MaplePrimes Announcement

Maple Learn is out of beta! I am pleased to announce that Maple Learn, our new online environment for teaching and learning math and solving math problems, is out of beta and is now an officially released product. Over 5000 teachers and students used Maple Learn during its public beta period, which was very helpful. Thank you to everyone who took the time to try it out and provide feedback.

We are very excited about Maple Learn, and what it can mean for math education. Educators told us that, while Maple is a great tool for doing, teaching, and learning all sorts of math, some of their students found its very power and breadth overwhelming, especially in the early years of their studies. As a result, we created Maple Learn to be a version of Maple that is specifically focused on the needs of educators and students who are teaching and learning math in high school, two year and community college, and the first two years of university.  

I talked a bit about what this means in a previous post, but probably the best way to get an overview of what this means is to watch our new two minute video:  Introducing Maple Learn.

 

 

Visit Maple Learn for more information and to try it out for yourself.  A basic Maple Learn account is free, and always will be.   If you are an instructor, please note that you may be eligible for a free Maple Learn Premium account. You can apply from the web site. 

There’s lots more we want to do with Maple Learn in the future, of course. Even though the beta period is over, please feel free to continue sending us your feedback and suggestions. We’ve love to hear from you!

Featured Post

One of the most interesting help page about the use of the Physics package is Physics,Examples. This page received some additions recently. It is also an excellent example of the File -> Export -> LaTeX capabilities under development.

Below you see the sections and subsections of this page. At the bottom, you have links to the updated PhysicsExample.mw worksheet, together with PhysicsExamples.PDF.

The PDF file has 74 pages and is obtained by going File -> Export -> LaTeX (FEL) on this worksheet to get a .tex version of it using an experimental version of Maple under development. The .tex file that results from FEL (used to get the PDF using TexShop on a Mac) has no manual editing. This illustrates new automatic line-breakingequation labels, colours, plots, and the new LaTeX translation of sophisticated mathematical physics notation used in the Physics package (command Latex in the Maplesoft Physics Updates, to be renamed as latex in the upcoming Maple release). 

In brief, this LaTeX project aims at writing entire course lessons or scientific papers directly in the Maple worksheet that combines what-you-see-is-what-you-get editing capabilities with the Maple computational engine to produce mathematical results. And from there get a LaTeX version of the work in two clicks, optionally hiding all the input (View -> Show/Hide -> Input).

PhysicsExamples.mw   PhysicsExamples.pdf

PS: MANY THANKS to all of you who provided so-valuable feedback on the new Latex here in Mapleprimes.

Edgardo S. Cheb-Terrab
Physics, Differential Equations and Mathematical Functions, Maplesoft

Featured Post

8449

Here is a very nice (but not easy) elementary problem.
The equality
ceil(2/(2^(1/n)-1)) = floor(2*n/ln(2));

             

is not an identity, it does not hold for each positive integer n.
How to find such a number?

[This is a re-post, because the original vanished when trying a conversion Question-->Post]

The problem appears in the recent book:
Richard P. Stanley - Conversational Problem Solving. AMS, 2020. 

The problem is related to a n-dimensional tic-tac-toe game. The first counterexample (2000) was wrong due to a multiprecision arithmetic error.
The  author of the book writes 
"To my knowledge, only eight values of n are known for which the equation fails,
and it is not known whether there are infinitely many such values",

but using Maple it will be easy to find more.

A brute-force solution is problematic because the smallest counterexample is > 7*10^14.

restart;
a := 2/(2^(1/n)-1): b := 2*n/ln(2):
asympt(b-a, n);

        

It results:  b - a → 1 (for n →oo);
So, to have a counterexample, b must be close to an integer
m ≈ 2*n/ln(2)  ==> n/m ≈ ln(2)/2

The candidates for n/m will be obviously the convergents of the continued fraction of the irrational number ln(2)/2.
 

convert(ln(2)/2, confrac, 200, 'L'):
Digits:=500:
for n in numer~(L[3..]) do
  if not evalf(ceil(a)=floor(b)) then printf("n=%d\n", n) fi;
od:

n=777451915729368
n=140894092055857794
n=1526223088619171207
n=54545811706258836911039145
n=624965662836733496131286135873807507
n=1667672249427111806462471627630318921648499
n=36465374036664559522628534720215805439659141
n=2424113537313479652351566323080535902276508627
n=123447463532804139472316739803506251988903644272
n=97841697218028095572510076719589816668243339678931971
n=5630139432241886550932967438485653485900841911029964871
n=678285039039320287244063811222441860326049085269592368999
n=312248823968901304612135523777926467950572570270886324722782642817828920779530446911
n=5126378297284476009502432193466392279080801593096986305822277185206388903158084832387
n=1868266384496708840693682923003493054768730136715216748598418855972395912786276854715767
n=726011811269636138610858097839553470902342131901683076550627061487326331082639308139922553824778693815

 

So, we have obtained 16 counterexamples. The question whether there are an infinity of such n's remains open.

 



How to solve integration?

Maple 17 asked by Prakash J 10 Yesterday

using maple online

Maple Maple Learn asked by ik74 5 Yesterday

How to get map to work?

Maple 2019 asked by Gillee 92 Yesterday

How to find any real root

Maple asked by AHSAN 40 Yesterday

newton iteration not converging

Maple asked by Humairaa 0 Yesterday

Start up code error

Maple 2020 asked by amanuit11 20 January 22