## variable spacestep for numerical solution of pde...

Dear all,
How can I input different spacesteps in numerical solution of PDE (Heat equation) with pdsolve of Maple?

For example, the x range is x=0..L,
and I'd like to solve the PDE with spacestep1=L/100 for x=0..a and spacestep2=L/10 for x=a..L.

Thank you in advance!

## Inverse Laplace transform...

Why Maple doesn't calculate this and only rewrites it??

with(inttrans);

invlaplace(exp((0.2500000000e-1-2.500000000*sqrt(0.116e-3+.8*p-3.2*10^(-10)/(p+0.2e-4)))*x)/p, p, t);

## write equation in maple expression...

iqt + aqxy + ibq (qq*x − q*qx) = 0. write this equation in maple

## help me to solve the eqution by ritz methode codes...

how i can solve the eqution by ritz methode codes?

## Visualising 3d subspaces of 6d space...

I have an object in 6d I'd like to visualise. The region of 6d space I am interested in is described by these equations:

{f[10] = -(.2000000000*(5.*f[21]*f[20]*f[22]-5.*f[20]*f[22]^2+20.*f[20]*f[21]-20.*f[20]*f[22]+135.*f[20]+46.*f[21]))/(f[21]*(f[21]-1.*f[22])),
f[11] = -1.*f[22]-4.,
f[12] = -(1.*(f[22]^2+4.*f[22]-27.))/f[21],
f[20] = f[20],
f[21] = f[21],
f[22] = f[22]}

clearly the first three variables are dependant, and the latter three are independant. I'd like to graph the first three as the latter three vary between bounds and then colour the points on the output based on where they came from in the input, so i can get some intuition about what these equations mean.

## Optimal control problem ...

How do I plot the optimal control functions in an optimal control problem ?

## 2D weirdness (Maple 2018.2 OSX)...

Here is a simple procedure that works fine if entered using 1D Maple input
> Q:=proc(x)
sin(x)
end proc;
but if you use 2D math input
> q:=proc(x)
sin(x);

end proc;

Error, unterminated procedure
Typesetting:-mambiguous(qAssignTypesetting:-mambiguous(

procApplyFunction(x) sinApplyFunction(x),

Typesetting:-merror("unterminated procedure")))
Error, unable to parse
Typesetting:-mambiguous(  Typesetting:-mambiguous(end,

Typesetting:-merror("unable to parse")) procsemi)

Ouch! But to confuse things further the following procedures may be entered using 2D math and work fine:
>H := proc (x) x^2*sin(x) end proc;
>K := proc (x) sin(x^2) end proc;
Doesn't make any sense to me. Perhaps 2D math is not ready for prime time?

## Multiple Execution of Maple Code with a Varied Par...

Hi!

I have a rather long Maple code and want it to be executed multiple times with a parameter changed each time.

Surely this can be done with the loop structure, but it seems the whole loop structure must be contained into one single execution group, which makes it to be a little inconvenient, since the code is too long.

So is there any alternative way to realize this utility?

Best regard and thanks!

## polylog vs. dilog...

This is not a problem per se, but more to understand the background.

restart;

f := polylog(2, -x);

int(f/(x+1), x);

convert(f, dilog);

int(%/(x+1), x)

The integration of the polylog maple is not capable of doing, but after converting to dilog it finds an anti derivative.

That leads to the question, why is dilog as a separate to polylog(2,*) implemented anyway? Why couldn't it all be done with the more general polylog function?

I'm also wondering why maple has difficulties to integrate

int(dilog(x+1)/(x+a),x)

for general a.

## ImportMatrix Kernel Lost...

Using Maple 2018.2.1, I'm receiving a lost kernel message when importing the attached data file with ImportMatrix. I traced the issue to a "*" symbol at the end of the file but would have expected this to cause an error message (if any error at all) instead of the connection to the kernel to be lost. Is this a bug or am I misunderstanding the usage of ImportMatrix?

test.mw

test2.txt

## Open source Maple install for ubuntu 18.04...

Look I have actually purchased the software 3 time in total throughout my life, but i have no money at this point but i have a Linux OS now and i am enjoying learning how to use that, so i was wondering if there is a standard old verson that is open source and availble for a Linux install

## solve problem how to fix it...

restart;
T := K+F(xi)*F(xi);
2
K + F(xi)
U := alpha[0]+alpha[1]*(m+F(xi))+beta[1]/(m+F(xi))+alpha[2]*(m+F(xi))*(m+F(xi))+beta[2]/(m+F(xi))^2;
beta[1]
alpha[0] + alpha[1] (m + F(xi)) + ---------
m + F(xi)

2     beta[2]
+ alpha[2] (m + F(xi))  + ------------
2
(m + F(xi))
diff(U, xi);
/ d        \
beta[1] |---- F(xi)|
/ d        \           \ dxi      /
alpha[1] |---- F(xi)| - --------------------
\ dxi      /                  2
(m + F(xi))

/ d        \
2 beta[2] |---- F(xi)|
/ d        \             \ dxi      /
+ 2 alpha[2] (m + F(xi)) |---- F(xi)| - ----------------------
\ dxi      /                   3
(m + F(xi))
d := alpha[1]*T-beta[1]*T/(m+F(xi))^2+2*alpha[2]*(m+F(xi))*T-2*beta[2]*T/(m+F(xi))^3;
/         2\
/         2\   beta[1] \K + F(xi) /
alpha[1] \K + F(xi) / - --------------------
2
(m + F(xi))

/         2\
/         2\   2 beta[2] \K + F(xi) /
+ 2 alpha[2] (m + F(xi)) \K + F(xi) / - ----------------------
3
(m + F(xi))
diff(d, xi);
/ d        \
2 beta[1] F(xi) |---- F(xi)|
/ d        \                   \ dxi      /
2 alpha[1] F(xi) |---- F(xi)| - ----------------------------
\ dxi      /                      2
(m + F(xi))

