Maple 2019 Questions and Posts

These are Posts and Questions associated with the product, Maple 2019

Hello,

How I can take variation from left-hand side of  5, and reach to right-hand side of  5. After by using integral by part obtained  7?

Thank you

Maple pdsolve supports periodic boundary conditions. So I was hoping it will be able to solve the heat PDE inside disk with periodic boundary conditions. But I am not able to make it work. 

Is there a trick to make Maple solve this, is there something I need to add or adjust something else? or it is just the functionality is not currently implemented?

This is what I tried

restart;

pde := diff(u(r,theta,t),t)=diff(u(r,theta,t),r$2) + 1/r*diff(u(r,theta,t),r)+1/r^2*diff(u(r,theta,t),theta$2);
bc1 := u(a,theta,t)=0;
bc2 := eval(diff(u(r,theta,t),theta),theta=-Pi)=eval(diff(u(r,theta,t),theta),theta=Pi);
bc3 := u(r,-Pi,t)=u(r,Pi,t);
ic  := u(r,theta,0)=f(r,theta);
sol := pdsolve([pde, bc1,bc2,bc3, ic], u(r, theta, t), HINT = boundedseries(r = 0)) assuming a>0,r>0

I solved this analytically by hand using standard separation of variables method. The issue of telling Maple the solution is bounded at center of disk, I assume is being handled automatically by the HINT=boundedseries(r = 0).

If I remove the hint, it also does not solve it. 

Maple 2019, Physics package 338

For this problem

I'd like to see if Maple can give, or simplify the solution it now gives to look like this solution 

The one it currently gives is

restart;

pde:=diff(w(x,t),t)+c*diff(w(x,t),x)=0; 
ic:=w(x,0)=f(x);
bc:=w(0,t)=h(t);
sol:=pdsolve([pde,ic,bc],w(x,t))  assuming t>0,x>0,c>0

 

And I did not know how to simplify it or obtain the simpler one. I tried strip and TWS hints.  I also do not understand why Maple gives an integral with 0 as upper limit there (the second integral).

Using Physics package cloud version 338 and Maple 2019. On windows 10.

Thank you

2 3 4 5 6 7 8 Last Page 4 of 21