MaplePrimes Questions

Folks,

What is the simplist Maple code needed to isolate a vector that has two components?  See below:

Vector[column](2, [25.00000000*pi*r/(r^2 + z^2), 25.00000000*pi*z/(r^2 + z^2)])

I want to get the magnitude of this vector which is simply the square root of the sum of the squares of the individual components as shown above.

How do I do that?

Chris

Dear all 
I need the sign of eigenvalue of the given marrix.
Note that it is not essay to compute the eigenvalues but we can use  ROUTH Hurwitz criterion that give the sign of eigenvalues without computing them

stability.mw

Thank you 

I wish to substitute only the base of the ifactor expression like the following

lst := [24300, 18907875, 151200, 147000]

[24300, 18907875, 151200, 147000]

(1)

map(ifactor, lst)

[``(2)^2*``(3)^5*``(5)^2, ``(3)^2*``(5)^3*``(7)^5, ``(2)^5*``(3)^3*``(5)^2*``(7), ``(2)^3*``(3)*``(5)^3*``(7)^2]

(2)

subs(2 = x, %)

[``(x)^x*``(3)^5*``(5)^x, ``(3)^x*``(5)^3*``(7)^5, ``(x)^5*``(3)^3*``(5)^x*``(7), ``(x)^3*``(3)*``(5)^3*``(7)^x]

(3)

I wish my results to be

[x^2*3^5*5^2, 3^2*5^3*7^5, 7*x^5*3^3*5^2, 3*x^3*5^3*7^2]

[6075*x^2, 18907875, 4725*x^5, 18375*x^3]

(4)

such that

subs(x = 2, %)

[24300, 18907875, 151200, 147000]

(5)

evalb(% = lst)

true

(6)

NULL

Download SubsExample.mw

If there a way to do that? I understand that there is a command ifactors which gives me more control, but the form of the result is rather inconvenient. I hope there is a more direct way to do the aforementioned operation.

How can I draw Steiner trees of hypercubes in graph theory? 

With the following steps

S1: Open Help pressing F1

S2: enter `if in the search field

S3: click a topic in the result list

S4: search within the topic with find/replace (Crtl f) the term `if 

I get plenty of results where I cannot find the search term in the help topic. Why is that?

Is help ignoring the left single quotes ` ?

I don't think so: I get usefull results for `` and `i, which in the later case also lists the topic "ifelse" that contains `if in the textbody.

So, why does advanced searching with the exact phrase "`if" not list the "ifelse" topic?

Realted question:

Why does the search term "(* " not list the relevant help topic help(comment)?

Somehow related in the context of getting more specific results:

https://www.mapleprimes.com/questions/234462-Searching-The-Help-System-Why-Are-There-No-Hits-For-Solve

Hi,

Can anyone help me with the following technique?

solutions:

 

Are there any restrictions regarding path and filename length in Maple?

I am experiencing problems working with a file on a server, path and file length is 207 characters.

Using Maple-18 on Window 11...

I have a set of curves in a Maple 'vector.' I want to plot them all on the same figure, but if call 'display' with the vector it makes separate plots for each one. I have to all it with each plot individual to get them on the same plot:

lc is a 'vector' of curves (I use 'vector' because I want to append and that doesn't work for 'list')

display(lc) -- plots a separate plot for each element of lc

display(lc[1], lc[2], lc[3],...) puts them all on one plot as needed, but as there will be a large numbe of curvesr it's extremely tedious.

It is a Huygens principle based simulation of diffraction.

restart

estart; with(Physics); with(LinearAlgebra); with(VectorCalculus); with(Optimization); with(Statistics); with(ArrayTools); with(plots); with(plottools); with(Threads); with(MmaTranslator[Mma]), with(StringTools); with(CodeGeneration); with(ImageTools); with(ImageTools:-Draw); VectorCalculus:-`*`(Setup(mathematicalnotation = true), Setup(coordinatesystems = cartesian))

estart

 

[annulus, arc, arrow, circle, cone, cuboid, curve, cutin, cutout, cylinder, disk, dodecahedron, ellipse, ellipticArc, exportplot, extrude, getdata, hemisphere, hexahedron, homothety, hyperbola, icosahedron, importplot, line, octahedron, parallelepiped, pieslice, point, polygon, prism, project, rectangle, reflect, rotate, scale, sector, semitorus, sphere, stellate, tetrahedron, torus, transform, translate]

 

`Default differentiation variables for d_, D_ and dAlembertian are:`*{X = (x, y, z, t)}

 

`Systems of spacetime Coordinates are:`*{X = (x, y, z, t)}

(1)

NULL

NULL

 

radius := 1.0

1.0

(2)

NULL

NULL

``

NULL

alpha := sin((1/4)*Pi)

(1/2)*2^(1/2)

(3)

step := .2

.2

(4)

radius := 100.0

100.0

(5)

l1 := line([0, 0], [100, 100])

CURVES([[0., 0.], [100., 100.]])