/         2\ / d        \
2 beta[1] \K + F(xi) / |---- F(xi)|
\ dxi      /
+ -----------------------------------
3
(m + F(xi))

/ d        \ /         2\
+ 2 alpha[2] |---- F(xi)| \K + F(xi) /
\ dxi      /

/ d        \
+ 4 alpha[2] (m + F(xi)) F(xi) |---- F(xi)|
\ dxi      /

/ d        \
4 beta[2] F(xi) |---- F(xi)|
\ dxi      /
- ----------------------------
3
(m + F(xi))

/         2\ / d        \
6 beta[2] \K + F(xi) / |---- F(xi)|
\ dxi      /
+ -----------------------------------
4
(m + F(xi))
collect(%, diff);
/                                               /         2\
|                   2 beta[1] F(xi)   2 beta[1] \K + F(xi) /
|2 alpha[1] F(xi) - --------------- + ----------------------
|                               2                     3
\                    (m + F(xi))           (m + F(xi))

/         2\
+ 2 alpha[2] \K + F(xi) / + 4 alpha[2] (m + F(xi)) F(xi)

/         2\\
4 beta[2] F(xi)   6 beta[2] \K + F(xi) /| / d        \
- --------------- + ----------------------| |---- F(xi)|
3                     4     | \ dxi      /
(m + F(xi))           (m + F(xi))      /
S := (2*alpha[1]*F(xi)-2*beta[1]*F(xi)/(m+F(xi))^2+2*beta[1]*(K+F(xi)^2)/(m+F(xi))^3+2*alpha[2]*(K+F(xi)^2)+4*alpha[2]*(m+F(xi))*F(xi)-4*beta[2]*F(xi)/(m+F(xi))^3+6*beta[2]*(K+F(xi)^2)/(m+F(xi))^4)*T;
/                                               /         2\
|                   2 beta[1] F(xi)   2 beta[1] \K + F(xi) /
|2 alpha[1] F(xi) - --------------- + ----------------------
|                               2                     3
\                    (m + F(xi))           (m + F(xi))

/         2\
+ 2 alpha[2] \K + F(xi) / + 4 alpha[2] (m + F(xi)) F(xi)

/         2\\
4 beta[2] F(xi)   6 beta[2] \K + F(xi) /| /         2\
- --------------- + ----------------------| \K + F(xi) /
3                     4     |
(m + F(xi))           (m + F(xi))      /
expand((2*w*k*k)*beta*S-(2*A*k*k)*d-2*w*U+k*U*U);
2                   2               2
-2 A k  alpha[1] K - 2 A k  alpha[1] F(xi)

2               3
- 4 A k  alpha[2] F(xi)  - 4 w alpha[2] F(xi) m

+ 2 k alpha[0] alpha[1] m + 2 k alpha[0] alpha[1] F(xi)

2 k alpha[0] beta[1]                          2
+ -------------------- + 2 k alpha[0] alpha[2] m
m + F(xi)

2   2 k alpha[0] beta[2]
+ 2 k alpha[0] alpha[2] F(xi)  + --------------------
2
(m + F(xi))

2                         3
+ 2 k alpha[1]  m F(xi) + 2 k alpha[1] m  alpha[2]

3            2 k beta[1] beta[2]
+ 2 k alpha[1] F(xi)  alpha[2] + -------------------
3
(m + F(xi))

2  3                     2  2      2
+ 4 k alpha[2]  m  F(xi) + 6 k alpha[2]  m  F(xi)

2      3                              2
+ 4 k alpha[2]  F(xi)  m - 2 w alpha[0] + k alpha[0]

2                    3        2                2
+ 4 w k  beta alpha[1] F(xi)  + 4 w k  beta alpha[2] K

2
2                    4   2 A k  beta[1] K
+ 12 w k  beta alpha[2] F(xi)  + ----------------
2
(m + F(xi))

2              2
2 A k  beta[1] F(xi)         2
+ --------------------- - 4 A k  alpha[2] m K
2
(m + F(xi))

2                 2        2
- 4 A k  alpha[2] m F(xi)  - 4 A k  alpha[2] F(xi) K

2                  2              2
4 A k  beta[2] K   4 A k  beta[2] F(xi)
+ ---------------- + ---------------------
3                    3
(m + F(xi))          (m + F(xi))

2 k alpha[1] m beta[1]
+ 4 k alpha[0] alpha[2] F(xi) m + ----------------------
m + F(xi)

2
+ 6 k alpha[1] m  alpha[2] F(xi)

2   2 k alpha[1] m beta[2]
+ 6 k alpha[1] m alpha[2] F(xi)  + ----------------------
2
(m + F(xi))

2 k alpha[1] F(xi) beta[1]   2 k alpha[1] F(xi) beta[2]
+ -------------------------- + --------------------------
m + F(xi)                              2
(m + F(xi))

2                             2
2 k beta[1] alpha[2] m    2 k beta[1] alpha[2] F(xi)
+ ----------------------- + ---------------------------
m + F(xi)                   m + F(xi)

2                             2
2 k alpha[2] m  beta[2]   2 k alpha[2] F(xi)  beta[2]
+ ----------------------- + ---------------------------
2                           2
(m + F(xi))                 (m + F(xi))

2
2  2             2      2    k beta[1]
+ k alpha[1]  m  + k alpha[1]  F(xi)  + ------------
2
(m + F(xi))

2
2  4             2      4    k beta[2]
+ k alpha[2]  m  + k alpha[2]  F(xi)  + ------------
4
(m + F(xi))

