MaplePrimes Questions

I have repeatedly seen this on two Windows PCs:

The assignement operator := is rendered as a roman d

This happens after using Maple for some time.
 Exiting Maple and restart of Maple is required. Has someone noticed the same?
All on Windows 10 and for sure in screen reader mode (my default, cannot report on the new GUI).

Please, I am encountering error trying to run these codes for sensitivity analysis using the formula for sensitivity analysis

``

restart;

#
# Set up numerical values for all problem parameters
#
  params:=[ Lambda__p=100,         gamma__B=0.05,      gamma__B=0.05,
                 gamma__C=0.01, omega__C=0.001,  omega__B=0.001,
            sigma__B=0.0001,     sigma__C=0.01, sigma__BC=0.01,
                theta__B=0.8,     theta__C=0.5,      mu__C=1.0,
              Lambda__A=1.0,       Lambda__w=1.0,   varphi__8.33,
            mu__A=1.0, mu__w=1.0, alpha__B=0.005, alpha__C=0.005, alpha__BC=0.15, Zeta__B=0.5, Zeta__C=0.5, delta__A=0.66, delta__w=1.33
          ]:

#
# Define main function
#
  R:= (varphi^2*theta__B*Lambda__p*alpha__B*Lambda__A)/((mu__c*mu__A*N__p^2)*(mu__A*mu__c+mu__A*omega__B+mu__A*sigma__B+mu__c*delta__A+delta__A*omega__B+delta__A*sigma__B));

varphi^2*theta__B*Lambda__p*alpha__B*Lambda__A/(mu__c*mu__A*N__p^2*(mu__A*mu__c+mu__A*omega__B+mu__A*sigma__B+mu__c*delta__A+delta__A*omega__B+delta__A*sigma__B))

(1)

#
# Compute "all" derivatives and evaluate numerically.
#
# For the purposes of this calculation "all"
# derivatives, means the derivatives with respect to
# every variable returned by indets(R, name)
#
# Output a list of two element lists where each of
# the latter is
#
# [ varName,
#   eval( diff( R, varName), params )
# ]
#
 [ seq( [j, eval( diff( R, j), params )],j in indets(R, name))];

Error, invalid input: eval expects its 2nd argument, eqns, to be of type {integer, equation, set(equation)}, but received [Lambda__p = 100, gamma__B = 0.5e-1, gamma__B = 0.5e-1, gamma__C = 0.1e-1, omega__C = 0.1e-2, omega__B = 0.1e-2, sigma__B = 0.1e-3, sigma__C = 0.1e-1, sigma__BC = 0.1e-1, theta__B = .8, theta__C = .5, mu__C = 1.0, Lambda__A = 1.0, Lambda__w = 1.0, 33*varphi__8, mu__A = 1.0, mu__w = 1.0, alpha__B = 0.5e-2, alpha__C = 0.5e-2, alpha__BC = .15, Zeta__B = .5, Zeta__C = .5, delta__A = .66, delta__w = 1.33]

 

#
# Compute all "sensitivities" (where the sensitivity
# is as defined in Rouben Rostamian response to the
# OP's earlier post) and evaluate numerically.
#
# For the purposes of this calculation "all" sensitivities
# means the sensitivity with respect to every variable
# returned by indets(R, name)
#
# Output a list of two element lists where each of
# the latter is
#
# [ varName,
#   eval( varName*diff( R, varName)/R, params )
# ]
#
  seq( [j, eval( j*diff( R, j)/R, params )],j in indets(R, name));

Error, invalid input: eval expects its 2nd argument, eqns, to be of type {integer, equation, set(equation)}, but received [Lambda__p = 100, gamma__B = 0.5e-1, gamma__B = 0.5e-1, gamma__C = 0.1e-1, omega__C = 0.1e-2, omega__B = 0.1e-2, sigma__B = 0.1e-3, sigma__C = 0.1e-1, sigma__BC = 0.1e-1, theta__B = .8, theta__C = .5, mu__C = 1.0, Lambda__A = 1.0, Lambda__w = 1.0, 33*varphi__8, mu__A = 1.0, mu__w = 1.0, alpha__B = 0.5e-2, alpha__C = 0.5e-2, alpha__BC = .15, Zeta__B = .5, Zeta__C = .5, delta__A = .66, delta__w = 1.33]