(6)

loAng := 0.

0.

(7)

hiAng := (1/2)*Pi

(1/2)*Pi

(8)

c1 := arc([0, 0.], radius, loAng .. Pi, color = "red")

c2 := arc([step, 0.], -alpha*step+radius, loAng .. hiAng, color = "blue")

c3 := arc([2*step, 0.], -2*alpha*step+radius, loAng .. Pi, color = "purple")

c4 := arc([3*step, 0.], -3*alpha*step+radius, loAng .. Pi, color = "black")

plots[display](l1, c1, c2, c3, c4, view = [0. .. radius, 0 .. radius])

 

`cir≔arc`([x, 0.], radius-step, loAng .. hiAng, i, color = "red")

`cir≔arc`([x, 0.], 99.8, 0. .. (1/2)*Pi, i, color = "red")

(9)

``

xLimitWall := 500.0; nScatter := 20; step := xLimitWall/(nScatter+1); x := 0.; for i from 0 to nScatter do x := x+step; cir := arc([x, 0.], radius-step, 0 .. Pi, color = "red"); if i = 0 then lc := Vector([cir]) else i; cir; Append(lc, cir) end if end do; lc

xLimitWall := 500.0

 

nScatter := 20

 

step := 23.80952381

 

x := 0.

 

x := 23.80952381

 

cir := CURVES(Vector(4, {(1) = ` 200 x 2 `*Matrix, (2) = `Data Type: `*float[8], (3) = `Storage: `*rectangular, (4) = `Order: `*Fortran_order}), COLOUR(RGB, 1.00000000, 0., 0.))

 

x := 47.61904762

 

cir := CURVES(Vector(4, {(1) = ` 200 x 2 `*Matrix, (2) = `Data Type: `*float[8], (3) = `Storage: `*rectangular, (4) = `Order: `*Fortran_order}), COLOUR(RGB, 1.00000000, 0., 0.))

 

x := 71.42857143

 

cir := CURVES(Vector(4, {(1) = ` 200 x 2 `*Matrix, (2) = `Data Type: `*float[8], (3) = `Storage: `*rectangular, (4) = `Order: `*Fortran_order}), COLOUR(RGB, 1.00000000, 0., 0.))

 

x := 95.23809524

 

cir := CURVES(Vector(4, {(1) = ` 200 x 2 `*Matrix, (2) = `Data Type: `*float[8], (3) = `Storage: `*rectangular, (4) = `Order: `*Fortran_order}), COLOUR(RGB, 1.00000000, 0., 0.))

 

x := 119.0476190

 

cir := CURVES(Vector(4, {(1) = ` 200 x 2 `*Matrix, (2) = `Data Type: `*float[8], (3) = `Storage: `*rectangular, (4) = `Order: `*Fortran_order}), COLOUR(RGB, 1.00000000, 0., 0.))

 

x := 142.8571428

 

cir := CURVES(Vector(4, {(1) = ` 200 x 2 `*Matrix, (2) = `Data Type: `*float[8], (3) = `Storage: `*rectangular, (4) = `Order: `*Fortran_order}), COLOUR(RGB, 1.00000000, 0., 0.))

 

x := 166.6666666

 

cir := CURVES(Vector(4, {(1) = ` 200 x 2 `*Matrix, (2) = `Data Type: `*float[8], (3) = `Storage: `*rectangular, (4) = `Order: `*Fortran_order}), COLOUR(RGB, 1.00000000, 0., 0.))

 

x := 190.4761904

 

cir := CURVES(Vector(4, {(1) = ` 200 x 2 `*Matrix, (2) = `Data Type: `*float[8], (3) = `Storage: `*rectangular, (4) = `Order: `*Fortran_order}), COLOUR(RGB, 1.00000000, 0., 0.))

