _n := nops(_vars)-1; _solnproc := _dat[1]; if not type(_xout, 'numeric') then if member(x_rkf45, ["start", 'start', "method", 'method', "left", 'left', "right", 'right', "leftdata", "rightdata", "enginedata", "eventstop", 'eventstop', "eventclear", 'eventclear', "eventstatus", 'eventstatus', "eventcount", 'eventcount', "laxtol", 'laxtol', "numfun", 'numfun', NULL]) then _res := _solnproc(convert(x_rkf45, 'string')); if 1 < nops([_res]) then return _res elif type(_res, 'array') then return eval(_res, 1) elif _res <> "procname" then return _res end if elif member(x_rkf45, ["last", 'last', "initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(x_rkf45, 'string'); _res := _solnproc(_xout); if _xout = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return [seq(_vars[_i+1] = [_res][1][_i+1], _i = 0 .. _n), seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] else return [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] end if elif type(_xout, `=`) and member(lhs(_xout), ["initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(lhs(x_rkf45), 'string') = rhs(x_rkf45); if type(rhs(_xout), 'list') then _res := _solnproc(_xout) else error "initial and/or parameter values must be specified in a list" end if; if lhs(_xout) = "initial" then return [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] elif lhs(_xout) = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [seq(_vars[_i+1] = [_res][1][_i+1], _i = 0 .. _n), seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["eventdisable", 'eventdisable', "eventenable", 'eventenable', "eventfired", 'eventfired', "direction", 'direction', NULL]) then return _solnproc(convert(lhs(x_rkf45), 'string') = rhs(x_rkf45)) elif _xout = "solnprocedure" then return eval(_solnproc) elif _xout = "sysvars" then return _vars end if; if procname <> unknown then return ('procname')(x_rkf45) else _ndsol := 1; _ndsol := _ndsol; _ndsol := pointto(_dat[2][0]); return ('_ndsol')(x_rkf45) end if end if; try _res := _solnproc(_xout); [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] catch: error  end try end proc

plots:-odeplot(Solution1,[[t,SA1(t),color="red",thickness=1],[t,SA2(t),color="blue",thickness=1]],t=0..50,labels=["Time t","Salicylic acid"],labeldirections=[horizontal,vertical]);

NULL

Download Dirac.mw

@mehdi jafari You asked about the relationship between left and right eigenvectors, and getting a diagonal matrix from them. They are biorthogonal, meaning that left eigenvectors are orthogonal to right eigenvectors corresponding to different eigenvalues. So the product of the matrices of left eigenvectors (as row vectors) and right eigenvectors (as column vectors) is diagonal.

[Edit - 2023 version uploaded] Rerun the worksheet in your version of Maple; the rtable output from Maple 2024 doesn't display correctly in earlier versions (or here on Mapleprimes, SCR submitted).

restart

with(LinearAlgebra)

A := Matrix(3, 3, [1, 0, 1, 1, 1, 0, 2, 0, 1])

Matrix(%id = 36893490995083995364)

Right (column) eigenvectors corresponding to increasing eigenvalues (any order for the eigenvalues will do, so long as it is consistent for left and right eigenvectors)

revs, rvecs1 := Eigenvectors(A); evs, rperm := sort(revs, output = [sorted, permutation], key = evalf); rvecs := rvecs1[() .. (), rperm]

evs, rperm := Vector(3, {(1) = 1-sqrt(2), (2) = 1, (3) = 1+sqrt(2)}), [3, 1, 2]

Matrix(%id = 36893490995083958140)

Left (row) eigenvectors corresponding to increasing eigenvals

levs, lvecs1 := Eigenvectors(LinearAlgebra:-Transpose(A)); evs, lperm := sort(levs, output = [sorted, permutation], key = evalf); lvecs := lvecs1*LinearAlgebra:-Transpose([() .. (), lperm])

evs, lperm := Vector(3, {(1) = 1-sqrt(2), (2) = 1, (3) = 1+sqrt(2)}), [2, 3, 1]