 

Download Computed_Sensitivity_Analys_for_CBD.mw

Dear Maple experts,

I try to avoid the generation of new variable names (for states, inputs, outputs) introduced automatically by maple (StateSpace(), FeedbackConnect()) in the two (connected) cases:

1)

I generated a discrete StateSpace system using a difference equation:

sys2 := StateSpace([u(n)=K_virt*(q_a(n)-q_d)+D_virt*(q_a(n)-q_a(n-1))/T],inputvariable=[q_a(n)],outputvariable=[u(n)],discrete=true,sampletime=T);

The statevariable "x1(n)" is automatically generated by maple

I tried to avoid this by using the following commands that don't work:

sys2 := StateSpace([u(n)=K_virt*(q_a(n)-q_d)+D_virt*(q_a(n)-q_a(n-1))/T],inputvariable=[q_a(n)],outputvariable=[u(n)],statevariable=[q_a(n-1)],discrete=true,sampletime=T);

-> error message:

Error, (in ProcessOptions) argument 'statevariable = [q_a(n-1)]' invalid: rhs should be of type list({name, anyfunc(name)})

sys2 := StateSpace([u(n)=K_virt*(q_a(n)-q_d)+D_virt*(q_a(n)-q_a(n-1))/T],inputvariable=[q_a(n)],outputvariable=[u(n)],statevariable=[q_a_delayed],discrete=true,sampletime=T);

-> error message:

Error, (in DynamicSystems:-StateSpace) missing state(s): {q_a_delayed(n)}

sys2 := StateSpace([u(n)=K_virt*(q_a(n)-q_d)+D_virt*(q_a(n)-q_a(n-1))/T],inputvariable=[q_a(n)],outputvariable=[u(n)],statevariable=[q_a_delayed(n)],discrete=true,sampletime=T);

-> error message:

Error, (in DynamicSystems:-StateSpace) missing state(s): {q_a_delayed(n)}

Can you help me here?

2)

I have two discrete StateSpace models (sys1, sys2):

* sys2 is the one from above (1 input, 1 output, 1 state)

* sys1 (2 inputs, 4 outputs, 4 states) doesn't contain any automatically generated variables (I obtained this one by transforming a continuous statespace model to a discrete one)

* variables that represent the same signal have the same name in both systems.

   -> "q_a(n)" appears as an output in sys1 and as an input in in sys2

   -> "u(n)"     appears as an input in sys1 and as an output in in sys2

Now I combined these two models via:

FeedbackConnect([sys1, sys2],[[2,2,1,-1]])

Instead of using the variable names I introduced maple generates new variable names for inputs, outputs and states.

How can I avoid this?

(the option "merge=evaluate") seems not to work (even if I work with numeric values for the system parameters instead of symbols)

Thank you in advance!

It seems that the new Ribbon interface has several bugs (probably an update will come soon). So, not only the Export As is not working, but I see that (at least in Windows), opening a worksheet with a large output will display the output using the Maple input font.
Just save a .mw with the content:

expand((x+1)^200);

and then open it.

in this example is so different solution How i can get directly answer of this kind of ode equation when contain complicate term

restart; ode := 6*x*y(x)^2+4*x^3*y(x)+(6*x^2*y(x)+x^4+exp(y(x)))*(diff(y(x), x)) = 0; with(DEtools, odeadvisor); Student:-ODEs:-Type(ode); W := dsolve(ode, y(x)); odetest(W, ode)

0

(1)

NULL

Download ode.mw

hello everyone,

I am a bit shortsighted even with my glasses.

So my question is easy :: is there a way that when I open a (new) worksheet the magnification is 150%.

I can do it easily by hand but I am looking for 'something' in my maple.ini file to do this?

As well with the help pages.

Because even if I have a 150% magnification and I call a help page the display is still 100 % not 150%.

A part that I would like to set for every session a Digits:16 .

In the .ini file where I must input this? A ";" or not?

Thank you veru much.

