sand15

615 Reputation

11 Badges

8 years, 311 days

MaplePrimes Activity


These are replies submitted by sand15



To complete @Christian Wolinski 's reply: f can be integrated provided alpha is an integer <= 1.
I guess that the reason why the WhittakerM function

In the attached file you will see that the integration can be done only (that's my hunch, not a mathematical proof) when
WhittakerM(a, b, 3/2*t) can be converted into elementary functions.
(
Maybe there exist some recurrence relation to integrate int(h(t)*WhittakerM(a, b, 3/2*t) , t), but I wasn't capable to find any.
More precisely I thought that one could take advantage that

diff(WhittakerW(p, q, 3/2*t), t);
                                                  /          3  \
                                       WhittakerW |p + 1, q, - t|
 3 /1   2 p\             /      3  \              \          2  /
 - |- - ---|  WhittakerW |p, q, - t| - -------------------------
 2 \2   3 t/             \      2  /               t            
          

).

When alpha is an integer > 1, the denominator GAMMA(2-alpha)=0 and f is undefined.

Whittaker.mw

@mz6687 

I'm sorry, but I don't understand a single word of what you're saying.
What is this 8x8 matrix you are now talking about?

BTW: is it you who deleted your last question or was it moved by someone else?

Whatever, is this new thread isrelated to this one https://www.mapleprimes.com/questions/237066-Determinant-The-System-Hangs, you would better keep this discussion goin in this latter thread.

@mz6687 

 

restart

with(LinearAlgebra):

with(plots):

with(Physics):

``

Physics:-Setup(mathematicalnotation = true);

[mathematicalnotation = true]

(1)

assume(x::real);

alias(v = v(x, t));

v

(2)

``

B1 := Matrix([[Physics:-`*`(Physics:-`^`(lambda__1-conjugate(lambda__1), -1), exp(Physics:-`*`(I, v__11))), 0, 0, 0, Physics:-`*`(Physics:-`^`(lambda__2-conjugate(lambda__1), -1), exp(Physics:-`*`(I, v__12))), 0, 0, 0], [0, Physics:-`*`(Physics:-`^`(lambda__1-conjugate(lambda__1), -1), exp(Physics:-`*`(I, v__11))), 0, 0, 0, Physics:-`*`(Physics:-`^`(lambda__2-conjugate(lambda__1), -1), exp(Physics:-`*`(I, v__12))), 0, 0], [0, 0, Physics:-`*`(Physics:-`^`(lambda__1-conjugate(lambda__1), -1), exp(-Physics:-`*`(I, v__11))), 0, 0, 0, Physics:-`*`(Physics:-`^`(lambda__2-conjugate(lambda__1), -1), exp(-Physics:-`*`(I, v__12))), 0], [0, 0, 0, Physics:-`*`(Physics:-`^`(lambda__1-conjugate(lambda__1), -1), exp(-Physics:-`*`(I, v__11))), 0, 0, 0, Physics:-`*`(Physics:-`^`(lambda__2-conjugate(lambda__1), -1), exp(-Physics:-`*`(I, v__12)))], [Physics:-`*`(Physics:-`^`(lambda__1-conjugate(lambda__2), -1), exp(Physics:-`*`(I, v__21))), 0, 0, 0, Physics:-`*`(Physics:-`^`(lambda__2-conjugate(lambda__2), -1), exp(Physics:-`*`(I, v__22))), 0, 0, 0], [0, Physics:-`*`(Physics:-`^`(lambda__1-conjugate(lambda__2), -1), exp(Physics:-`*`(I, v__21))), 0, 0, 0, Physics:-`*`(Physics:-`^`(lambda__2-conjugate(lambda__2), -1), exp(Physics:-`*`(I, v__22))), 0, 0], [0, 0, Physics:-`*`(Physics:-`^`(lambda__1-conjugate(lambda__2), -1), exp(-Physics:-`*`(I, v__21))), 0, 0, 0, Physics:-`*`(Physics:-`^`(lambda__2-conjugate(lambda__2), -1), exp(-Physics:-`*`(I, v__22))), 0], [0, 0, 0, Physics:-`*`(Physics:-`^`(lambda__1-conjugate(lambda__2), -1), exp(-Physics:-`*`(I, v__21))), 0, 0, 0, Physics:-`*`(Physics:-`^`(lambda__2-conjugate(lambda__2), -1), exp(-Physics:-`*`(I, v__22)))]]):