Matrix(%id = 36893490995083988852)

Biorthogonality means that left eigenvectors are orthogonal to right eigenvectors corresponding to different eigenvalues.

e.g, left eigenvector for 1 is orthogonal to right eigenvalues for 1-srqt(2) and 1+sqrt(2)

lvecs[1, () .. ()], rvecs[() .. (), 2]; lvecs[1, () .. ()].rvecs[() .. (), 2]; lvecs[1, () .. ()].rvecs[() .. (), 3]

Vector[row](%id = 36893490995083967172), Vector[column](%id = 36893490995083967292)

0

0

All possibilities

lvecs.rvecs

Matrix(%id = 36893490995083956340)

NULL

Download Biorthogonal.mw

 

The eigenvectors from Eigenvectors are arbitrarily scaled. In this case they happen to be normalized but differ in signs. Once you account for this (and a forgotten square root), there is agreement. Notice you are also relying on the orders of the eigenvalues and singular values being consistent.

 

WHY DOES THE TRANSPOSE OF Vt DETERMINED BY THE FUNCTION SingularValues NOT AGREE WITH THE evectors CALCULATED BY THE FUNCTION Eigenvectors?

 

restart:
with(LinearAlgebra):

X := Matrix([[8.79,9.93,9.83,5.45,3.16],
           [6.11,6.91,5.04,-0.27,7.98],
           [-9.15,-7.93,4.86,4.85,3.01],
           [9.57,1.64,8.83,0.74,5.80],
           [-3.49,4.02,9.80,10.00,4.27],
           [9.84,0.15,-8.99,-6.02,-5.31]],
           datatype=float[8],order=Fortran_order);

Matrix(6, 5, {(1, 1) = 8.79, (1, 2) = 9.93, (1, 3) = 9.83, (1, 4) = 5.45, (1, 5) = 3.16, (2, 1) = 6.11, (2, 2) = 6.91, (2, 3) = 5.04, (2, 4) = -.27, (2, 5) = 7.98, (3, 1) = -9.15, (3, 2) = -7.93, (3, 3) = 4.86, (3, 4) = 4.85, (3, 5) = 3.01, (4, 1) = 9.57, (4, 2) = 1.64, (4, 3) = 8.83, (4, 4) = .74, (4, 5) = 5.8, (5, 1) = -3.49, (5, 2) = 4.02, (5, 3) = 9.8, (5, 4) = 10.0, (5, 5) = 4.27, (6, 1) = 9.84, (6, 2) = .15, (6, 3) = -8.99, (6, 4) = -6.02, (6, 5) = -5.31})

(1)

U,S,Vt:= SingularValues(X, output = ['U', 'S', 'Vt'],thin=true)

U, S, Vt := Matrix(6, 5, {(1, 1) = -.591142376412437, (1, 2) = .263167814714055, (1, 3) = .355430173862827, (1, 4) = .314264362726927, (1, 5) = .229938315364748, (2, 1) = -.397566794202426, (2, 2) = .243799027926330, (2, 3) = -.222390000685446, (2, 4) = -.753466150953458, (2, 5) = -.363589686697497, (3, 1) = -0.334789690624459e-1, (3, 2) = -.600272580693583, (3, 3) = -.450839268922308, (3, 4) = .233449657244714, (3, 5) = -.305475732747932, (4, 1) = -.429706903137018, (4, 2) = .236166806281125, (4, 3) = -.685862863873811, (4, 4) = .331860018200310, (4, 5) = .164927634884511, (5, 1) = -.469747921566658, (5, 2) = -.350891398883703, (5, 3) = .387444603099673, (5, 4) = .158735559582156, (5, 5) = -.518257437353535, (6, 1) = .293358758464403, (6, 2) = .576262119133891, (6, 3) = -0.208529179808710e-1, (6, 4) = .379077667060160, (6, 5) = -.652551600592398}), Vector(6, {(1) = 27.4687324182218, (2) = 22.6431850097747, (3) = 8.55838822848258, (4) = 5.98572320151213, (5) = 2.01489965871576, (6) = 0.}), Matrix(5, 5, {(1, 1) = -.251382792720498, (1, 2) = -.396845551776930, (1, 3) = -.692151007470363, (1, 4) = -.366170444772230, (1, 5) = -.407635238653352, (2, 1) = .814836686086339, (2, 2) = .358661500188002, (2, 3) = -.248888011159285, (2, 4) = -.368593537944618, (2, 5) = -0.979625692668875e-1, (3, 1) = -.260618505584221, (3, 2) = .700768209407253, (3, 3) = -.220811446720437, (3, 4) = .385938483188542, (3, 5) = -.493250142851024, (4, 1) = .396723777130597, (4, 2) = -.450711241216643, (4, 3) = .251321149693754, (4, 4) = .434248601436671, (4, 5) = -.622684072035804, (5, 1) = -.218027763686546, (5, 2) = .140209949871121, (5, 3) = .589119449239943, (5, 4) = -.626528250364817, (5, 5) = -.439551692342332})

