Product Suggestions

Post your suggestions on new features and products.

In the recent years much software has undergone a change towards allowing for better sharing of documents. As is the case with other software as well, the users are no longer mainly single persons sitting in a dark corner doing their own stuff. Luckily Maplesoft has taken an important step in that direction too by introducing MapleCloud some years ago. This means that it is now possible quite easily to discuss calculations done in Maple in the classroom. One student uploads and the Teacher can find the document seconds later on his own computer connected to a Projector and show the student's solutions for the other  students in the classroom. That's indeed great! Maple is however lacking in one important aspect: It's Graphics User Interface (GUI) is not completely ready to for that challenge! I noticed that quite recently when the entire teaching staff received new netbooks: 14 inch Lenovo Yoga X1 with a resolution of 2560 x 1440 pixels. From factory defaults text zoom was set to 200%. Without it, text would be too small in all applications used on the computer. The Microsoft Office package and most other software has adapted to this new situation dealing with high variation in the users screen resolutions, but not Maplesoft:

  1. Plots and Images inserted become very small
  2. Open File dialogs and the like contain shortened text for folder names ... (you actually have to guess what the folders are)
  3. Help menus are cluttered up and difficult to read.

I show screen images of all three types below.

I know it is possible to make plots larger by using the option size, but since it relies on pixels it doesn't work when documents are shared between students and teachers. You cannot expect the receiving student/teacher to make a lot of changes in the document just to be able to read it. It will completely destroy the workflow!

Why doesn't Maplesoft allow for letting documents display proportionally on the users computer like so many other programs do? Why do it need to be in pixels? If it is possible to make it proportional, it would also solve another issue: Making prints (to a printer or to pdf) look more like they do on the screen than is the case at present.

I really hope Maplesoft will address this GUI challenge, because I am sure the issue will pile up quite rapidly. Due to higher costs, most laptops/netbooks among students don't have that high resolution compared to computer dimensions at the moment, but we already have received a few remarks from students owning such computers. Very soon those highend solution computers will dive into the consumer market and become very common.

I have mentioned this important GUI issue in the beta-testing group, but I don't think those groups really are adapted to discussions, more bug fixes. Therefore I have made this Post in the hope that some Maple users and some chief developers will comment on it!
     

Now I have criticized the Maple GUI, I also feel urged to tell in what departments I think Maple really excels:

  1. The Document-structure is great. One can produce good looking documents containing 'written math' (inactive math) and/or 'calculated math'. All-in-one! Other competting software does need one to handle things separatly.
  2. Sections and subsections. We have actually started using Maple to create documents containing entire chapters or surveys of mathematics or physics subjects, helping students to get a better overview. I am pretty sure the Workbook tool also will help here.
  3. Calculations are all connected. One can recalculate the document or parts of it, eventually using new parameters. Using Maple for performing matematical experiments. Mathematical experiments is a method entering more into the different mathematics curriculums.
  4. MapleCloud. Easy sharing of documents among students and teachers.
  5. Interactive possibilities through the Explore command and other commands. Math Apps as well.
  6. Besides that mathematical symbols can be accessed from the keyboard, they can also be accessed from palettes by less experinced users.  
  7. Good choice by Maple to let the user globally decide the size text and math is displayed in Maple - set globally in the menu Tools < Options.
  8. Maple can handle units in Physics
  9. Maple has World-Class capabilities. If you have a mathematical problem, Maple can probably handle it. You just need to figure out how.
  10. etc.

 

Small plots:

 

Shortened dialog text:

 

Cluttered help menus:

 

Regards,

Erik

 

The is and coulditbe commands of Maple are known to be buggy.
Here are some math inventions done by these commands in Maple 2016.2.

restart; assume(x::real, y::real);
is(exp(x+I*y) <> 0);
                             false
coulditbe(exp(x+I*y) = 0);
                              true
coulditbe(exp(x+I*y) = infinity);
                              true
coulditbe((x+I*y)^2 = infinity);
                              true

It should be noticed that

is((-infinity)::real);
                             false

though

exp(-infinity+0*I);
                               0

The latter means

limit(exp(x),x=-infinity);
                                   0

, no more and no less.