 

x := 214.2857142

 

cir := CURVES(Vector(4, {(1) = ` 200 x 2 `*Matrix, (2) = `Data Type: `*float[8], (3) = `Storage: `*rectangular, (4) = `Order: `*Fortran_order}), COLOUR(RGB, 1.00000000, 0., 0.))

 

x := 238.0952380

 

cir := CURVES(Vector(4, {(1) = ` 200 x 2 `*Matrix, (2) = `Data Type: `*float[8], (3) = `Storage: `*rectangular, (4) = `Order: `*Fortran_order}), COLOUR(RGB, 1.00000000, 0., 0.))

 

x := 261.9047618

 

cir := CURVES(Vector(4, {(1) = ` 200 x 2 `*Matrix, (2) = `Data Type: `*float[8], (3) = `Storage: `*rectangular, (4) = `Order: `*Fortran_order}), COLOUR(RGB, 1.00000000, 0., 0.))

 

x := 285.7142856

 

cir := CURVES(Vector(4, {(1) = ` 200 x 2 `*Matrix, (2) = `Data Type: `*float[8], (3) = `Storage: `*rectangular, (4) = `Order: `*Fortran_order}), COLOUR(RGB, 1.00000000, 0., 0.))

 

x := 309.5238094

 

cir := CURVES(Vector(4, {(1) = ` 200 x 2 `*Matrix, (2) = `Data Type: `*float[8], (3) = `Storage: `*rectangular, (4) = `Order: `*Fortran_order}), COLOUR(RGB, 1.00000000, 0., 0.))

 

x := 333.3333332

 

cir := CURVES(Vector(4, {(1) = ` 200 x 2 `*Matrix, (2) = `Data Type: `*float[8], (3) = `Storage: `*rectangular, (4) = `Order: `*Fortran_order}), COLOUR(RGB, 1.00000000, 0., 0.))

 

x := 357.1428570

 

cir := CURVES(Vector(4, {(1) = ` 200 x 2 `*Matrix, (2) = `Data Type: `*float[8], (3) = `Storage: `*rectangular, (4) = `Order: `*Fortran_order}), COLOUR(RGB, 1.00000000, 0., 0.))

 

x := 380.9523808

 

cir := CURVES(Vector(4, {(1) = ` 200 x 2 `*Matrix, (2) = `Data Type: `*float[8], (3) = `Storage: `*rectangular, (4) = `Order: `*Fortran_order}), COLOUR(RGB, 1.00000000, 0., 0.))

 

x := 404.7619046

 

cir := CURVES(Vector(4, {(1) = ` 200 x 2 `*Matrix, (2) = `Data Type: `*float[8], (3) = `Storage: `*rectangular, (4) = `Order: `*Fortran_order}), COLOUR(RGB, 1.00000000, 0., 0.))

 

x := 428.5714284

 

cir := CURVES(Vector(4, {(1) = ` 200 x 2 `*Matrix, (2) = `Data Type: `*float[8], (3) = `Storage: `*rectangular, (4) = `Order: `*Fortran_order}), COLOUR(RGB, 1.00000000, 0., 0.))

 

x := 452.3809522

 

cir := CURVES(Vector(4, {(1) = ` 200 x 2 `*Matrix, (2) = `Data Type: `*float[8], (3) = `Storage: `*rectangular, (4) = `Order: `*Fortran_order}), COLOUR(RGB, 1.00000000, 0., 0.))

 

x := 476.1904760

 

cir := CURVES(Vector(4, {(1) = ` 200 x 2 `*Matrix, (2) = `Data Type: `*float[8], (3) = `Storage: `*rectangular, (4) = `Order: `*Fortran_order}), COLOUR(RGB, 1.00000000, 0., 0.))

 

x := 499.9999998

 

cir := CURVES(Vector(4, {(1) = ` 200 x 2 `*Matrix, (2) = `Data Type: `*float[8], (3) = `Storage: `*rectangular, (4) = `Order: `*Fortran_order}), COLOUR(RGB, 1.00000000, 0., 0.))

 

Vector[column](%id = 4400555778)

(10)

lc[1]

CURVES(Matrix(%id = 4400554242), COLOUR(RGB, 1.00000000, 0., 0.))

(11)

lc(2)

``

lc

lc[1]

``

Download JFKWEdgeDifractionDirection.mwJFKWEdgeDifractionDirection.mwen.