(2)

SDM:= DiagonalMatrix(S[1..5],5,5)

Matrix(5, 5, {(1, 1) = 27.46873241822184, (1, 2) = 0., (1, 3) = 0., (1, 4) = 0., (1, 5) = 0., (2, 1) = 0., (2, 2) = 22.643185009774694, (2, 3) = 0., (2, 4) = 0., (2, 5) = 0., (3, 1) = 0., (3, 2) = 0., (3, 3) = 8.558388228482578, (3, 4) = 0., (3, 5) = 0., (4, 1) = 0., (4, 2) = 0., (4, 3) = 0., (4, 4) = 5.985723201512132, (4, 5) = 0., (5, 1) = 0., (5, 2) = 0., (5, 3) = 0., (5, 4) = 0., (5, 5) = 2.014899658715757})

(3)

THIS EQUALS TO ORIGINAL X MATRIX

 

U.SDM.Vt

Matrix(6, 5, {(1, 1) = 8.789999999999997, (1, 2) = 9.93, (1, 3) = 9.829999999999995, (1, 4) = 5.449999999999993, (1, 5) = 3.159999999999998, (2, 1) = 6.1099999999999985, (2, 2) = 6.9099999999999975, (2, 3) = 5.0399999999999965, (2, 4) = -.26999999999999996, (2, 5) = 7.980000000000001, (3, 1) = -9.14999999999999, (3, 2) = -7.930000000000001, (3, 3) = 4.859999999999987, (3, 4) = 4.849999999999992, (3, 5) = 3.009999999999995, (4, 1) = 9.569999999999997, (4, 2) = 1.6399999999999977, (4, 3) = 8.82999999999999, (4, 4) = .7399999999999956, (4, 5) = 5.799999999999994, (5, 1) = -3.489999999999992, (5, 2) = 4.019999999999998, (5, 3) = 9.799999999999985, (5, 4) = 9.999999999999988, (5, 5) = 4.269999999999993, (6, 1) = 9.83999999999999, (6, 2) = .15000000000000033, (6, 3) = -8.989999999999982, (6, 4) = -6.0199999999999925, (6, 5) = -5.309999999999993})

(4)

X -~ U.SDM.Vt

Matrix(6, 5, {(1, 1) = 0.1776356839e-14, (1, 2) = 0., (1, 3) = 0.5329070518e-14, (1, 4) = 0.7105427358e-14, (1, 5) = 0.2220446049e-14, (2, 1) = 0.1776356839e-14, (2, 2) = 0.2664535259e-14, (2, 3) = 0.3552713679e-14, (2, 4) = -0.5551115123e-16, (2, 5) = -0.8881784197e-15, (3, 1) = -0.1065814104e-13, (3, 2) = 0.8881784197e-15, (3, 3) = 0.1332267630e-13, (3, 4) = 0.7993605777e-14, (3, 5) = 0.4884981308e-14, (4, 1) = 0.3552713679e-14, (4, 2) = 0.2220446049e-14, (4, 3) = 0.1065814104e-13, (4, 4) = 0.4440892099e-14, (4, 5) = 0.6217248938e-14, (5, 1) = -0.7993605777e-14, (5, 2) = 0.1776356839e-14, (5, 3) = 0.1598721155e-13, (5, 4) = 0.1243449788e-13, (5, 5) = 0.6217248938e-14, (6, 1) = 0.1065814104e-13, (6, 2) = -0.3330669074e-15, (6, 3) = -0.1776356839e-13, (6, 4) = -0.7105427358e-14, (6, 5) = -0.6217248938e-14})