Let us consider 

sol := pdsolve({diff(u(x, t), t)-(diff(v(x, t), x))+u(x, t)+v(x, t) = (1+t)*x+(x-1)*t^2, diff(v(x, t), t)-(diff(u(x, t), x))+u(x, t)+v(x, t) = (1+t)*x*t+(2*x-1)*t}, {u(0, t) = 0, u(x, 0) = 0, v(0, t) = 0, v(x, 0) = 0}, time = t, numeric, timestep = 0.1e-1, spacestep = 0.1e-1, range = 0 .. 1); 
sol:-plot3d(v(x, t), x = 0 .. 1, t = 0 .. 1);

A nice plot similar to the one produced by Mma (see the  attached pdf file pdesystem.pdf) is expected. 
The exact solutions u(x,t)=x*t,v(x,t)=x*t^2 are known

pdetest({u(x, t) = x*t, v(x, t) = x*t^2}, {diff(u(x, t), t)-(diff(v(x, t), x))+u(x, t)+v(x, t) =
(1+t)*x+(x-1)*t^2, diff(v(x, t), t)-(diff(u(x, t), x))+u(x, t)+v(x, t) = (1+t)*x*t+(2*x-1)*t});
                              {0}

But the wrong result

               module() ... end module         
Error, (in pdsolve/numeric/plot3d) unable to compute solution for t>HFloat(0.26000000000000006):
solution becomes undefined, problem may be ill posed or method may be ill suited to solution

is obtained. Also 

sol:-plot3d(v(x, t), x = 0 .. 1, t = 0 ..0.1);


 

The plot 

sol:-plot3d(v(x, t), x = 0 .. .5, t = 0 .. .1);

is not better.

Let us look in RealDomain and then in the RealDomain:-solve command. One is addressed to the usual solve command. The commands of the RealDomain package are not still documented since Maple 7 when the package was introduced. There is a general description only 

  • By default, Maple performs computations under the assumption that the underlying number system is the complex field. The RealDomain package provides an environment in which computations are performed under the assumption that the basic underlying number system is the field of real numbers.
  • Results returned by procedures are postprocessed by discarding values containing any detectable non-real answers or replacing them with undefined where appropriate.

The above is not enough. Here is an example which confuses me: 

RealDomain:-solve(exp(I*x) = -1, AllSolutions);
NULL

though 

solve(exp(I*x) = -1, AllSolutions);
                         Pi (2 _Z1 + 1)

and 

RealDomain:-solve(exp(I*x) = -1);
                               Pi

I lie awake thinking about that. Maplesoft staff help me!


 

I found a strange bug in int.
For some functions f(x), Maple is able to compute the antiderivative (correctly) but refuses to compute the definite integral.
Or, computes the integral over 0..1  and  0..2  but refuses to compute over 1..2.

int(exp(x^3), x);  #ok

-(1/3)*(-1)^(2/3)*((2/3)*x*(-1)^(1/3)*Pi*3^(1/2)/(GAMMA(2/3)*(-x^3)^(1/3))-x*(-1)^(1/3)*GAMMA(1/3, -x^3)/(-x^3)^(1/3))

(1)

int(exp(x^3), x=1..2); #?

int(exp(x^3), x = 1 .. 2)

(2)

int(exp(x^3), x=1..2, method=FTOC); #??

int(exp(x^3), x = 1 .. 2, method = FTOC)

(3)

int(exp(x^3), x=0..2); #?

int(exp(x^3), x = 0 .. 2)

(4)

int(exp(-x^3), x);  #ok

(3/4)*x*exp(-(1/2)*x^3)*WhittakerM(1/6, 2/3, x^3)/(x^3)^(1/6)+exp(-(1/2)*x^3)*WhittakerM(7/6, 2/3, x^3)/(x^2*(x^3)^(1/6))

(5)

int(exp(-x^3), x=0..2);  #ok

(3/4)*2^(1/2)*exp(-4)*WhittakerM(1/6, 2/3, 8)+(1/8)*2^(1/2)*exp(-4)*WhittakerM(7/6, 2/3, 8)

(6)

int(exp(-x^3), x=0..1);  #ok

(3/4)*exp(-1/2)*WhittakerM(1/6, 2/3, 1)+exp(-1/2)*WhittakerM(7/6, 2/3, 1)

(7)

int(exp(-x^3), x=1 .. 2);  #???

int(exp(-x^3), x = 1 .. 2)

(8)


 

Download !strange-bug-int.mw

Correct computatiton for

for reasonable expressions f(x,y), g(x,y) would be very useful in double integrals.