Maple 2022.2

> restart
> expr = x^4-10*x^2+1
> plot(expr)

produces an error message:
com.maplesoft.maplets.ComponentAccessException: not a valid plot structure

plot(expr, x) works Ok.

Tom Dean

Hi, I'm trying to figure out, how to differentiate the following expression:

I also don't get how to properly index (indefinite) sum terms... Grateful for any advice!

How to fix the error?

How are they (tanh(a+b) , tanh(a-b)) defined in Maple?

Ger.mw

How to find the series.I'm getting this error.Please help to solve this.

AF.mw

I want to express my two variable function f using Taylor expansion. But no success yet.

Why Taylor series can not estimate my function in desired interval [-1<x,y<1]?

restart

with(Student[MultivariateCalculus]):

 

f := -5023626067733175609651265492842895195168362165*xx^5*yy^9*(1/5575186299632655785383929568162090376495104)+2207379816207475241162406248223006569040862935*xx^5*yy^8*(1/2787593149816327892691964784081045188247552)+5795161625895678368156852916105373987594511979*xx^6*(1/22300745198530623141535718272648361505980416)-539977758872163289054492124375185771143918033*xx^6*yy*(1/696898287454081973172991196020261297061888)+782685832362921584689673760969891945953777553*xx^6*yy^2*(1/5575186299632655785383929568162090376495104)+749877940244270735637721966049124917356845885*xx^6*yy^3*(1/174224571863520493293247799005065324265472)+14159347676475748959036290080103848146860867025*xx^6*yy^4*(1/11150372599265311570767859136324180752990208)-2937701213452088192123555543440803264914467299*xx^6*yy^5*(1/348449143727040986586495598010130648530944)-23673134207774883972271882396704370580007933039*xx^6*yy^6*(1/5575186299632655785383929568162090376495104)-62755544772437504320590342390381422715234113715/89202980794122492566142873090593446023921664+35696532930567486560276536615522532283474689213*yy*(1/2787593149816327892691964784081045188247552)+43423414494451507811145033075147441881593811799*yy^2*(1/22300745198530623141535718272648361505980416)+1173296429365947392287371443632107462978009165*xx^6*yy^7*(1/174224571863520493293247799005065324265472)-56566850002827011453690682806041619180254985625*yy^3*(1/696898287454081973172991196020261297061888)+57447439083834576362467553225131370438848237035*xx^6*yy^8*(1/22300745198530623141535718272648361505980416)-1277356081222180962342283013232991241852904465*xx^6*yy^9*(1/696898287454081973172991196020261297061888)-29946355461657315300256240552185966952551471*xx^7*(1/1393796574908163946345982392040522594123776)+998213736763384913910074759047227544847506773*xx^7*yy*(1/11150372599265311570767859136324180752990208)-2038600361316622246653155899145012259420048867785*yy^4*(1/44601490397061246283071436545296723011960832)+10578825782023300845453772557509072093336001*xx^7*yy^2*(1/43556142965880123323311949751266331066368)-4303517165264733669855129139552505045324631645*xx^7*yy^3*(1/11150372599265311570767859136324180752990208)-652299342907430898149182084981866414949696905*xx^7*yy^4*(1/696898287454081973172991196020261297061888)+11170081785792631086653879206603595320491089331*xx^7*yy^5*(1/11150372599265311570767859136324180752990208)+116540829629507365267125159526451609264014215*xx^7*yy^6*(1/87112285931760246646623899502532662132736)+211134394987302797546644924545169826774270265159*yy^5*(1/1393796574908163946345982392040522594123776)-14785537121406447202257499440081382142298519099*xx^7*yy^7*(1/11150372599265311570767859136324180752990208)+1970986683407627074325019523003479974617451789943*yy^6*(1/22300745198530623141535718272648361505980416)-868641325364973493898126340263842300348545855*xx^7*yy^8*(1/1393796574908163946345982392040522594123776)+216255546256559295251079313253452049445763455*xx^7*yy^9*(1/348449143727040986586495598010130648530944)-4089215965643055747590786827106386135115380275*xx^8*(1/89202980794122492566142873090593446023921664)+1869246621670048362557342074310025153518449965*xx^8*yy*(1/2787593149816327892691964784081045188247552)+18712604797880071317805036942199122521197359575*xx^8*yy