(5)

EIGENVALUES

 

S*~S

Vector(6, {(1) = 754.5312606638714, (2) = 512.7138273868854, (3) = 73.24600906942915, (4) = 35.82888224512065, (5) = 4.059820634692874, (6) = 0.})

(6)

EIGENVECTORS

 

Transpose(Vt)

Matrix(5, 5, {(1, 1) = -.2513827927204978, (1, 2) = .8148366860863387, (1, 3) = -.2606185055842209, (1, 4) = .39672377713059703, (1, 5) = -.21802776368654583, (2, 1) = -.3968455517769299, (2, 2) = .35866150018800186, (2, 3) = .7007682094072526, (2, 4) = -.45071124121664313, (2, 5) = .1402099498711206, (3, 1) = -.6921510074703628, (3, 2) = -.2488880111592855, (3, 3) = -.22081144672043732, (3, 4) = .2513211496937536, (3, 5) = .5891194492399427, (4, 1) = -.3661704447722298, (4, 2) = -.3685935379446182, (4, 3) = .3859384831885419, (4, 4) = .434248601436671, (4, 5) = -.6265282503648171, (5, 1) = -.4076352386533523, (5, 2) = -0.979625692668875e-1, (5, 3) = -.4932501428510237, (5, 4) = -.6226840720358041, (5, 5) = -.4395516923423325})

(7)

COMPARE LINE (6) AND THE evalues OF  LINE  (8), IN AGREEMENT.

 

COMPARE LINE (7) AND THE evectors OF LINE (8), NOT IN AGREEMENT - differ in sign

 

evalues, evectors:= Eigenvectors(Transpose(X).X)

evalues, evectors := Vector(5, {(1) = 754.531260663872+0.*I, (2) = 512.713827386885+0.*I, (3) = 73.2460090694292+0.*I, (4) = 35.8288822451207+0.*I, (5) = 4.05982063469289+0.*I}), Matrix(5, 5, {(1, 1) = -.251382792720496+0.*I, (1, 2) = -.814836686086340+0.*I, (1, 3) = -.260618505584220+0.*I, (1, 4) = .396723777130597+0.*I, (1, 5) = .218027763686546+0.*I, (2, 1) = -.396845551776929+0.*I, (2, 2) = -.358661500188003+0.*I, (2, 3) = .700768209407252+0.*I, (2, 4) = -.450711241216643+0.*I, (2, 5) = -.140209949871121+0.*I, (3, 1) = -.692151007470364+0.*I, (3, 2) = .248888011159284+0.*I, (3, 3) = -.220811446720437+0.*I, (3, 4) = .251321149693753+0.*I, (3, 5) = -.589119449239943+0.*I, (4, 1) = -.366170444772231+0.*I, (4, 2) = .368593537944617+0.*I, (4, 3) = .385938483188543+0.*I, (4, 4) = .434248601436671+0.*I, (4, 5) = .626528250364817+0.*I, (5, 1) = -.407635238653353+0.*I, (5, 2) = 0.979625692668865e-1+0.*I, (5, 3) = -.493250142851024+0.*I, (5, 4) = -.622684072035804+0.*I, (5, 5) = .439551692342333+0.*I})

(8)

