520 Reputation

10 Badges

4 years, 356 days

MaplePrimes Activity

These are replies submitted by sand15


Just read the help pages about Grid:-Launch.
You will find an example (primetest) that  I've just transposed to your test case.

Unfortunately I can give you detailed explanations, beyond that of saying "respect the content of the help pages".
If you are interesting in knowing why you must write babyGrid := proc() instead of babyGrid := proc(X) and later Grid:-Launch(babyGrid, imports=['X']) instead of Grid:-Launch(babyGrid, X), I'm not qualified to answer.

All you have to do is wait for someone else to give you this information.

@Carl Love  @tomleslie


Before sending my answer to Erik, I had tried to sample a function of two RV with values in R^2 (typically the "f" function used by Tom).

Remember I used RandomVariables Dice 1 and Dice2.
So I wrote, in a natural way,  f := (Dice1, Dice2) -> [Dice1, Dice2] and Sample(f(Dice1, Dice2), N).
As it generated an error, I tried to lure Maple by writting instead  f := (Dice1, Dice2) -> Dice1+I*Dice2
... which generated the same error as before.

All of this seems related to the impossibility (?) to define a multivariate random variable.
Am I right ?
Is it possible (without sampling independantly Dice1 and Dice 2 as Tom did) to define multivariate RV in Maple?



For as far as  I know the only limitation to Excel (pack office 12) is that the number of rows must not exceed 32767 (maybe 32768?)
I guess the same kind of limitations applies on the number of columns too, this regardless to the Excel version.
As you evoked R, my advice is to use ExportMatrix instead of ExcelTools:-Export or your manual procedure (it's always better to do the job programmatically when possible)

@acer @tomleslie

What version are you using?

  • It was Maple 2016 (usually I use Maple 2018 but I had have a long simulation running on with it and, in these case, I prefer to open a new worksheet in an older version).
    I guess that If I had done the test with Maple 2018 I would not sent this question

Does it change if you set interface(typesetting=extended): ?

  • Yes, it works perfectly well in Maple 2016


Thanks to both of you, sorry for the inconvenience.


In my previous reply, please change


MAX := max(rhs~(Tally(SampleB)));
B0  := eval(B(rhs~(NE)[]), x=0);
scale := MAX/B0;





MODE := sort(Tally(SampleB), key=(x->rhs(x)))[-1];  #return the mode
XMAX := lhs(MODE);
HMAX := rhs(MODE):

B0  := eval(B(rhs~(NE)[]), x=XMAX);
scale := HMAX/B0;

This will give a better scaling of the graph of the probability function if the mode is not at x=0.
(try for instance r=2, b=1, d=0.1)


Last but not least: if the value of Xmax is large enough for the probability that
x > Xmax is very small, then the scale is simply given by

scale := `number of samples`

PS: you can verify that the sampling method described in the previous reply gives as good results as Statistics:-Sampling in the case d=0 (negative binomial distribution).



A spreviously quoted by Carl the case d=0 is obvious.
More precisely it corresponds to a negative binomial distribution with parameters r and b/(2+b)
(in Maple  NegativeBinomial(r, b/(2+b))  )

Carl also pointed the meaningless of the case d<0

I describe here the way to sample your  "pseudo distribution" B (which does not sum to 1 and then need to me normalized).
The last plot superimposes the probability function of B for r=3, b=2, d=1 (red line) and the histogram in discrete form.
I considered that only integers values of x have a sense.

For other valuers of r, b, d you will have to verify that the value of the variable Xmax is large enough (in this case the variable ShouldBe1 must have reached a "converged" value; to verify this increase the value of Xmax and look to what happened to ShouldBe1).

Let me know ih this suits you




A := (x+r-1)!/(r-1)!/x! * p^r * (1-p)^x



# verify A is the probability function of a NegativeBinomial distribution of parameters (r, p)

ProbabilityFunction(NegativeBinomial(r, p), x) assuming x > 0:
convert(%, factorial);



A := unapply(A, p):

pi := (b/2) / (1+d*x+b/2);
ip := (1+d*x) / (1+d*x+b/2);





# verify ip = 1-pi







B := unapply(A(pi) / (1+d*x), [r, b, d]);

proc (r, b, d) options operator, arrow; factorial(x+r-1)*((1/2)*b/(1+d*x+(1/2)*b))^r*(1-(1/2)*b/(1+d*x+(1/2)*b))^x/(factorial(r-1)*factorial(x)*(d*x+1)) end proc


Case d = 0

# When d=0 B(r, b, 0) is the probability function of a NegativeBinomial distribution of parameters (r, pi)
# where pi=b/(2+b)

simplify(subs(d=0, pi));

B(r, b, 0);
map(simplify, B(r, b, 0));







# sampling B(x, b, 0) is then trivial:
#  1/ set the values of r and b, for instance 3 and 5
#  2/ use Sample(NegativeBinomial(3, 5), 10)

Case d > 0
Note that the case d < 0 has no  meaning (see lso Carl's answers)

# numerical example (NE)

NE := [r=3, b=2, d=1]:



plot(B(rhs~(NE)[]), x=1..10)


# sequence of values of B(...) for integer values of x in [0, 100]

Xmax := 100:

PointwiseB := [ seq([x, B(rhs~(NE)[])], x in [$0..Xmax]) ]:

# given the plot above, assume the following quantity should be equal to 1
# if B was a true probability function

ShouldBe1 := add(op~(2, PointwiseB)):