For the moment this is not possible. Too many bugs:

int(Heaviside(1-x^2-y^2), x=-infinity..infinity, y=-infinity..infinity); #should be Pi
                           undefined
int(Heaviside(1-x^2-y^2), x=-1..1, y=-1..1); #should be Pi
                               0
int(Heaviside(y-x^2), x=-1..1, y=-1..1); #should be 4/3
                               -2

int(Heaviside(y-x^2), y=-1..1, x=-1..1); #This one is OK!
                              4/3

 

 

 

 

In order to change Maple for the better, I use to submit SCRs. However, as i was kindly
informed by Bryon (a copy of his e-letter on demand), MaplePrimes are under reconstruction and do not
work properly. At least my three messages sent through the Contact button were lost.
I have  unsuccessfully tried to reach beta.maplesoft.com (see the result of ping in the screen screen.29.08.16.docx).
Please, help me!

Hi,

In the following example I introduce some commutation rules that are standard in Quantum Mechanics. A major feature of the Maple Physics Package, is that it is possible to define tensors as Quantum Operators. This is of great interest because powerful tensor simplification rules can then be used in Quantum Mechanics. For an example, see the commutation rules of the components of the angular momentum operator in ?Physics,Examples. Here, I focus on a possible issue: when destroying all quantum operators, the pre-defined commutation rules still apply, which should not be the case. As shown in the post, this is link to the fact that these operators are also tensors.
 

NULL

 

Physics:-Version()[2]

`2016, August 16, 18:56 hours`

(1)

NULL

NULL

restart; with(Physics); interface(imaginaryunit = I)

First, set a 3D Euclidian space

Setup(mathematicalnotation = true, dimension = 3, signature = `+`, spacetimeindices = lowercaselatin, quiet)

[dimension = 3, mathematicalnotation = true, signature = `+ + +`, spacetimeindices = lowercaselatin]

(2)

Define two rank 1 tensors

Define(x[k], p[k])

`Defined objects with tensor properties`

 

{Physics:-Dgamma[a], Physics:-Psigma[a], Physics:-d_[a], Physics:-g_[a, b], p[k], x[k], Physics:-KroneckerDelta[a, b], Physics:-LeviCivita[a, b, c]}

(3)

Now, further define these tensors as quantum operators and gives the usual commutation rule between position and momentum operators (Quantum Mechanics).

Setup(hermitianoperators = {p, x}, algebrarules = {%Commutator(p[k], p[n]) = 0, %Commutator(x[k], p[l]) = I*`&hbar;`*KroneckerDelta[k, l], %Commutator(x[k], x[l]) = 0}, realobjects = {`&hbar;`})

[algebrarules = {%Commutator(p[k], p[n]) = 0, %Commutator(x[k], p[l]) = I*`&hbar;`*Physics:-KroneckerDelta[k, l], %Commutator(x[k], x[l]) = 0}, hermitianoperators = {p, x}, realobjects = {`&hbar;`}]

(4)

As expected:

(%Commutator = Commutator)(p[a], x[b])

%Commutator(p[a], x[b]) = -I*`&hbar;`*Physics:-KroneckerDelta[a, b]

(5)

Now, reset all the Hermitian operators, so that all quantum operators are destroyed. This is useful if, for instance, one needs to compare some the result with the commutative case.

Setup(redo, hermitianoperators = {})

[hermitianoperators = none]

(6)

As expected, there are no quantum operators anymore...

Setup(quantumoperators)

[quantumoperators = {}]

(7)

...so that the following expressions should commute (result should be true)

Library:-Commute(p[a], x[b])

false

(8)

Result should be 0NULL

Commutator(p[a], x[b])

-I*`&hbar;`*Physics:-KroneckerDelta[a, b]

(9)

p[a], x[b]

p[a], x[b]

(10)