NULL

NULL

para_0 := [H__14 =0.3, H__33 = 1.5, H__38 = 0.15, H__44 = 1.5];
print():
para_1 := remove((x -> is(x in lhs~(para_0))), [entries(H, nolist)]) =~ 0;
print():
para := [para_0[], para_1[], c__1 = 0.5, nu = 1, alpha__1 = 1.5, alpha__2 = 1, lambda__1 = 0.58*I, lambda__2 = 0.68*I]

[H__14 = .3, H__33 = 1.5, H__38 = .15, H__44 = 1.5]

 

 

[H__11 = 0, H__12 = 0, H__13 = 0, H__15 = 0, H__16 = 0, H__17 = 0, H__18 = 0, H__12 = 0, H__11 = 0, H__13 = 0, H__16 = 0, H__15 = 0, H__18 = 0, H__17 = 0, H__13 = 0, H__34 = 0, H__17 = 0, H__18 = 0, H__55 = 0, H__13 = 0, H__34 = 0, H__18 = 0, H__17 = 0, H__55 = 0, H__15 = 0, H__16 = 0, H__17 = 0, H__18 = 0, H__11 = 0, H__12 = 0, H__13 = 0, H__16 = 0, H__15 = 0, H__18 = 0, H__17 = 0, H__12 = 0, H__11 = 0, H__13 = 0, H__17 = 0, H__18 = 0, H__55 = 0, H__13 = 0, H__34 = 0, H__18 = 0, H__17 = 0, H__55 = 0, H__13 = 0, H__34 = 0]

 

 

[H__14 = .3, H__33 = 1.5, H__38 = .15, H__44 = 1.5, H__11 = 0, H__12 = 0, H__13 = 0, H__15 = 0, H__16 = 0, H__17 = 0, H__18 = 0, H__12 = 0, H__11 = 0, H__13 = 0, H__16 = 0, H__15 = 0, H__18 = 0, H__17 = 0, H__13 = 0, H__34 = 0, H__17 = 0, H__18 = 0, H__55 = 0, H__13 = 0, H__34 = 0, H__18 = 0, H__17 = 0, H__55 = 0, H__15 = 0, H__16 = 0, H__17 = 0, H__18 = 0, H__11 = 0, H__12 = 0, H__13 = 0, H__16 = 0, H__15 = 0, H__18 = 0, H__17 = 0, H__12 = 0, H__11 = 0, H__13 = 0, H__17 = 0, H__18 = 0, H__55 = 0, H__13 = 0, H__34 = 0, H__18 = 0, H__17 = 0, H__55 = 0, H__13 = 0, H__34 = 0, c__1 = .5, nu = 1, alpha__1 = 1.5, alpha__2 = 1, lambda__1 = .58*I, lambda__2 = .68*I]

(3)

B1_para    := eval(B1, para);
detB1_para := Determinant(B1_para)