2 w beta[1]
- 2 w alpha[1] m - 2 w alpha[1] F(xi) - -----------
m + F(xi)

2                     2   2 w beta[2]
- 2 w alpha[2] m  - 2 w alpha[2] F(xi)  - ------------
2
(m + F(xi))

2                             2                     2
4 w k  beta beta[1] F(xi) K   8 w k  beta beta[1] K F(xi)
- --------------------------- + ----------------------------
2                              3
(m + F(xi))                    (m + F(xi))

2
2                           8 w k  beta beta[2] F(xi) K
+ 8 w k  beta alpha[2] F(xi) m K - ---------------------------
3
(m + F(xi))

2                     2
24 w k  beta beta[2] K F(xi)         2
+ ----------------------------- + 4 w k  beta alpha[1] F(xi) K
4
(m + F(xi))

2                   3        2               2
4 w k  beta beta[1] F(xi)    4 w k  beta beta[1] K
- -------------------------- + ----------------------
2                          3
(m + F(xi))                (m + F(xi))

2                   4
4 w k  beta beta[1] F(xi)          2                      2
+ -------------------------- + 16 w k  beta alpha[2] K F(xi)
3
(m + F(xi))

2                   3
2                    3     8 w k  beta beta[2] F(xi)
+ 8 w k  beta alpha[2] F(xi)  m - --------------------------
3
(m + F(xi))

2               2         2                   4
12 w k  beta beta[2] K    12 w k  beta beta[2] F(xi)
+ ----------------------- + ---------------------------
4                           4
(m + F(xi))                 (m + F(xi))

4 k beta[1] alpha[2] F(xi) m   4 k alpha[2] F(xi) m beta[2]
+ ---------------------------- + ----------------------------
m + F(xi)                                2
(m + F(xi))
value(%);
2                   2               2
-2 A k  alpha[1] K - 2 A k  alpha[1] F(xi)

2               3
- 4 A k  alpha[2] F(xi)  - 4 w alpha[2] F(xi) m

+ 2 k alpha[0] alpha[1] m + 2 k alpha[0] alpha[1] F(xi)

2 k alpha[0] beta[1]                          2
+ -------------------- + 2 k alpha[0] alpha[2] m
m + F(xi)

2   2 k alpha[0] beta[2]
+ 2 k alpha[0] alpha[2] F(xi)  + --------------------
2
(m + F(xi))

2                         3
+ 2 k alpha[1]  m F(xi) + 2 k alpha[1] m  alpha[2]

3            2 k beta[1] beta[2]
+ 2 k alpha[1] F(xi)  alpha[2] + -------------------
3
(m + F(xi))

2  3                     2  2      2
+ 4 k alpha[2]  m  F(xi) + 6 k alpha[2]  m  F(xi)

2      3                              2
+ 4 k alpha[2]  F(xi)  m - 2 w alpha[0] + k alpha[0]

2                    3        2                2
+ 4 w k  beta alpha[1] F(xi)  + 4 w k  beta alpha[2] K

2
2                    4   2 A k  beta[1] K
+ 12 w k  beta alpha[2] F(xi)  + ----------------
2
(m + F(xi))

2              2
2 A k  beta[1] F(xi)         2
+ --------------------- - 4 A k  alpha[2] m K
2
(m + F(xi))

2                 2        2
- 4 A k  alpha[2] m F(xi)  - 4 A k  alpha[2] F(xi) K

2                  2              2
4 A k  beta[2] K   4 A k  beta[2] F(xi)
+ ---------------- + ---------------------
3                    3
(m + F(xi))          (m + F(xi))

2 k alpha[1] m beta[1]
+ 4 k alpha[0] alpha[2] F(xi) m + ----------------------
m + F(xi)

2
+ 6 k alpha[1] m  alpha[2] F(xi)

2   2 k alpha[1] m beta[2]
+ 6 k alpha[1] m alpha[2] F(xi)  + ----------------------
2
(m + F(xi))

2 k alpha[1] F(xi) beta[1]   2 k alpha[1] F(xi) beta[2]
+ -------------------------- + --------------------------
m + F(xi)                              2
(m + F(xi))

2                             2
2 k beta[1] alpha[2] m    2 k beta[1] alpha[2] F(xi)
+ ----------------------- + ---------------------------
m + F(xi)                   m + F(xi)

2                             2
2 k alpha[2] m  beta[2]   2 k alpha[2] F(xi)  beta[2]
+ ----------------------- + ---------------------------
2                           2
(m + F(xi))                 (m + F(xi))

2
2  2             2      2    k beta[1]
+ k alpha[1]  m  + k alpha[1]  F(xi)  + ------------
2
(m + F(xi))

2
2  4             2      4    k beta[2]
+ k alpha[2]  m  + k alpha[2]  F(xi)  + ------------
4
(m + F(xi))

2 w beta[1]
- 2 w alpha[1] m - 2 w alpha[1] F(xi) - -----------
m + F(xi)

2                     2   2 w beta[2]
- 2 w alpha[2] m  - 2 w alpha[2] F(xi)  - ------------
2
(m + F(xi))

2                             2                     2
4 w k  beta beta[1] F(xi) K   8 w k  beta beta[1] K F(xi)
- --------------------------- + ----------------------------
2                              3
(m + F(xi))                    (m + F(xi))

2
2                           8 w k  beta beta[2] F(xi) K
+ 8 w k  beta alpha[2] F(xi) m K - ---------------------------
3
(m + F(xi))

2                     2
24 w k  beta beta[2] K F(xi)         2
+ ----------------------------- + 4 w k  beta alpha[1] F(xi) K
4
(m + F(xi))