^2*(1/22300745198530623141535718272648361505980416)-3479476522267890993628796487849129439635143625*xx^8*yy^3*(1/696898287454081973172991196020261297061888)-77131555128675321096947207038878222843991869993*yy^7*(1/696898287454081973172991196020261297061888)-206512033439850904054937113093163624192322042825*xx^8*yy^4*(1/44601490397061246283071436545296723011960832)+15350689937843699961175740256400109996121380375*xx^8*yy^5*(1/1393796574908163946345982392040522594123776)+157001869330425518481531763580902779395436599415*xx^8*yy^6*(1/22300745198530623141535718272648361505980416)-6686861200533386632065997818427854246215113305*xx^8*yy^7*(1/696898287454081973172991196020261297061888)-3917684154726736823398471536296978037714283086195*yy^8*(1/89202980794122492566142873090593446023921664)-285743684916570536194588196441080828723328178675*xx^8*yy^8*(1/89202980794122492566142873090593446023921664)+8094790880015327525694605814920739418439287725*xx^8*yy^9*(1/2787593149816327892691964784081045188247552)+30423874459994412977383604476886160940746185*xx^9*(1/5575186299632655785383929568162090376495104)-1197236208181378637639504269592639035279087665*xx^9*yy*(1/44601490397061246283071436545296723011960832)-72716798311978341010558827315982986191821905*xx^9*yy^2*(1/696898287454081973172991196020261297061888)+5138909461003175489938484170634052266819688725*xx^9*yy^3*(1/44601490397061246283071436545296723011960832)+1206817075246069632318716986669541278160772775*xx^9*yy^4*(1/2787593149816327892691964784081045188247552)-12993287722661922638788467553649639108437064835*xx^9*yy^5*(1/44601490397061246283071436545296723011960832)-431284328058774504067793959976795724976545555*xx^9*yy^6*(1/696898287454081973172991196020261297061888)+17639360745426635511855086638766468926126459875*xx^9*yy^7*(1/44601490397061246283071436545296723011960832)-2146702909675882809503682033933399905335826325*xx^9*yy^9*(1/11150372599265311570767859136324180752990208)+1587967252519403636411870604735180043125989625*xx^9*yy^8*(1/5575186299632655785383929568162090376495104)+76828297887427851822683521168415270943435162685*yy^9*(1/2787593149816327892691964784081045188247552)+220816865194317615868568855814620996552449073*xx*(1/5575186299632655785383929568162090376495104)-9205355621994819342146712860571987786619361601*xx*yy*(1/44601490397061246283071436545296723011960832)-104255809907916433055923335622932126645726549*xx*yy^2*(1/696898287454081973172991196020261297061888)+27484692689867334306687311759874973819976026005*xx*yy^3*(1/44601490397061246283071436545296723011960832)+1583056855557692418384969876461998197073089695*xx*yy^4*(1/2787593149816327892691964784081045188247552)-36304948749180317956941914133403396762716230691*xx*yy^5*(1/44601490397061246283071436545296723011960832)-590212436135125327923049635849260481403670583*xx*yy^6*(1/696898287454081973172991196020261297061888)+27046038795224386955728969793334632924015008227*xx*yy^7*(1/44601490397061246283071436545296723011960832)+2168816628024980374461014350770096009019357665*xx*yy^8*(1/5575186299632655785383929568162090376495104)-2255097230860381206152749351617455809672044745*xx*yy^9*(1/11150372599265311570767859136324180752990208)+35122173917479363738100862234581108137514304171*xx^2*(1/22300745198530623141535718272648361505980416)-17449701902039745490242163912540688306429882361*xx^2*yy*(1/696898287454081973172991196020261297061888)-11540959773500599403794316292492996114189538863*xx^2*yy^2*(1/5575186299632655785383929568162090376495104)+27287439738914744607616926917914225474665410565*xx^2*yy^3*(1/174224571863520493293247799005065324265472)+929769947314964740179937673332890647768037984465*xx^2*yy^4*(1/11150372599265311570767859136324180752990208)-100809382380090436397261413740272360141145204891*xx^2*yy^5*(1/348449143727040986586495598010130648530944)-930314746723434588666177195703059675161177190255*xx^2*yy^6*(1/5575186299632655785383929568162090376495104)+36390552938954376406834468187448925576623439893*xx^2*yy^7*(1/174224571863520493293247799005065324265472)