janhardo

700 Reputation

12 Badges

11 years, 42 days

MaplePrimes Activity


These are questions asked by janhardo

Back in 2000 there was a Maple programming toolbox to buy 
Can't find it ?

Some rewriting for a general equation , how to do ?


 

Transformation of eq 1 in wanted eq 2 form

A*x^2+B*x*y+C*y^2+D*x+E*y+F = 0 (general form 2)

After complete square for x and y and some rearrangment (general form 2) ,  i got this equation eq1  

 

 

(A*(x + (B*y + D)/(2*A))^2 + C*(y + (B*x + E)/(2*C))^2)/(-C*y^2 - E*y - 2*F + (B*y + D)^2/(4*A) - A*x^2 - D*x + (B*x + E)^2/(4*C))=1;

(A*(x+(1/2)*(B*y+D)/A)^2+C*(y+(1/2)*(B*x+E)/C)^2)/(-C*y^2-E*y-2*F+(1/4)*(B*y+D)^2/A-A*x^2-D*x+(1/4)*(B*x+E)^2/C) = 1

(1)

eg1:= (-4*A^2*C*x^2 + (-4*y^2*C^2 + (-8*B*x*y - 4*D*x - 4*E*y)*C - (B*x + E)^2)*A - (B*y + D)^2*C)/(4*A^2*C*x^2 + (4*y^2*C^2 + (4*D*x + 4*E*y + 8*F)*C - (B*x + E)^2)*A - (B*y + D)^2*C) = 1;

(-4*A^2*C*x^2+(-4*y^2*C^2+(-8*B*x*y-4*D*x-4*E*y)*C-(B*x+E)^2)*A-(B*y+D)^2*C)/(4*A^2*C*x^2+(4*y^2*C^2+(4*D*x+4*E*y+8*F)*C-(B*x+E)^2)*A-(B*y+D)^2*C) = 1

(2)

 

(1) wanted form of eg1
"A x^2+B x y+C y^2+D x+E y+F=0*("general form 2))

for M ≠ 0

 

(x+(B*y+D)/(2*A))^2/X+  (y+(B*x+E)/(2*C))^2/Y = 1

 

Note : what X and Y could be ? :   M/A and M/B  ..

So it must be possible to transform eq1  in this form  above ?

 

Some background info

If B= 0 in (general form 2) you get (general form 1)  

 

(2) In book for M ≠ 0 as example we get this form
 Ax^2+Cy^2+Dx+Ey+F = 0(general form 1 )

(x+C/(2*A))^2*A/M+  (y+D/(2*B))^2*B/M = 1

 


 

Download vraag1-herleidingconics2.mw

 

 

I must do some formula manipulation
 

Classification of conic sections

restart; with(student):

A*x^2+B*y^2+C*x+D*y+E=0;

A*x^2+B*y^2+C*x+D*y+E = 0

(1)

f:= A*x^2+B*y^2+C*x+D*y+E;

A*x^2+B*y^2+C*x+D*y+E

(2)

completesquare(f, x);

A*(x+(1/2)*C/A)^2-(1/4)*C^2/A+B*y^2+D*y+E

(3)

f:= A*x^2+B*y^2+C*x+D*y+E;

A*x^2+B*y^2+C*x+D*y+E

(4)

ans:=Student[Precalculus][CompleteSquare]( (4), [y] );

B*(y+(1/2)*D/B)^2+A*x^2+C*x+E-(1/4)*D^2/B

(5)

ans1:=Student[Precalculus][CompleteSquare]( (4), [x] );

A*(x+(1/2)*C/A)^2-(1/4)*C^2/A+B*y^2+D*y+E

(6)

ans+ans1;

B*(y+(1/2)*D/B)^2+A*x^2+C*x+2*E-(1/4)*D^2/B+A*(x+(1/2)*C/A)^2-(1/4)*C^2/A+B*y^2+D*y

(7)

B*(y + D/(2*B))^2 + A*x^2 + C*x + 2*E - D^2/(4*B) + A*(x + C/(2*A))^2 - C^2/(4*A) + B*y^2 + D*y = 0;

B*(y+(1/2)*D/B)^2+A*x^2+C*x+2*E-(1/4)*D^2/B+A*(x+(1/2)*C/A)^2-(1/4)*C^2/A+B*y^2+D*y = 0

(8)

Now i must  get this form A( )^2 +B( )^2 = M  

 


 

Download vraag_herleiding_conic_sections_formule.mw

 

 

I like to show a domain as a roster of gridlines
The plotbuilder has not this option gridlines , so i must program this ?

A complicated programmed task for me
I must analyze this 

In this plot there are vertical  walls connected with the step area's , but that its not wanted.
Also the domain is showed by adding 0 in the plot 3d( {0, 'g(x,y)'}, ...) and this distract the plot with the step area's
Its not needed the domain in the plot ( in order to get the 0 value for z )     

The 3 axis x,y,z  are not visible in the plot 
Seems to be not complete programmed as it just to be.


 

restart

 

f:=proc(A,B,T,x,y)

     local n,m,i,j,val;

     n:=nops(A);m:=nops(B);

       for i from 1 to n-1 do

         for j from 1 to m-1 do

         if (A[i]<=x and x<A[i+1]) and

            (B[j]<=y and y< B[j+1]) then val:=T[i,j];

         end if;

          end do;

       end do;

     val;

   end proc:

 

 

A:=[0,1,2];B:=[0,1,2];T:=array([[1,2],[1.5,1]]);

A := [0, 1, 2]

 

B := [0, 1, 2]

 

array( 1 .. 2, 1 .. 2, [( 2, 1 ) = (1.5), ( 1, 1 ) = (1), ( 2, 2 ) = (1), ( 1, 2 ) = (2)  ] )

(1)

 

g:=(x,y)->f(A,B,T,x,y);

proc (x, y) options operator, arrow; f(A, B, T, x, y) end proc

(2)

 

plot3d({0,'g(x,y)'},x=0..2,y=0..2,axes=normal,
           scaling=constrained,orientation=[-37,75],
           projection=0.8,tickmarks=[3,0,2],
           shading=XYZ,lightmodel='light3');

 

 


 

Download texc_set_4_-task_3_-forumvraag.mw

 

First 15 16 17 18 19 20 21 Page 17 of 22