2                   3        2               2
4 w k  beta beta[1] F(xi)    4 w k  beta beta[1] K
- -------------------------- + ----------------------
2                          3
(m + F(xi))                (m + F(xi))

2                   4
4 w k  beta beta[1] F(xi)          2                      2
+ -------------------------- + 16 w k  beta alpha[2] K F(xi)
3
(m + F(xi))

2                   3
2                    3     8 w k  beta beta[2] F(xi)
+ 8 w k  beta alpha[2] F(xi)  m - --------------------------
3
(m + F(xi))

2               2         2                   4
12 w k  beta beta[2] K    12 w k  beta beta[2] F(xi)
+ ----------------------- + ---------------------------
4                           4
(m + F(xi))                 (m + F(xi))

4 k beta[1] alpha[2] F(xi) m   4 k alpha[2] F(xi) m beta[2]
+ ---------------------------- + ----------------------------
m + F(xi)                                2
(m + F(xi))

expr := simplify(%);
2                   2               2
-2 A k  alpha[1] K - 2 A k  alpha[1] F(xi)

2               3
- 4 A k  alpha[2] F(xi)  - 4 w alpha[2] F(xi) m

+ 2 k alpha[0] alpha[1] m + 2 k alpha[0] alpha[1] F(xi)

2 k alpha[0] beta[1]                          2
+ -------------------- + 2 k alpha[0] alpha[2] m
m + F(xi)

2   2 k alpha[0] beta[2]
+ 2 k alpha[0] alpha[2] F(xi)  + --------------------
2
(m + F(xi))

2                         3
+ 2 k alpha[1]  m F(xi) + 2 k alpha[1] m  alpha[2]

3            2 k beta[1] beta[2]
+ 2 k alpha[1] F(xi)  alpha[2] + -------------------
3
(m + F(xi))

2  3                     2  2      2
+ 4 k alpha[2]  m  F(xi) + 6 k alpha[2]  m  F(xi)

2      3                              2
+ 4 k alpha[2]  F(xi)  m - 2 w alpha[0] + k alpha[0]

2                    3        2                2
+ 4 w k  beta alpha[1] F(xi)  + 4 w k  beta alpha[2] K

2
2                    4   2 A k  beta[1] K
+ 12 w k  beta alpha[2] F(xi)  + ----------------
2
(m + F(xi))

2              2
2 A k  beta[1] F(xi)         2
+ --------------------- - 4 A k  alpha[2] m K
2
(m + F(xi))

2                 2        2
- 4 A k  alpha[2] m F(xi)  - 4 A k  alpha[2] F(xi) K

2                  2              2
4 A k  beta[2] K   4 A k  beta[2] F(xi)
+ ---------------- + ---------------------
3                    3
(m + F(xi))          (m + F(xi))

2 k alpha[1] m beta[1]
+ 4 k alpha[0] alpha[2] F(xi) m + ----------------------
m + F(xi)

2
+ 6 k alpha[1] m  alpha[2] F(xi)

2   2 k alpha[1] m beta[2]
+ 6 k alpha[1] m alpha[2] F(xi)  + ----------------------
2
(m + F(xi))

2 k alpha[1] F(xi) beta[1]   2 k alpha[1] F(xi) beta[2]
+ -------------------------- + --------------------------
m + F(xi)                              2
(m + F(xi))

2                             2
2 k beta[1] alpha[2] m    2 k beta[1] alpha[2] F(xi)
+ ----------------------- + ---------------------------
m + F(xi)                   m + F(xi)

2                             2
2 k alpha[2] m  beta[2]   2 k alpha[2] F(xi)  beta[2]
+ ----------------------- + ---------------------------
2                           2
(m + F(xi))                 (m + F(xi))

2
2  2             2      2    k beta[1]
+ k alpha[1]  m  + k alpha[1]  F(xi)  + ------------
2
(m + F(xi))

2
2  4             2      4    k beta[2]
+ k alpha[2]  m  + k alpha[2]  F(xi)  + ------------
4
(m + F(xi))

2 w beta[1]
- 2 w alpha[1] m - 2 w alpha[1] F(xi) - -----------
m + F(xi)

2                     2   2 w beta[2]
- 2 w alpha[2] m  - 2 w alpha[2] F(xi)  - ------------
2
(m + F(xi))

2                             2                     2
4 w k  beta beta[1] F(xi) K   8 w k  beta beta[1] K F(xi)
- --------------------------- + ----------------------------
2                              3
(m + F(xi))                    (m + F(xi))

2
2                           8 w k  beta beta[2] F(xi) K
+ 8 w k  beta alpha[2] F(xi) m K - ---------------------------
3
(m + F(xi))

2                     2
24 w k  beta beta[2] K F(xi)         2
+ ----------------------------- + 4 w k  beta alpha[1] F(xi) K
4
(m + F(xi))

2                   3        2               2
4 w k  beta beta[1] F(xi)    4 w k  beta beta[1] K
- -------------------------- + ----------------------
2                          3
(m + F(xi))                (m + F(xi))

2                   4
4 w k  beta beta[1] F(xi)          2                      2
+ -------------------------- + 16 w k  beta alpha[2] K F(xi)
3
(m + F(xi))

2                   3
2                    3     8 w k  beta beta[2] F(xi)
+ 8 w k  beta alpha[2] F(xi)  m - --------------------------
3
(m + F(xi))

2               2         2                   4
12 w k  beta beta[2] K    12 w k  beta beta[2] F(xi)
+ ----------------------- + ---------------------------
4                           4
(m + F(xi))                 (m + F(xi))

4 k beta[1] alpha[2] F(xi) m   4 k alpha[2] F(xi) m beta[2]
+ ---------------------------- + ----------------------------
m + F(xi)                                2
(m + F(xi))

temp := algsubs(m+F(xi) = freeze(m+F(xi)), numer(expr));
/        2            4                    2
\4 beta k  w freeze/R0  alpha[2] + 4 beta k  w freeze/R0 beta[1]