Find signs of first rows of evectors and Transpose(Vt)

signsev:=convert(map(signum,simplify(fnormal(evectors[1,..]),zero)),list);
signsV :=convert(map(signum,simplify(fnormal(Vt[..,1]),zero)),list);
diffsigns:=zip(`*`,signsev,signsV);

[-1, -1, -1, 1, 1]

 

[-1, 1, -1, 1, -1]

 

[1, -1, 1, 1, -1]

(9)

Transpose(Vt)-evectors.DiagonalMatrix(diffsigns);

Matrix(5, 5, {(1, 1) = -0.1998401444e-14+0.*I, (1, 2) = -0.8881784197e-15+0.*I, (1, 3) = -0.8326672685e-15+0.*I, (1, 4) = -0.1110223025e-15+0.*I, (1, 5) = -0.8326672685e-16+0.*I, (2, 1) = -0.9436895709e-15+0.*I, (2, 2) = -0.6661338148e-15+0.*I, (2, 3) = 0.5551115123e-15+0.*I, (2, 4) = 0.1665334537e-15+0.*I, (2, 5) = -0.3885780586e-15+0.*I, (3, 1) = 0.1110223025e-14+0.*I, (3, 2) = -0.1221245327e-14+0.*I, (3, 3) = -0.1387778781e-15+0.*I, (3, 4) = 0.5551115123e-15+0.*I, (3, 5) = -0.2220446049e-15+0.*I, (4, 1) = 0.1387778781e-14+0.*I, (4, 2) = -0.1054711873e-14+0.*I, (4, 3) = -0.8881784197e-15+0.*I, (4, 4) = -0.4440892099e-15+0.*I, (4, 5) = -0.2220446049e-15+0.*I, (5, 1) = 0.3330669074e-15+0.*I, (5, 2) = -0.9853229344e-15+0.*I, (5, 3) = 0.5551115123e-15+0.*I, (5, 4) = -0.3330669074e-15+0.*I, (5, 5) = 0.7216449660e-15+0.*I})

(10)

sdm:= DiagonalMatrix(sqrt~(evalues[1..5]),5,5)

Matrix(5, 5, {(1, 1) = 27.46873241822184+0.*I, (1, 2) = 0.*I, (1, 3) = 0.*I, (1, 4) = 0.*I, (1, 5) = 0.*I, (2, 1) = 0.*I, (2, 2) = 22.64318500977469+0.*I, (2, 3) = 0.*I, (2, 4) = 0.*I, (2, 5) = 0.*I, (3, 1) = 0.*I, (3, 2) = 0.*I, (3, 3) = 8.558388228482581+0.*I, (3, 4) = 0.*I, (3, 5) = 0.*I, (4, 1) = 0.*I, (4, 2) = 0.*I, (4, 3) = 0.*I, (4, 4) = 5.985723201512133+0.*I, (4, 5) = 0.*I, (5, 1) = 0.*I, (5, 2) = 0.*I, (5, 3) = 0.*I, (5, 4) = 0.*I, (5, 5) = 2.0148996587157613+0.*I})

(11)

THIS SHOULD EQUAL TO THE ORIGINAL X MATRIX

 

U.sdm.Transpose(evectors.DiagonalMatrix(diffsigns));

Matrix(6, 5, {(1, 1) = 8.789999999999969+0.*I, (1, 2) = 9.929999999999986+0.*I, (1, 3) = 9.830000000000018+0.*I, (1, 4) = 5.450000000000025+0.*I, (1, 5) = 3.1600000000000064+0.*I, (2, 1) = 6.10999999999998+0.*I, (2, 2) = 6.909999999999992+0.*I, (2, 3) = 5.040000000000017+0.*I, (2, 4) = -.2699999999999823+0.*I, (2, 5) = 7.980000000000011+0.*I, (3, 1) = -9.150000000000004+0.*I, (3, 2) = -7.930000000000009+0.*I, (3, 3) = 4.859999999999969+0.*I, (3, 4) = 4.849999999999975+0.*I, (3, 5) = 3.0099999999999865+0.*I, (4, 1) = 9.569999999999972+0.*I, (4, 2) = 1.6399999999999917+0.*I, (4, 3) = 8.830000000000009+0.*I, (4, 4) = .7400000000000133+0.*I, (4, 5) = 5.800000000000008+0.*I, (5, 1) = -3.490000000000021+0.*I, (5, 2) = 4.019999999999979+0.*I, (5, 3) = 9.799999999999986+0.*I, (5, 4) = 10.000000000000002+0.*I, (5, 5) = 4.26999999999999+0.*I, (6, 1) = 9.840000000000016+0.*I, (6, 2) = .1500000000000148+0.*I, (6, 3) = -8.98999999999998+0.*I, (6, 4) = -6.019999999999986+0.*I, (6, 5) = -5.309999999999981+0.*I})

