mskalsi

290 Reputation

7 Badges

9 years, 198 days

MaplePrimes Activity


These are questions asked by mskalsi

Please see the attached file; I'm attempting to do some calculations with the 'PDETools' package; notice the first term in equation (4), where sqrt(x2+y2) is not canceling in the fraction, despite using the 'simplify' command; why is this happening, and how can I achieve complete simplification?

Ques_Mapleprime.mw

with(PDEtools):

DepVars := [u(x, y, t), U(xi, eta)]; 1; alias(u = u(x, y, t))

[u(x, y, t), U(xi, eta)]

 

u

(1)

xi[1] := 1/2*(x^2+y^2); 1; xi[2] := t; 1; u := (h(t)+(x^2+y^2)*(1/2))*arccos(x/sqrt(x^2+y^2))/t+U(xi[1], xi[2])

(1/2)*x^2+(1/2)*y^2

 

t

 

(h(t)+(1/2)*x^2+(1/2)*y^2)*arccos(x/(x^2+y^2)^(1/2))/t+U((1/2)*x^2+(1/2)*y^2, t)

(2)

(diff(u, x))*(diff(u, y))

(x*arccos(x/(x^2+y^2)^(1/2))/t-(h(t)+(1/2)*x^2+(1/2)*y^2)*(1/(x^2+y^2)^(1/2)-x^2/(x^2+y^2)^(3/2))/((1-x^2/(x^2+y^2))^(1/2)*t)+(D[1](U))((1/2)*x^2+(1/2)*y^2, t)*x)*(y*arccos(x/(x^2+y^2)^(1/2))/t+(h(t)+(1/2)*x^2+(1/2)*y^2)*x*y/((x^2+y^2)^(3/2)*(1-x^2/(x^2+y^2))^(1/2)*t)+(D[1](U))((1/2)*x^2+(1/2)*y^2, t)*y)

(3)

collect(simplify(subs(1/2*(x^2+y^2) = xi, t = eta, (x*arccos(x/(x^2+y^2)^(1/2))/t-(h(t)+(1/2)*x^2+(1/2)*y^2)*(1/(x^2+y^2)^(1/2)-x^2/(x^2+y^2)^(3/2))/((1-x^2/(x^2+y^2))^(1/2)*t)+(D[1](U))((1/2)*x^2+(1/2)*y^2, t)*x)*(y*arccos(x/(x^2+y^2)^(1/2))/t+(h(t)+(1/2)*x^2+(1/2)*y^2)*x*y/((x^2+y^2)^(3/2)*(1-x^2/(x^2+y^2))^(1/2)*t)+(D[1](U))((1/2)*x^2+(1/2)*y^2, t)*y))), D, 'distributed')

(1/4)*(2*(y^2/(x^2+y^2))^(1/2)*(x^2+y^2)^(1/2)*eta*x^3+2*(y^2/(x^2+y^2))^(1/2)*(x^2+y^2)^(1/2)*eta*x*y^2)*(2*(y^2/(x^2+y^2))^(1/2)*(x^2+y^2)^(1/2)*eta*x^2+2*(y^2/(x^2+y^2))^(1/2)*(x^2+y^2)^(1/2)*eta*y^2)*(D[1](U))(xi, eta)^2/(y*(x^2+y^2)^2*eta^2)+(1/4)*((2*arccos(x/(x^2+y^2)^(1/2))*x^3*(x^2+y^2)^(1/2)*(y^2/(x^2+y^2))^(1/2)+2*arccos(x/(x^2+y^2)^(1/2))*x*(x^2+y^2)^(1/2)*(y^2/(x^2+y^2))^(1/2)*y^2-x^2*y^2-y^4-2*h(eta)*y^2)*(2*(y^2/(x^2+y^2))^(1/2)*(x^2+y^2)^(1/2)*eta*x^2+2*(y^2/(x^2+y^2))^(1/2)*(x^2+y^2)^(1/2)*eta*y^2)+(2*(y^2/(x^2+y^2))^(1/2)*(x^2+y^2)^(1/2)*eta*x^3+2*(y^2/(x^2+y^2))^(1/2)*(x^2+y^2)^(1/2)*eta*x*y^2)*(2*arccos(x/(x^2+y^2)^(1/2))*x^2*(x^2+y^2)^(1/2)*(y^2/(x^2+y^2))^(1/2)+2*arccos(x/(x^2+y^2)^(1/2))*(x^2+y^2)^(1/2)*(y^2/(x^2+y^2))^(1/2)*y^2+x^3+x*y^2+2*h(eta)*x))*(D[1](U))(xi, eta)/(y*(x^2+y^2)^2*eta^2)+(1/4)*(2*arccos(x/(x^2+y^2)^(1/2))*x^3*(x^2+y^2)^(1/2)*(y^2/(x^2+y^2))^(1/2)+2*arccos(x/(x^2+y^2)^(1/2))*x*(x^2+y^2)^(1/2)*(y^2/(x^2+y^2))^(1/2)*y^2-x^2*y^2-y^4-2*h(eta)*y^2)*(2*arccos(x/(x^2+y^2)^(1/2))*x^2*(x^2+y^2)^(1/2)*(y^2/(x^2+y^2))^(1/2)+2*arccos(x/(x^2+y^2)^(1/2))*(x^2+y^2)^(1/2)*(y^2/(x^2+y^2))^(1/2)*y^2+x^3+x*y^2+2*h(eta)*x)/(y*(x^2+y^2)^2*eta^2)

(4)

``

Download Ques_Mapleprime.mw

Dear all

I have  Lie commutations for vectors e1, e2, e3, e4, e5, e6 as follow:

[e1, e3] = e3, [e1, e4] = e4, [e1, e5] = e5, [e1, e6] = e6, [e2, e3] = -e5, [e2, e4] = e6, [e3, e5] = e6

for which the command 

Query("Jacobi")

returns the false result, which means, the vectors are not closed under Jacobi's identity. How can I find vector triplets for which Jacobi's identity does not hold?

Please find Maple file.Jacobi_identity.mw

Dear All

Is it possible to change the position of labels so that they do not overlap with curves of plots? Please see the attached file in which I want to shift label for vertical axes to slightly left and label for horizontal axes to the slightly right.

Plot_Label.mw

Can we overide Maple default dot derivative with 'tau' instead of 't'?

Dear all

I have an operator given below in the image. I want expand this operator upto order 5, when there are three independent variables x, y, t(i=1,2,3). The expansion can also be obtained manually, but that is always prone mistake, is the expansion posible using any routine of Differential Geometry package?

1 2 3 4 5 6 7 Last Page 1 of 13