2          \      4   /        2            5
+ 12 beta k  w beta[2]/ F(xi)  + \8 beta k  w freeze/R0  alpha

2            4
[2] + 4 beta k  w freeze/R0  alpha[1]

2            2
- 4 beta k  w freeze/R0  beta[1]

2                    \      3   /          2
- 8 beta k  w freeze/R0 beta[2]/ F(xi)  + \8 K beta k  w

4                 2          5
freeze/R0  alpha[2] - 4 A k  freeze/R0  alpha[2]

2          4                 2          2
- 2 A k  freeze/R0  alpha[1] + 2 A k  freeze/R0  beta[1]

2                                  2
+ 8 w k  beta beta[1] K freeze/R0 + 24 w k  beta beta[2] K

2                  \      2   /          2            5
+ 4 A k  beta[2] freeze/R0/ F(xi)  + \8 K beta k  w freeze/R0

2            4
alpha[2] + 4 K beta k  w freeze/R0  alpha[1]

2            2
- 4 K beta k  w freeze/R0  beta[1]

2                    \
- 8 K beta k  w freeze/R0 beta[2]/ F(xi)

2          8              6         2
+ k alpha[2]  freeze/R0  + k freeze/R0  alpha[1]

6                         5
- 2 w freeze/R0  alpha[2] - 2 w freeze/R0  alpha[1]

4           2              4
+ freeze/R0  k alpha[0]  - 2 freeze/R0  w alpha[0]

7
+ 2 k alpha[1] alpha[2] freeze/R0

6
+ 2 k freeze/R0  alpha[0] alpha[2]

5
+ 2 k freeze/R0  alpha[0] alpha[1]

5
+ 2 k freeze/R0  alpha[2] beta[1]

4
+ 2 freeze/R0  k alpha[1] beta[1]

4
+ 2 freeze/R0  k alpha[2] beta[2]

3
+ 2 k freeze/R0  alpha[0] beta[1]

3
+ 2 k freeze/R0  alpha[1] beta[2]

2
+ 2 k freeze/R0  alpha[0] beta[2]

2          5                       4    2
- 4 A K k  freeze/R0  alpha[2] - 2 freeze/R0  A k  alpha[1] K

2          2
+ 2 A K k  freeze/R0  beta[1]

4    2                2
+ 4 freeze/R0  w k  beta alpha[2] K

2               2                          3
+ 4 w k  beta beta[1] K  freeze/R0 - 2 w freeze/R0  beta[1]

2        2                2
+ k freeze/R0  beta[1]  - 2 w freeze/R0  beta[2]

2
+ 4 A k  beta[2] K freeze/R0 + 2 k beta[1] beta[2] freeze/R0

2         2               2
+ k beta[2]  + 12 w k  beta beta[2] K
thaw(collect(temp, freeze(m+F(xi)))/denom(expr));
1       /          2            8
------------ \k alpha[2]  (m + F(xi))
4
(m + F(xi))

7              6 /
+ 2 k alpha[1] alpha[2] (m + F(xi))  + (m + F(xi))  \2 k alpha

2               \   /       3       2
[0] alpha[2] + k alpha[1]  - 2 w alpha[2]/ + \8 F(xi)  beta k  w

2
alpha[2] + 8 K F(xi) beta k  w alpha[2]

2  2                   2
- 4 A F(xi)  k  alpha[2] - 4 A K k  alpha[2]

\
+ 2 k alpha[0] alpha[1] + 2 k alpha[2] beta[1] - 2 w alpha[1]/

5   /     2                    4
(m + F(xi))  + \4 w k  beta alpha[2] F(xi)

2                    3
+ 4 w k  beta alpha[1] F(xi)

/          2                   2         \      2
+ \8 K beta k  w alpha[2] - 2 A k  alpha[1]/ F(xi)

2                                   2
+ 4 w k  beta alpha[1] F(xi) K + k alpha[0]  - 2 w alpha[0]

+ 2 k alpha[1] beta[1] + 2 k alpha[2] beta[2]

2                   2                2\            4
- 2 A k  alpha[1] K + 4 w k  beta alpha[2] K / (m + F(xi))  +

(2 k alpha[0] beta[1] + 2 k alpha[1] beta[2] - 2 w beta[1])

3   /      2                   3
(m + F(xi))  + \-4 w k  beta beta[1] F(xi)

2                             2              2
- 4 w k  beta beta[1] F(xi) K + 2 A k  beta[1] F(xi)

2                                             2
+ 2 A k  beta[1] K + 2 k alpha[0] beta[2] + k beta[1]

\            2   /     2                   4
- 2 w beta[2]/ (m + F(xi))  + \4 w k  beta beta[1] F(xi)

2                   3
- 8 w k  beta beta[2] F(xi)

/          2                  2        \      2
+ \8 K beta k  w beta[1] + 4 A k  beta[2]/ F(xi)

2                             2               2
- 8 w k  beta beta[2] F(xi) K + 4 w k  beta beta[1] K

2                                \
+ 4 A k  beta[2] K + 2 k beta[1] beta[2]/ (m + F(xi))

2                   4         2                     2
+ 12 w k  beta beta[2] F(xi)  + 24 w k  beta beta[2] K F(xi)

2               2            2\
+ 12 w k  beta beta[2] K  + k beta[2] /
collect(%, F(xi));
1       //         2                        2\      8   /
------------ \\12 beta k  w alpha[2] + k alpha[2] / F(xi)  + \56
4
(m + F(xi))