B1_para := Matrix(8, 8, {(1, 1) = -(.8620689655*I)*exp(I*v__11), (1, 2) = 0, (1, 3) = 0, (1, 4) = 0, (1, 5) = -(.7936507937*I)*exp(I*v__12), (1, 6) = 0, (1, 7) = 0, (1, 8) = 0, (2, 1) = 0, (2, 2) = -(.8620689655*I)*exp(I*v__11), (2, 3) = 0, (2, 4) = 0, (2, 5) = 0, (2, 6) = -(.7936507937*I)*exp(I*v__12), (2, 7) = 0, (2, 8) = 0, (3, 1) = 0, (3, 2) = 0, (3, 3) = -(.8620689655*I)*exp(-I*v__11), (3, 4) = 0, (3, 5) = 0, (3, 6) = 0, (3, 7) = -(.7936507937*I)*exp(-I*v__12), (3, 8) = 0, (4, 1) = 0, (4, 2) = 0, (4, 3) = 0, (4, 4) = -(.8620689655*I)*exp(-I*v__11), (4, 5) = 0, (4, 6) = 0, (4, 7) = 0, (4, 8) = -(.7936507937*I)*exp(-I*v__12), (5, 1) = -(.7936507937*I)*exp(I*v__21), (5, 2) = 0, (5, 3) = 0, (5, 4) = 0, (5, 5) = -(.7352941176*I)*exp(I*v__22), (5, 6) = 0, (5, 7) = 0, (5, 8) = 0, (6, 1) = 0, (6, 2) = -(.7936507937*I)*exp(I*v__21), (6, 3) = 0, (6, 4) = 0, (6, 5) = 0, (6, 6) = -(.7352941176*I)*exp(I*v__22), (6, 7) = 0, (6, 8) = 0, (7, 1) = 0, (7, 2) = 0, (7, 3) = -(.7936507937*I)*exp(-I*v__21), (7, 4) = 0, (7, 5) = 0, (7, 6) = 0, (7, 7) = -(.7352941176*I)*exp(-I*v__22), (7, 8) = 0, (8, 1) = 0, (8, 2) = 0, (8, 3) = 0, (8, 4) = -(.7936507937*I)*exp(-I*v__21), (8, 5) = 0, (8, 6) = 0, (8, 7) = 0, (8, 8) = -(.7352941176*I)*exp(-I*v__22)})

 

.1614404685*(exp(I*v__11))^2*(exp(-I*v__11))^2*(exp(I*v__22))^2*(exp(-I*v__22))^2-.3208471697*(exp(I*v__11))^2*exp(-I*v__11)*exp(-I*v__21)*(exp(I*v__22))^2*exp(-I*v__12)*exp(-I*v__22)+.1594131063*(exp(I*v__11))^2*(exp(-I*v__21))^2*(exp(I*v__22))^2*(exp(-I*v__12))^2-.3208471697*exp(I*v__11)*exp(I*v__21)*(exp(-I*v__11))^2*exp(I*v__22)*exp(I*v__12)*(exp(-I*v__22))^2+.6376524251*exp(I*v__11)*exp(I*v__21)*exp(-I*v__11)*exp(-I*v__21)*exp(I*v__22)*exp(I*v__12)*exp(-I*v__12)*exp(-I*v__22)-.3168179849*exp(I*v__11)*exp(I*v__21)*(exp(-I*v__21))^2*exp(I*v__22)*exp(I*v__12)*(exp(-I*v__12))^2+.1594131063*(exp(I*v__21))^2*(exp(-I*v__11))^2*(exp(I*v__12))^2*(exp(-I*v__22))^2-.3168179850*(exp(I*v__21))^2*exp(-I*v__11)*exp(-I*v__21)*(exp(I*v__12))^2*exp(-I*v__12)*exp(-I*v__22)+.1574112034*(exp(I*v__21))^2*(exp(-I*v__21))^2*(exp(I*v__12))^2*(exp(-I*v__12))^2

(4)

H_para := eval(H, para):

# Given that

B_para := 'H_para . B1_para';

# one gets:

detH_para := Determinant(H_para);
detB_para := detB1_para . detH_para:

Physics:-`.`(H_para, B1_para)

 

HFloat(6.560999999999999e-5)

(5)

# One possible simplification

whynot := simplify(combine(detB_para, exp)) assuming real;
whynot := convert(whynot, trig)

HFloat(2.0918187808685997e-5)*cos(2*v__11-2*v__12-2*v__21+2*v__22)+HFloat(6.275623380416999e-5)-HFloat(4.1837210793305994e-5)*exp(I*(v__11-v__12-v__21+v__22))-HFloat(4.1837210799866996e-5)*exp(-I*(v__11-v__12-v__21+v__22))

 

HFloat(2.0918187808685997e-5)*cos(2*v__11-2*v__12-2*v__21+2*v__22)+HFloat(6.275623380416999e-5)-HFloat(8.3674421593173e-5)*cos(v__11-v__12-v__21+v__22)+(HFloat(6.561002012950984e-15)*I)*sin(v__11-v__12-v__21+v__22)

(6)

 

NULL

 

Download Are_you_ok_with_that.mw

 

@mz6687 

Sorry, I don't understand what you say



@mz6687 


Your initial question was "Can Maple solve the determinant of the 9x9 matrix? "
I showed you the answer was YES.