Jean-Michel

I've reported this problem to Maple many years ago but still not fixed in Maple 2025.

Maple not able to verify its own solution on some series solutions using odetest.

Any one can suggest a workaround one can use other than odetest to verify ode solution when using series? Or have an idea why this happens?

The solution is correct but for some reason odetest returns FAIL 

Below is one example of many I have

restart;

interface(version);

`Standard Worksheet Interface, Maple 2025.0, Linux, March 24 2025 Build ID 1909157`

 

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1861 and is the same as the version installed in this computer, created 2025, April 10, 15:58 hours Pacific Time.`

ode:=x*diff(y(x),x$2)+y(x)=0;
IC:=y(0)=1;
maple_sol:=dsolve([ode,IC],y(x),'series');
odetest(maple_sol,[ode,IC],'series','point'=0);

x*(diff(diff(y(x), x), x))+y(x) = 0

y(0) = 1

y(x) = c__1*x*(series(1-(1/2)*x+(1/12)*x^2-(1/144)*x^3+(1/2880)*x^4-(1/86400)*x^5+O(x^6),x,6))+ln(x)*(series(-x+(1/2)*x^2-(1/12)*x^3+(1/144)*x^4-(1/2880)*x^5+O(x^6),x,6))+(series(1-(3/4)*x^2+(7/36)*x^3-(35/1728)*x^4+(101/86400)*x^5+O(x^6),x,6))

Warning, unable to compute series necessary to test the given solution

FAIL

 

 

Download series_unable_to_odetest_april_12_2025.mw

I don't know what combination of keys I used, but I deleted all the answers and comments to this question in one go. 
https://mapleprimes.com/posts/229696-I-Find-An-Error

Can some moderator recover all of them?

Thanks in advance and sorry for the inconvenience

Hi,

I'm experimenting with building random series on different topics, inspired by several of your comments, using a table-style layout. For this example, I'm testing systems of linear equations with two unknowns, but I can't manage to generate the systems with curly braces. I hope the purpose of my question is clear. Any ideas? Thanks

Systmes_Idea.mw

This question is about a particularity of a widely used function, which looks like a bug at the first glance, but is not (after carefully studying the help page).

The function “add” (a built-in function with special evaluation rules) is intended to be used on sequences. If for any reason (in a procedure for example) a sequence degenerates to a single scalar expression and add is applied to it, the expression can change. This is most likely undesired. In the case below (simplified from a real case that happened to me) a product is transformed into a nonsense sum.

data := 1.*Unit(m);
accu_length := add(data);
data := data, 2.*Unit(m);
accu_length := add(data);
                       data := 1. Unit(m)

                  accu_length := 1. + Unit(m)

                 data := 1. Unit(m), 2. Unit(m)

                   accu_length := 3. Unit(m)

It is quite likely that the above unit error will be noticed. In the following case it is more likely that a change in value remains unnoticed.

data := 2/5;
add(data);
                                   2
                           data := -
                                   5

                               7

I was wondering whether Maple could issue a warning to prevent this use error of add, when certain types of expressions are passed to add.
Alternatively Maple could return the expression unchanged. So far, I have not found a case where it makes sense to apply add to operands of a scalar expression (excluding set, list, array, ... ).

This leads to the question of whether this functionality (add working on a scalar expression) is needed at all. I tried a few and none of them is useful

[a = b, a^b, a@b, a/b, sin(a), int(f(x), x), a[b]];
map(add, %);
        [        b       a                            ]
        [a = b, a , a@b, -, sin(a), int(f(x), x), a[b]]
        [                b                            ]

          [                         1                ]
          [a + b, a + b, a + b, a + -, a, f(x) + x, b]
          [                         b                ]

Anything else which could make sense?

i dont know in this paper he do factoring or he solved by substitution i did both way but i can't do end step which is finding parameter can anyone help ? i did 2 way but i can't finished 

find-parameter.mw

find-parameter_2.mw

In the File menu,  the Export As dialog is missing. Only the default (.pdf) can be used; no .mpl or .tex)
The Save As dialog is incomplete (e.g. save to .mws).

Or, is the installation corrupted?