2                        2                   2
beta k  m w alpha[2] + 4 beta k  w alpha[1] - 4 A k  alpha[2]

2                        \      7   /
+ 8 k m alpha[2]  + 2 k alpha[1] alpha[2]/ F(xi)  + \104 beta

2  2                         2
k  m  w alpha[2] + 16 K beta k  w alpha[2]

2                      2
+ 16 beta k  m w alpha[1] - 20 A k  m alpha[2]

2         2        2
+ 28 k m  alpha[2]  - 2 A k  alpha[1]

+ 14 k m alpha[1] alpha[2] + 2 k alpha[0] alpha[2]

2               \      6   /             2  3
+ k alpha[1]  - 2 w alpha[2]/ F(xi)  + \56 k alpha[2]  m

2
+ 42 k alpha[1] alpha[2] m

/                                  2               \
+ 6 m \2 k alpha[0] alpha[2] + k alpha[1]  - 2 w alpha[2]/

2                3         2
+ 96 w k  beta alpha[2] m  + 40 w k  beta alpha[2] K m

2           2          2
- 40 A k  alpha[2] m  - 4 A K k  alpha[2]

+ 2 k alpha[0] alpha[1] + 2 k alpha[2] beta[1] - 2 w alpha[1]

2
+ 4 w k  beta alpha[1] K

/          2                   2         \
+ 4 \8 K beta k  w alpha[2] - 2 A k  alpha[1]/ m

2                2\      5   /             2  4
+ 24 w k  beta alpha[1] m / F(xi)  + \70 k alpha[2]  m

3
+ 70 k alpha[1] m  alpha[2]

2 /                                  2               \
+ 15 m  \2 k alpha[0] alpha[2] + k alpha[1]  - 2 w alpha[2]/ + 5

/        2
\-4 A K k  alpha[2] + 2 k alpha[0] alpha[1]

\
+ 2 k alpha[2] beta[1] - 2 w alpha[1]/ m

2                  2         2           3
+ 80 w k  beta alpha[2] K m  - 40 A k  alpha[2] m

2                4        2                2
+ 44 w k  beta alpha[2] m  + 4 w k  beta alpha[2] K

2                        2
- 2 A k  alpha[1] K + k alpha[0]  + 2 k alpha[1] beta[1]

+ 2 k alpha[2] beta[2] - 2 w alpha[0]

2
+ 16 w k  beta alpha[1] K m

/          2                   2         \  2
+ 6 \8 K beta k  w alpha[2] - 2 A k  alpha[1]/ m

2                3        2
+ 16 w k  beta alpha[1] m  - 4 w k  beta beta[1] m

2                2             \      4   /
+ 2 A k  beta[1] + 4 w k  beta beta[2]/ F(xi)  + \56 k

2  5                           4
alpha[2]  m  + 70 k alpha[1] alpha[2] m

3 /                                  2               \
+ 20 m  \2 k alpha[0] alpha[2] + k alpha[1]  - 2 w alpha[2]/ + 10

/        2
\-4 A K k  alpha[2] + 2 k alpha[0] alpha[1]

\  2
+ 2 k alpha[2] beta[1] - 2 w alpha[1]/ m

2                  3         2           4
+ 80 w k  beta alpha[2] K m  - 20 A k  alpha[2] m

2                5     /   2       2
+ 8 w k  beta alpha[2] m  + 4 \4 K  beta k  w alpha[2]

2                      2
- 2 A K k  alpha[1] + k alpha[0]  + 2 k alpha[1] beta[1]

\
+ 2 k alpha[2] beta[2] - 2 w alpha[0]/ m

2                  2
+ 24 w k  beta alpha[1] K m

/          2                   2         \  3
+ 4 \8 K beta k  w alpha[2] - 2 A k  alpha[1]/ m

2                4
+ 4 w k  beta alpha[1] m  + 2 k alpha[0] beta[1]

2               2
+ 2 k alpha[1] beta[2] - 2 w beta[1] - 4 w k  beta beta[1] m

2                       2
+ 4 w k  beta beta[1] K + 4 A k  beta[1] m

2                       2        \      3   /
- 8 w k  beta beta[2] m + 4 A k  beta[2]/ F(xi)  + \28 k

2  6                           5
alpha[2]  m  + 42 k alpha[1] alpha[2] m

4 /                                  2               \
+ 15 m  \2 k alpha[0] alpha[2] + k alpha[1]  - 2 w alpha[2]/ + 10

/        2
\-4 A K k  alpha[2] + 2 k alpha[0] alpha[1]

\  3
+ 2 k alpha[2] beta[1] - 2 w alpha[1]/ m

2                  4        2           5     /   2
+ 40 w k  beta alpha[2] K m  - 4 A k  alpha[2] m  + 6 \4 K

2                     2                      2
beta k  w alpha[2] - 2 A K k  alpha[1] + k alpha[0]

\
+ 2 k alpha[1] beta[1] + 2 k alpha[2] beta[2] - 2 w alpha[0]/

2         2                  3
m  + 16 w k  beta alpha[1] K m

/          2                   2         \  4
+ \8 K beta k  w alpha[2] - 2 A k  alpha[1]/ m

+ 3 (2 k alpha[0] beta[1] + 2 k alpha[1] beta[2] - 2 w beta[1]

2                         2          2
) m - 8 w k  beta beta[1] K m + 2 A k  beta[1] m

2                                             2
+ 2 A k  beta[1] K + 2 k alpha[0] beta[2] + k beta[1]

2
- 2 w beta[2] + 16 w k  beta beta[2] K

/          2                  2        \  \      2   /
+ \8 K beta k  w beta[1] + 4 A k  beta[2]/ m/ F(xi)  + \8 k