Now you are talking about something else.
But you missed a point: in the reference you mention the matrix had a particular shape and depended only on 6 quantities

{v__11, v__12, v__21, v__22, lambda__1, lambda__2}

So the expression of its determinant was potentially simplifiable (and indeed was).

Your matrix B is dense and depends on 81 indeterminates (not only 6) meaning  there is no possible simplification between terms.
Using simplify or collect, for instance, will be a dead end.

Things could be completely different if all the m[i, j] were expressions involving a few number of independent quantities.


BTW: what does "solve the determinant" mean to you?

@acer 

You're right, I edited my answer consequently.

@Traruh Synred 

I know how to use Histogram, but I want to plot binned data!

Can you please give an example of those binned data and of the original data instead of speaking in the void?

For one thing, a Histogram requires a large list of each data point and is thus a memory hog, and each time you make a histogram Histogram loops through the data for the quantity, and if you make it for a related quantity you have to loop again. 

That is totally unclear, can you provide an example?

@AHSAN 

Your claim that "each curve have their maximum point at some vale of x" is obviously wrong (last figure on my last file on forst figure in For_reference.mw ... soom around the peaks).
and not consistent with your need "to obsrvse that difference in percentage at the maximum value of x
" at the same time (if x is a constant as you before claimed it was it' difference in percentage is 0).

I hope you'll find someone better able than me to understand the subtleties of your question.
For my part, I'm done with you.

@AHSAN 


I still don't understand what is your criterion to assess this relative increase/decrease:

  • Is this criterion the height of the peak?
     
  • You taught before of "enlargement"; is your criterion the peak width at some conventional height?
     
  • Is this criterion one of those I use in my first file?
     

Whatever, the case here is an example based on the peak height
Could_It_Be_This_2.mw

@AHSAN 

My mistake, this phrase about "a loop" is indeed an error.

It's likely  I didn't understand correctelyyour question.
I understood you wanted to compite the decrease/increase of the eights of the peaks.

What do you mean by "the decrease or incease in percentage between curves" ?
If you this

A_ref := eval(A, lambda = 1.3015):
data_1 := [beta=0.1, Q=1.3015, lambda=0.9986];
B_1    := eval(B, data_1):
plot((B_1-A_ref)/A_ref*100, x=-4..0)

you get a curve which represents the relative variation of B_1 wrt A_ref, but this is a function x.
So do you want a number or an algebraic expression or a curve

Could_It_Be_This.mw

@dharr 

Right, I didn't pay attention to that.



type "SIR  model" and click on Search

@Carl Love 

Using fsolve(..., complex) as you suggested gives a solution close to yours to within  10-11 (or less) which verifies rel to within 10-42.
Given that diff(Re(rel[1]), A) is infinite at this point, the slightest variation in A makes "huge" differences in the values of rel[1].

2023_vs_2015.mw

So you're right, there is indeed a second real solution

@Carl Love 

Thanks Carl... but this is not the result I get with Maple 2015:

eval(rel, {
    A = -2.7553365135418814642586082436429575890825402826031,
    B = -0.70285804987973303586180028708027467941012949957141
})

[                                                     -43    
[0.00004788232651393033381187767465396229938775 - 2 10    I, 

                                                        -40
  1.8649856419668477410903757547200476549949700479584 10   

                                                           -41  ]
   - 1.2309622539151182340327668587211822233603338843467 10    I]

A version issue?

@NIMA112 


Are there other real roots than the one @Rouben Rostamian got?
I don't think so (the couple (A, B) @Carl Love found doesn't verify the equations with an enough small error to be considered, IMO, as a solution).

Some details are given here Fung_sand15.mw

1 2 3 4 5 6 7 Last Page 1 of 20