+1872760743346397986120124413411813119412045269675*xx^2*yy^8*(1/22300745198530623141535718272648361505980416)-35643509355104072817665294345590475660747146425*xx^2*yy^9*(1/696898287454081973172991196020261297061888)-125283292999146417157156696376640452081866835*xx^3*(1/1393796574908163946345982392040522594123776)+5011420945327438626354964312196465908094234685*xx^3*yy*(1/11150372599265311570767859136324180752990208)+29341459645317546529685572705520876577051855*xx^3*yy^2*(1/87112285931760246646623899502532662132736)-15637727799880882327290754576104647826715168925*xx^3*yy^3*(1/11150372599265311570767859136324180752990208)-851688199122087410134053760306093104684621525*xx^3*yy^4*(1/696898287454081973172991196020261297061888)+23458516464006675395891679247259419002768896835*xx^3*yy^5*(1/11150372599265311570767859136324180752990208)+39584968580329795728950940517214770307434335*xx^3*yy^6*(1/21778071482940061661655974875633165533184)-20361225581568567923686744589522827658576624955*xx^3*yy^7*(1/11150372599265311570767859136324180752990208)-1174244552874873223035231031480900497934023075*xx^3*yy^8*(1/1393796574908163946345982392040522594123776)+941109349474535911451616661821106567867537125*xx^3*yy^9*(1/1393796574908163946345982392040522594123776)-48412290717709997717153300332089796247538326265*xx^4*(1/44601490397061246283071436545296723011960832)+17196469545705046799299985950707233685621881055*xx^4*yy*(1/1393796574908163946345982392040522594123776)-9551461763890264957289963973620923748598225435*xx^4*yy^2*(1/11150372599265311570767859136324180752990208)-26051472095770585704126329008135447818638784275*xx^4*yy^3*(1/348449143727040986586495598010130648530944)-765302392604646459013613426858243443467023490875*xx^4*yy^4*(1/22300745198530623141535718272648361505980416)+94251624724512021502035994822030873708141367565*xx^4*yy^5*(1/696898287454081973172991196020261297061888)+843981485493394825713526892530506348990296828805*xx^4*yy^6*(1/11150372599265311570767859136324180752990208)-33218490572036542393092937176469859040906121155*xx^4*yy^7*(1/348449143727040986586495598010130648530944)-1758702445038817232726176779731884586549332868025*xx^4*yy^8*(1/44601490397061246283071436545296723011960832)+31380186488931551370058361496245928395816772575*xx^4*yy^9*(1/1393796574908163946345982392040522594123776)+184838927094446995029201369223921105703104647*xx^5*(1/2787593149816327892691964784081045188247552)-6817973449093402642853212701104432585928821163*xx^5*yy*(1/22300745198530623141535718272648361505980416)-113510140727511300460098712979462156361337425*xx^5*yy^2*(1/348449143727040986586495598010130648530944)+23570688854853763073042723518782612790921757535*xx^5*yy^3*(1/22300745198530623141535718272648361505980416)+1613038118657167505912389296857854524947676825*xx^5*yy^4*(1/1393796574908163946345982392040522594123776)-44608078263668464626393951292252447406629869273*xx^5*yy^5*(1/22300745198530623141535718272648361505980416)-588774433706353379897742534304221654039246663*xx^5*yy^6*(1/348449143727040986586495598010130648530944)+47950825635610780986659544491454706340397108297*xx^5*yy^7*(1/22300745198530623141535718272648361505980416):

g := .5*(1+tanh(f)):

plot3d(g, xx = -1 .. 1, yy = -1 .. 1, color = red, style = surface)

 

 

h := Student:-MultivariateCalculus:-TaylorApproximation(g, [xx, yy] = [0, 0], 35):

plot3d(h, xx = -1 .. 1, yy = -1 .. 1, color = red, style = surface)

 

 

Download taylorProblem.mw

How I can solve a PDE on two regions with matching conditions at the common boundary?  

T1.mw

In Maple 2023 I haven't been able to sign in to the Maple Cloud.
In Maple 2022 there was no problem. In fact in my Maple 2022.2 I'm actually signed in right now.

I need this to get updates to the Physics updates. 
The toolbar in 2023.2 has a grayed out icon saying "Sign in". Nothing happens if I click on it.

PS. I'm also signed in right now to Maple 2021.2. So the problem couldn't be that I cannot be logged in to more than one Maple release.

1 2 3 4 5 6 7 Last Page 2 of 2281