2  7                           6
alpha[2]  m  + 14 k alpha[1] alpha[2] m

5 /                                  2               \
+ 6 m  \2 k alpha[0] alpha[2] + k alpha[1]  - 2 w alpha[2]/ + 5

/        2
\-4 A K k  alpha[2] + 2 k alpha[0] alpha[1]

\  4
+ 2 k alpha[2] beta[1] - 2 w alpha[1]/ m

2                  5     /   2       2
+ 8 w k  beta alpha[2] K m  + 4 \4 K  beta k  w alpha[2]

2                      2
- 2 A K k  alpha[1] + k alpha[0]  + 2 k alpha[1] beta[1]

\  3
+ 2 k alpha[2] beta[2] - 2 w alpha[0]/ m

2                  4
+ 4 w k  beta alpha[1] K m

+ 3 (2 k alpha[0] beta[1] + 2 k alpha[1] beta[2] - 2 w beta[1]

2     /       2                                           2
) m  + 2 \2 A K k  beta[1] + 2 k alpha[0] beta[2] + k beta[1]

\          2                 2
- 2 w beta[2]/ m - 4 w k  beta beta[1] K m

2               2        2
+ 4 w k  beta beta[1] K  - 8 w k  beta beta[2] K m

2                                \
+ 4 A k  beta[2] K + 2 k beta[1] beta[2]/ F(xi)

8         2        7
+ k m  alpha[2]  + 2 k m  alpha[1] alpha[2]

6 /                                  2               \   /
+ m  \2 k alpha[0] alpha[2] + k alpha[1]  - 2 w alpha[2]/ + \
2
-4 A K k  alpha[2] + 2 k alpha[0] alpha[1] + 2 k alpha[2] beta[1]

\  5   /   2       2
- 2 w alpha[1]/ m  + \4 K  beta k  w alpha[2]

2                      2
- 2 A K k  alpha[1] + k alpha[0]  + 2 k alpha[1] beta[1]

\  4
+ 2 k alpha[2] beta[2] - 2 w alpha[0]/ m

+ (2 k alpha[0] beta[1] + 2 k alpha[1] beta[2] - 2 w beta[1])

3   /       2                                           2
m  + \2 A K k  beta[1] + 2 k alpha[0] beta[2] + k beta[1]

\  2   /   2       2                    2
- 2 w beta[2]/ m  + \4 K  beta k  w beta[1] + 4 A K k  beta[2]