NULL

NULL

``

NULLNULL

Below is just a copy & paste of the above section. The only difference, is that "Define(x[k], p[k])" has been commented, so that x[k]and p[k] are not a tensor. In that case, everything behaves as expected (but of course, the interesting feature of tensors is not available).

````

NULL

restart; with(Physics); interface(imaginaryunit = I)

First, set a 3D Euclidian space

Physics:-Setup(mathematicalnotation = true, dimension = 3, signature = `+`, spacetimeindices = lowercaselatin, quiet)

[dimension = 3, mathematicalnotation = true, signature = `+ + +`, spacetimeindices = lowercaselatin]

(11)

#Define two rank 1 tensors

Now, further define these tensors as quantum operators and gives the usual commutation rule between position and momentum operators (Quantum Mechanics)

Physics:-Setup(hermitianoperators = {p, x}, algebrarules = {%Commutator(p[k], p[n]) = 0, %Commutator(x[k], p[l]) = Physics:-`*`(Physics:-`*`(I, `&hbar;`), Physics:-KroneckerDelta[k, l]), %Commutator(x[k], x[l]) = 0}, realobjects = {`&hbar;`})

[algebrarules = {%Commutator(p[k], p[n]) = 0, %Commutator(x[k], p[l]) = I*`&hbar;`*Physics:-KroneckerDelta[k, l], %Commutator(x[k], x[l]) = 0}, hermitianoperators = {p, x}, realobjects = {`&hbar;`}]

(12)

As expected:

(%Commutator = Physics:-Commutator)(p[a], x[b])

%Commutator(p[a], x[b]) = -I*`&hbar;`*Physics:-KroneckerDelta[a, b]

(13)

Now, reset all the Hermitian operators, so that all quantum operators are destroyed.

Physics:-Setup(redo, hermitianoperators = {})

[hermitianoperators = none]

(14)

As expected, there are no quantum operators anymore...

Physics:-Setup(quantumoperators)

[quantumoperators = {}]

(15)

...so that the following expressions should commute (result should be true)

Physics:-Library:-Commute(p[a], x[b])

true

(16)

Result should be 0``

Physics:-Commutator(p[a], x[b])

0

(17)

p[a], x[b]

p[a], x[b]

(18)

NULL

``

NULL``

NULL


Download Quantum_operator_as_Tensors_August_23_2016.mw

A more honest and specific version of lemma 3.

CONGRUENT_FUNCTIONS_OF_THE_FRACTIONAL_PART_OVER_Q_LEMMA_4.mw

Maple Worksheet - Error

Failed to load the worksheet /maplenet/convert/CONGRUENT_FUNCTIONS_OF_THE_FRACTIONAL_PART_OVER_Q_LEMMA_4.mw .

Download CONGRUENT_FUNCTIONS_OF_THE_FRACTIONAL_PART_OVER_Q_LEMMA_4.mw

Using a mouse's back/forward buttons or alt+ left arrow/ alt+right arrow did not work in Maple 2015 and they still don't work in Maple 2016. 

Also, if you select anywhere in the search bar, it automatically selects all the words.  I sometimes (most the time) want to change only one word.  

Im using x64 Windows 10 and it also did it when running Windows 8/8.1 .   Does anybody else have this problem?

Can it be fixed please if not?

If you try and scroll a page up or down, it just selects the content.  How hard would it be to fix this?

It would be nice if the StringTools package had a function giving the number of primitive words of length n on an alphabet of size a.  The formula for this is well-known but tedious to code.

        General description of the method of solving underdetermined systems of equations. As a particular application of the idea proposed a universal method  kinematic analysis for all kinds of  spatial and planar link mechanisms with any number degrees of freedom.  The method can be used for powerful CAD linkages.   
         http://www.maplesoft.com/applications/view.aspx?SID=154228

       


      Some examples of a much larger number calculated by the proposed method. Examples gathered here not to look for them on the forum and opportunity to demonstrate the method.  Among the examples, I think, there are very complicated.

https://vk.com/doc242471809_408704758
https://vk.com/doc242471809_408704572
https://vk.com/doc242471809_376439263
https://vk.com/doc242471809_402619761
https://vk.com/doc242471809_402610228
https://vk.com/doc242471809_401188803
https://vk.com/doc242471809_400465891
https://vk.com/doc242471809_400711315
https://vk.com/doc242471809_387358164
https://vk.com/doc242471809_380837279
https://vk.com/doc242471809_379935473
https://vk.com/doc242471809_380217387
https://vk.com/doc242471809_363266817
https://vk.com/doc242471809_353980472
https://vk.com/doc242471809_375452868
https://vk.com/doc242471809_353988163 
https://vk.com/doc242471809_353986884 
https://vk.com/doc242471809_353987119
https://vk.com/doc242471809_324249241
https://vk.com/doc242471809_324102889
https://vk.com/doc242471809_322219275
https://vk.com/doc242471809_437298137
https://vk.com/doc242471809_437308238
https://vk.com/doc242471809_437308241
https://vk.com/doc242471809_437308243
https://vk.com/doc242471809_437308245
https://vk.com/doc242471809_437308246
https://vk.com/doc242471809_437401651
https://vk.com/doc242471809_437664558

 

 

Hello All,

(I also sent this fact to Maplesoft Support).

Since I updayed to 2016.1 the F1 key does bring a menu witch send to..F5 only.

No way to have a "full" Help Menu.(See the attached file)

I guess a silly bug jumped in :)

Kind regards,

 

Jean-Michel

 

1 2 3 4 5 6 7 Last Page 3 of 21