(12)

X - U.sdm.Transpose(evectors.DiagonalMatrix(diffsigns));;

Matrix(6, 5, {(1, 1) = 0.3019806627e-13+0.*I, (1, 2) = 0.1421085472e-13+0.*I, (1, 3) = -0.1776356839e-13+0.*I, (1, 4) = -0.2486899575e-13+0.*I, (1, 5) = -0.6217248938e-14+0.*I, (2, 1) = 0.2042810365e-13+0.*I, (2, 2) = 0.7993605777e-14+0.*I, (2, 3) = -0.1687538997e-13+0.*I, (2, 4) = -0.1770805724e-13+0.*I, (2, 5) = -0.1065814104e-13+0.*I, (3, 1) = 0.3552713679e-14+0.*I, (3, 2) = 0.8881784197e-14+0.*I, (3, 3) = 0.3108624469e-13+0.*I, (3, 4) = 0.2486899575e-13+0.*I, (3, 5) = 0.1332267630e-13+0.*I, (4, 1) = 0.2842170943e-13+0.*I, (4, 2) = 0.8215650382e-14+0.*I, (4, 3) = -0.8881784197e-14+0.*I, (4, 4) = -0.1332267630e-13+0.*I, (4, 5) = -0.7993605777e-14+0.*I, (5, 1) = 0.2087219286e-13+0.*I, (5, 2) = 0.2042810365e-13+0.*I, (5, 3) = 0.1421085472e-13+0.*I, (5, 4) = -0.1776356839e-14+0.*I, (5, 5) = 0.9769962617e-14+0.*I, (6, 1) = -0.1598721155e-13+0.*I, (6, 2) = -0.1479372180e-13+0.*I, (6, 3) = -0.1953992523e-13+0.*I, (6, 4) = -0.1332267630e-13+0.*I, (6, 5) = -0.1865174681e-13+0.*I})

(13)

 

Download SVD_test2.mw

 

Not sure about documentation or the level of explanation you want, but if examples help, here are some:

restart

infix -> prefix

`and`(a, b, c, d)

a and b and c and d

`+`(a, b, c, d)

a+b+c+d

`=`(a, b)

a = b

`union`({a}, {b, c}, {a, d})

{a, b, c, d}

`$`(2, 3)

2, 2, 2

`$`(2, 3)

2, 2, 2

postfix -> prefix

L := [a, b, c, d]

[a, b, c, d]

L[]

a, b, c, d

`?[]`(L)

a, b, c, d

factorial(3)

6

`!`(3); factorial(3)

`!`(3)

6

more...

`and`(L[])

a and b and c and d

(`@`(`and`, `?[]`))(L)

a and b and c and d

`<,>`(a, b)

Vector[column](%id = 36893490135843830708)

`<,>`(a, b)

Vector[column](%id = 36893490135843825652)

`<|>`(a, b)

Vector[row](%id = 36893490135843820236)

`<|>`(a, b)

Vector[row](%id = 36893490135843822756)

NULL

Download prefixes.mw

A workaround is to use spacecurve instead of plot3d. Unfortunately, the curves need to be done separately.

Perpendicular_3D_lines.mw

5 6 7 8 9 10 11 Last Page 7 of 67