\           2               2
+ 2 k beta[1] beta[2]/ m + 12 w k  beta beta[2] K

2\
+ k beta[2] /
solve({k*m^8*alpha[2]^2+2*k*m^7*alpha[1]*alpha[2]+m^6*(2*k*alpha[0]*alpha[2]+k*alpha[1]^2-2*w*alpha[2])+(-4*A*K*k^2*alpha[2]+2*k*alpha[0]*alpha[1]+2*k*alpha[2]*beta[1]-2*w*alpha[1])*m^5+(4*K^2*beta*k^2*w*alpha[2]-2*A*K*k^2*alpha[1]+k*alpha[0]^2+2*k*alpha[1]*beta[1]+2*k*alpha[2]*beta[2]-2*w*alpha[0])*m^4+(2*k*alpha[0]*beta[1]+2*k*alpha[1]*beta[2]-2*w*beta[1])*m^3+(2*A*K*k^2*beta[1]+2*k*alpha[0]*beta[2]+k*beta[1]^2-2*w*beta[2])*m^2+(4*K^2*beta*k^2*w*beta[1]+4*A*K*k^2*beta[2]+2*k*beta[1]*beta[2])*m+12*w*k^2*beta*beta[2]*K^2+k*beta[2]^2 = 0, 56*k*alpha[2]^2*m^3+42*k*alpha[1]*alpha[2]*m^2+6*m*(2*k*alpha[0]*alpha[2]+k*alpha[1]^2-2*w*alpha[2])+96*w*k^2*beta*alpha[2]*m^3+40*w*k^2*beta*alpha[2]*K*m-40*A*k^2*alpha[2]*m^2-4*A*K*k^2*alpha[2]+2*k*alpha[0]*alpha[1]+2*k*alpha[2]*beta[1]-2*w*alpha[1]+4*w*k^2*beta*alpha[1]*K+(4*(8*K*beta*k^2*w*alpha[2]-2*A*k^2*alpha[1]))*m+24*w*k^2*beta*alpha[1]*m^2 = 0, 8*k*alpha[2]^2*m^7+14*k*alpha[1]*alpha[2]*m^6+6*m^5*(2*k*alpha[0]*alpha[2]+k*alpha[1]^2-2*w*alpha[2])+(5*(-4*A*K*k^2*alpha[2]+2*k*alpha[0]*alpha[1]+2*k*alpha[2]*beta[1]-2*w*alpha[1]))*m^4+8*w*k^2*beta*alpha[2]*K*m^5+(4*(4*K^2*beta*k^2*w*alpha[2]-2*A*K*k^2*alpha[1]+k*alpha[0]^2+2*k*alpha[1]*beta[1]+2*k*alpha[2]*beta[2]-2*w*alpha[0]))*m^3+4*w*k^2*beta*alpha[1]*K*m^4+(3*(2*k*alpha[0]*beta[1]+2*k*alpha[1]*beta[2]-2*w*beta[1]))*m^2+(2*(2*A*K*k^2*beta[1]+2*k*alpha[0]*beta[2]+k*beta[1]^2-2*w*beta[2]))*m-4*w*k^2*beta*beta[1]*K*m^2+4*K^2*beta*k^2*w*beta[1]-8*w*k^2*beta*beta[2]*K*m+4*A*K*k^2*beta[2]+2*k*beta[1]*beta[2] = 0, 28*k*alpha[2]^2*m^6+42*k*alpha[1]*alpha[2]*m^5+15*m^4*(2*k*alpha[0]*alpha[2]+k*alpha[1]^2-2*w*alpha[2])+(10*(-4*A*K*k^2*alpha[2]+2*k*alpha[0]*alpha[1]+2*k*alpha[2]*beta[1]-2*w*alpha[1]))*m^3+40*w*k^2*beta*alpha[2]*K*m^4-4*A*k^2*alpha[2]*m^5+(6*(4*K^2*beta*k^2*w*alpha[2]-2*A*K*k^2*alpha[1]+k*alpha[0]^2+2*k*alpha[1]*beta[1]+2*k*alpha[2]*beta[2]-2*w*alpha[0]))*m^2+16*w*k^2*beta*alpha[1]*K*m^3+(8*K*beta*k^2*w*alpha[2]-2*A*k^2*alpha[1])*m^4+(3*(2*k*alpha[0]*beta[1]+2*k*alpha[1]*beta[2]-2*w*beta[1]))*m-8*w*k^2*beta*beta[1]*K*m+2*A*k^2*beta[1]*m^2+2*A*K*k^2*beta[1]+2*k*alpha[0]*beta[2]+k*beta[1]^2-2*w*beta[2]+16*w*k^2*beta*beta[2]*K+(8*K*beta*k^2*w*beta[1]+4*A*k^2*beta[2])*m = 0, 56*k*alpha[2]^2*m^5+70*k*alpha[1]*alpha[2]*m^4+20*m^3*(2*k*alpha[0]*alpha[2]+k*alpha[1]^2-2*w*alpha[2])+(10*(-4*A*K*k^2*alpha[2]+2*k*alpha[0]*alpha[1]+2*k*alpha[2]*beta[1]-2*w*alpha[1]))*m^2+80*w*k^2*beta*alpha[2]*K*m^3-20*A*k^2*alpha[2]*m^4+8*w*k^2*beta*alpha[2]*m^5+(4*(4*K^2*beta*k^2*w*alpha[2]-2*A*K*k^2*alpha[1]+k*alpha[0]^2+2*k*alpha[1]*beta[1]+2*k*alpha[2]*beta[2]-2*w*alpha[0]))*m+24*w*k^2*beta*alpha[1]*K*m^2+(4*(8*K*beta*k^2*w*alpha[2]-2*A*k^2*alpha[1]))*m^3+4*w*k^2*beta*alpha[1]*m^4+2*k*alpha[0]*beta[1]+2*k*alpha[1]*beta[2]-2*w*beta[1]-4*w*k^2*beta*beta[1]*m^2+4*K*beta*k^2*w*beta[1]+4*A*k^2*beta[1]*m-8*w*k^2*beta*beta[2]*m+4*A*k^2*beta[2] = 0, (0*k)*alpha[2]^2*m^4+70*k*alpha[1]*m^3*alpha[2]+15*m^2*(2*k*alpha[0]*alpha[2]+k*alpha[1]^2-2*w*alpha[2])+(5*(-4*A*K*k^2*alpha[2]+2*k*alpha[0]*alpha[1]+2*k*alpha[2]*beta[1]-2*w*alpha[1]))*m+80*w*k^2*beta*alpha[2]*K*m^2-40*A*k^2*alpha[2]*m^3+44*w*k^2*beta*alpha[2]*m^4+4*K^2*beta*k^2*w*alpha[2]-2*A*K*k^2*alpha[1]+k*alpha[0]^2+2*k*alpha[1]*beta[1]+2*k*alpha[2]*beta[2]-2*w*alpha[0]+16*w*k^2*beta*alpha[1]*K*m+(6*(8*K*beta*k^2*w*alpha[2]-2*A*k^2*alpha[1]))*m^2+16*w*k^2*beta*alpha[1]*m^3-4*w*k^2*beta*beta[1]*m+2*A*k^2*beta[1]+4*w*k^2*beta*beta[2] = 0, 12*beta*k^2*w*alpha[2]+k*alpha[2]^2 = 0, 56*beta*k^2*m*w*alpha[2]+4*beta*k^2*w*alpha[1]-4*A*k^2*alpha[2]+8*k*m*alpha[2]^2+2*k*alpha[1]*alpha[2] = 0, 104*beta*k^2*m^2*w*alpha[2]+16*K*beta*k^2*w*alpha[2]+16*beta*k^2*m*w*alpha[1]-20*A*k^2*m*alpha[2]+28*k*m^2*alpha[2]^2-2*A*k^2*alpha[1]+14*k*m*alpha[1]*alpha[2]+2*k*alpha[0]*alpha[2]+k*alpha[1]^2-2*w*alpha[2] = 0}, {k, m, w, alpha[0], alpha[1], alpha[2], beta[1], beta[2]});

Hello everyone,

I am beginner to use MAPLE. I am trying write a mathematical variable such as x. I was trying to calculate simple mathematical equation like "3+5", it is ok. However, when I try to write a variable eqn like "x+4-3", Maple gives nothing. If I double press enter it skips this code without any blue answer.

Please help, I tried 2018.0 2018.0 and 2017 and no result.

Thank You

Atakan Zeybek

## Physics question...

I have a physics question I need to program it by Maple , Can you help me to solve ? Its Problem 9.34 from Griffiths

## dsolve of a constant quotient (Isoperimetric probl...

I am working on an Isoperimetric problem.

I have two différential dL and dA. And I am seeking the function y for wich the two différentials are collinear.

So I want "dL/dA=constant"

I tried many expression, but I don't know how to express the "= constant"
I tried also (dL/dA)'=0 but no workable answer...

Thank's for your help !

 First 12 13 14 15 16 17 18 Last Page 14 of 1595
﻿