# Normalize B:

PointwiseB := [ seq([x, B(rhs~(NE)[]) / ShouldBe1], x in [$0..Xmax]) ]:
evalf(add(op~(2, PointwiseB)));



# Draw the approximate cumulative function

c := CumulativeSum(op~(2, PointwiseB));

ApproximateCDF := zip((u, v) -> [u[1], v], PointwiseB, convert(c, list)):

plot(ApproximateCDF);    # not an exact representation... should be a stepwise function

c := Vector(4, {(1) = ` 1 .. 101 `*Array, (2) = `Data Type: `*float[8], (3) = `Storage: `*rectangular, (4) = `Order: `*Fortran_order})



# Sample ApproximateCDF:
#  1/ draw u from a Uniform(0, 1)
#  2/ find the

U := RandomVariable(Uniform(0, 1)):
ListTools:-BinaryPlace(op~(2, ApproximateCDF), Sample(U, 1)[1]);



SampleB := map(u -> ListTools:-BinaryPlace(op~(2, ApproximateCDF), u), Sample(U, 1000));

SampleB := Vector(4, {(1) = ` 1 .. 1000 `*Vector[row], (2) = `Data Type: `*anything, (3) = `Storage: `*rectangular, (4) = `Order: `*Fortran_order})



[0 = 550, 1 = 177, 2 = 92, 3 = 42, 4 = 24, 5 = 16, 6 = 13, 7 = 10, 9 = 5, 8 = 9, 11 = 7, 10 = 7, 13 = 3, 12 = 3, 15 = 3, 14 = 2, 19 = 1, 17 = 2, 22 = 4, 23 = 1, 20 = 1, 21 = 1, 27 = 1, 26 = 1, 31 = 3, 30 = 2, 36 = 1, 39 = 2, 33 = 3, 34 = 1, 44 = 2, 41 = 1, 40 = 2, 42 = 1, 63 = 1, 56 = 1, 73 = 1, 77 = 1, 67 = 1, 90 = 1, 94 = 1]


MAX := max(rhs~(Tally(SampleB)));
B0  := eval(B(rhs~(NE)[]), x=0);
scale := MAX/B0;

window := [0..20, default]:

      Histogram(SampleB, frequencyscale=absolute, discrete, thickness=10),
      plot(scale*B(rhs~(NE)[]), x=0..1, color=red, thickness=3),
      plot(scale*B(rhs~(NE)[]), x=1..100, color=red, thickness=3),








plot(scale*B(rhs~(NE)[]), x=0..1, adaptive=true)









Sorry, you're right, I forgot the "1/3" in the coefficient of x^3.


Not applicable: see tomleslie's answer

You got a wrong result with Optimization:-NLPSolve (?)

Given fexact is monotone decreasing over [0, 2] and its values are between [0, 1], given fapp is monotone increasing on [0, 2] with fapp(2) > 6789*2, it is obvious that the the maximum M of abs(fapp-fexact) is reached for x=2.

Then M = subs(x=2, fapp-fexact) =  - sin(2)/2 which is about  30543.54535 and not 2827.54535.

Using instead Optimization:-Maximize( abs(fapp-fexact), x=0..2) returns the good value.

More of this: your two calculations (L2 norm and L1 norm) give strangely the same result: could it be that Optimization:-Maximize(  abs(fapp-fexact), x=0..2, maximize) does not do what you were expecting for?


I apreciate these non-gurus explanations.
Thanks Tom


Thanks acer for all these technical explanations.

For my understanding: I guess than you writting :-`+`(a, b) is a shortcut for Tolerances:-`+`(a, b) isn't it?
If so, is it not an unsafe way to proceed ifyou use two different packages containing different functions with the same name (I recently met this situation with packages simplex and geom which both contain functions named convexhull)?




@Carl Love

I had noticed the `+` returned by the command line  < with(Tolerances); > but I forgot that  `+` does not operate on a list but on a sequence; thus I forgot to use op or [] before running  `+`.
I like your (`+`@op) solution, easier to understand than using subsindets(Z, :-`+`, `+`);

It seems to me that you wanted to answer the question EB1000 asked some hours ago?
Unfortunately, your answer turned out to be a question!


Thanks Tom,
 I do not understand either why "evalr" seems necessary. In any case, thank you for keeping me from going in circles.


Thank you acer.

As often there are several ways to tackle a problem and looking for the "optimal" solution seems to be an endless story.

By the way, I used myself the "subs({0="H", 1="T"},...)" method to return a solution in terms of "H" and "T.
Unfortunately writting
UseHardwareFloats := true:
V := floor~(SignalProcessing:-GenerateUniform(numThrows, 0, 2))
does not return integers making the {0="H", 1="T"} inoperative.
I tried the substitution {0.="H", 1.="T"}  but it didn't work neither.

I understand that floor, round, ceil do not return integers when the argument is a harware floating point number.
Is there a simple way to obtain, for instance, the integer part of harware floating point number?

@Carl Love 


Thanks Carl for your very documented answer.
I think I will  try to implement your suggestions, Not that the problem of calculating the probabilities of each sum deserves it, but rather out of personal satisfaction (in "practical" situation one would probably use Central Limit Theorems and the normal approximation when the number of dice exceeds a fex dozens).

By the way, I used in Q3 the package SignalProcessing and, from my student years I remember that convolution is generally be done, for effiency, by using FFT (2 directe + one inverse).
I do not know if SignalProcessing:-Convolution proceeds this way, but if it is the case, do you think its limitations you pointed out also impact FFT?


1 2 3 4 5 6 7 Last Page 3 of 14