In the transformation w = e^z, vertical lines in the complex z-plane of the form Re(z)=a are mapped to circles of radius e^a in the w-plane.

Can I create a Maple visualization that does the following:

  1. Displays the result side by side, showing each vertical line in the z-plane and its corresponding mapped circle in the w-plane.

  2. Does it use a different color and style for each line and its image (e.g., dashed, dotted, solid, or different colors)?

restart; interface(imaginaryunit = 'i')

z := 2+2*I

2+2*I

(1)

with(plots); point1 := pointplot([[Re(z), Im(z)]], symbol = solidcircle, color = blue, axes = normal, labels = ["Re(z)", "Im(z)"], title = "Complex Number Plot")

 

mod_z := abs(z)

2*2^(1/2)

(2)

vector1 := arrow([0, 0], [Re(z), Im(z)], color = red, shape = double_arrow, width = 0.5e-1, border = false, head_width = .1, head_length = .1); vector2 := arrow([0, 0], [0, Im(z)], color = green, shape = double_arrow, width = 0.5e-1, border = false, head_width = .1, head_length = .1); vector3 := arrow([0, 0], [Re(z), 0], color = yellow, shape = double_arrow, width = 0.5e-1, border = false, head_width = .1, head_length = .1)

display([vector1, point1, vector2, vector3], axes = normal, labels = ["Re(z)", "Im(z)"], view = [0 .. 3, -1 .. 4], scaling = constrained, title = "Modulus of complex number")

 

w := 2+3*I

2+3*I

(3)

z+w

4+5*I

(4)

z-w

-I

(5)

z.w

-2+10*I

(6)

z/w

10/13-(2/13)*I

(7)

restart

with(plots); a := 2; complexplot(a+I*t, t = -Pi .. Pi, title = "Vertical Line Re(z)=2")

 

A := [-3, -1, 0, 1, 2]; P := [seq(complexplot(x+I*y, y = -10 .. 10, color = red), `in`(x, A))]; display(P, title = "Multiple Vertical Lines in Complex Plane")

 

with(plots); B := [-3, -1, 0, 1, 2]; H := [seq(complexplot(x+I*y, x = -10 .. 10, color = blue), `in`(y, B))]; display(H, title = "Multiple Horizontal Lines in Complex Plane")

 
 

NULL

Download operations.mw

This is first type of solving parameter but  i solved some semilar but the shape of them are so different and solving them different too i did my trail but i can't reach out solution also the author solve by another way which i did too but i have to solve in this way too thanks  for any help !

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

_local(gamma)

Warning, A new binding for the name `gamma` has been created. The global instance of this name is still accessible using the :- prefix, :-`gamma`.  See ?protect for details.

 

``

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

declare(u(x, y, z, t))

u(x, y, z, t)*`will now be displayed as`*u

(2)

declare(f(x, y, z, t))

f(x, y, z, t)*`will now be displayed as`*f

(3)

pde := 9*(diff(u(x, y, z, t), t, x))+diff(u(x, y, z, t), `$`(x, 6))-5*(diff(u(x, y, z, t), `$`(x, 3), y)+diff(u(x, y, z, t), `$`(y, 2)))+15*((diff(u(x, y, z, t), `$`(x, 2)))*(diff(u(x, y, z, t), `$`(x, 3)))+(diff(u(x, y, z, t), x))*(diff(u(x, y, z, t), `$`(x, 4)))-(diff(u(x, y, z, t), x))*(diff(u(x, y, z, t), x, y))-(diff(u(x, y, z, t), `$`(x, 2)))*(diff(u(x, y, z, t), y)))+45*(diff(u(x, y, z, t), x))^2*(diff(u(x, y, z, t), `$`(x, 2)))+alpha*(diff(u(x, y, z, t), `$`(x, 2)))+beta*(diff(u(x, y, z, t), x, y))+delta*(diff(u(x, y, z, t), x, z))

9*(diff(diff(u(x, y, z, t), t), x))+diff(diff(diff(diff(diff(diff(u(x, y, z, t), x), x), x), x), x), x)-5*(diff(diff(diff(diff(u(x, y, z, t), x), x), x), y))-5*(diff(diff(u(x, y, z, t), y), y))+15*(diff(diff(u(x, y, z, t), x), x))*(diff(diff(diff(u(x, y, z, t), x), x), x))+15*(diff(u(x, y, z, t), x))*(diff(diff(diff(diff(u(x, y, z, t), x), x), x), x))-15*(diff(u(x, y, z, t), x))*(diff(diff(u(x, y, z, t), x), y))-15*(diff(diff(u(x, y, z, t), x), x))*(diff(u(x, y, z, t), y))+45*(diff(u(x, y, z, t), x))^2*(diff(diff(u(x, y, z, t), x), x))+alpha*(diff(diff(u(x, y, z, t), x), x))+beta*(diff(diff(u(x, y, z, t), x), y))+delta*(diff(diff(u(x, y, z, t), x), z))

(4)

``

oppde := [op(expand(pde))]; u_occurrences := map(proc (i) options operator, arrow; numelems(select(has, [op([op(i)])], u)) end proc, oppde); linear_op_indices := ListTools:-SearchAll(1, u_occurrences); pde_linear := add(oppde[[linear_op_indices]]); pde_nonlinear := expand(simplify(expand(pde)-pde_linear))

9*(diff(diff(u(x, y, z, t), t), x))+diff(diff(diff(diff(diff(diff(u(x, y, z, t), x), x), x), x), x), x)-5*(diff(diff(diff(diff(u(x, y, z, t), x), x), x), y))-5*(diff(diff(u(x, y, z, t), y), y))+alpha*(diff(diff(u(x, y, z, t), x), x))+beta*(diff(diff(u(x, y, z, t), x), y))+delta*(diff(diff(u(x, y, z, t), x), z))

 

15*(diff(diff(u(x, y, z, t), x), x))*(diff(diff(diff(u(x, y, z, t), x), x), x))+15*(diff(u(x, y, z, t), x))*(diff(diff(diff(diff(u(x, y, z, t), x), x), x), x))-15*(diff(u(x, y, z, t), x))*(diff(diff(u(x, y, z, t), x), y))-15*(diff(diff(u(x, y, z, t), x), x))*(diff(u(x, y, z, t), y))+45*(diff(u(x, y, z, t), x))^2*(diff(diff(u(x, y, z, t), x), x))

(5)

H := u(x, y, z, t) = 2*(diff(ln(f(x, y, z, t)), x))

u(x, y, z, t) = 2*(diff(f(x, y, z, t), x))/f(x, y, z, t)

(6)

L := eval(pde_linear, H) = 0

2*(diff(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x), x))/f(x, y, z, t)-10*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), y))/f(x, y, z, t)-10*(diff(diff(diff(f(x, y, z, t), x), y), y))/f(x, y, z, t)+alpha*(2*(diff(diff(diff(f(x, y, z, t), x), x), x))/f(x, y, z, t)-6*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2+4*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^3)+beta*(2*(diff(diff(diff(f(x, y, z, t), x), x), y))/f(x, y, z, t)-2*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2-4*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^2+4*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3)+delta*(2*(diff(diff(diff(f(x, y, z, t), x), x), z))/f(x, y, z, t)-2*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), z))/f(x, y, z, t)^2-4*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), z))/f(x, y, z, t)^2+4*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), z))/f(x, y, z, t)^3)+280*(diff(diff(diff(f(x, y, z, t), x), x), x))^2*(diff(f(x, y, z, t), x))/f(x, y, z, t)^3-5040*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^5/f(x, y, z, t)^6+5040*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^5-1260*(diff(diff(f(x, y, z, t), x), x))^3*(diff(f(x, y, z, t), x))/f(x, y, z, t)^4-80*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3+360*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), y))/f(x, y, z, t)^4-240*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^3-20*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))^2/f(x, y, z, t)^3+84*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^3-420*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^4+420*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^3+1680*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^4/f(x, y, z, t)^5-2520*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^4+420*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(diff(f(x, y, z, t), x), x))^2/f(x, y, z, t)^3+36*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), t))/f(x, y, z, t)^3-36*(diff(diff(f(x, y, z, t), t), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2-18*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), t))/f(x, y, z, t)^2-14*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2-42*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^2-70*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(diff(diff(f(x, y, z, t), x), x), x))/f(x, y, z, t)^2+1440*(diff(f(x, y, z, t), x))^7/f(x, y, z, t)^7+10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2+40*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2+40*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^2-120*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^3+60*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(diff(f(x, y, z, t), x), x), y))/f(x, y, z, t)^2-60*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3+240*(diff(f(x, y, z, t), x))^3*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^4-240*(diff(f(x, y, z, t), x))^4*(diff(f(x, y, z, t), y))/f(x, y, z, t)^5+20*(diff(diff(f(x, y, z, t), x), y))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2+10*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), y), y))/f(x, y, z, t)^2+18*(diff(diff(diff(f(x, y, z, t), t), x), x))/f(x, y, z, t) = 0

(7)

numer(lhs(-80*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3+360*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), y))/f(x, y, z, t)^4-240*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^3+420*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^3-2520*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^4+alpha*(2*(diff(diff(diff(f(x, y, z, t), x), x), x))/f(x, y, z, t)-6*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2+4*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^3)+beta*(2*(diff(diff(diff(f(x, y, z, t), x), x), y))/f(x, y, z, t)-2*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2-4*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^2+4*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3)+delta*(2*(diff(diff(diff(f(x, y, z, t), x), x), z))/f(x, y, z, t)-2*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), z))/f(x, y, z, t)^2-4*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), z))/f(x, y, z, t)^2+4*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), z))/f(x, y, z, t)^3)+2*(diff(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x), x))/f(x, y, z, t)-10*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), y))/f(x, y, z, t)-10*(diff(diff(diff(f(x, y, z, t), x), y), y))/f(x, y, z, t)+1440*(diff(f(x, y, z, t), x))^7/f(x, y, z, t)^7+18*(diff(diff(diff(f(x, y, z, t), t), x), x))/f(x, y, z, t)+280*(diff(diff(diff(f(x, y, z, t), x), x), x))^2*(diff(f(x, y, z, t), x))/f(x, y, z, t)^3-5040*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^5/f(x, y, z, t)^6+5040*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^5-1260*(diff(diff(f(x, y, z, t), x), x))^3*(diff(f(x, y, z, t), x))/f(x, y, z, t)^4-20*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))^2/f(x, y, z, t)^3+84*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^3-420*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^4+1680*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^4/f(x, y, z, t)^5+420*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(diff(f(x, y, z, t), x), x))^2/f(x, y, z, t)^3+36*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), t))/f(x, y, z, t)^3-36*(diff(diff(f(x, y, z, t), t), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2-18*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), t))/f(x, y, z, t)^2-14*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2-42*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^2-70*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(diff(diff(f(x, y, z, t), x), x), x))/f(x, y, z, t)^2+10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2+40*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2+40*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^2-120*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^3+60*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(diff(f(x, y, z, t), x), x), y))/f(x, y, z, t)^2-60*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3+240*(diff(f(x, y, z, t), x))^3*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^4-240*(diff(f(x, y, z, t), x))^4*(diff(f(x, y, z, t), y))/f(x, y, z, t)^5+20*(diff(diff(f(x, y, z, t), x), y))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2+10*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), y), y))/f(x, y, z, t)^2 = 0))*denom(rhs(-80*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3+360*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), y))/f(x, y, z, t)^4-240*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^3+420*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^3-2520*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^4+alpha*(2*(diff(diff(diff(f(x, y, z, t), x), x), x))/f(x, y, z, t)-6*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2+4*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^3)+beta*(2*(diff(diff(diff(f(x, y, z, t), x), x), y))/f(x, y, z, t)-2*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2-4*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^2+4*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3)+delta*(2*(diff(diff(diff(f(x, y, z, t), x), x), z))/f(x, y, z, t)-2*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), z))/f(x, y, z, t)^2-4*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), z))/f(x, y, z, t)^2+4*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), z))/f(x, y, z, t)^3)+2*(diff(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x), x))/f(x, y, z, t)-10*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), y))/f(x, y, z, t)-10*(diff(diff(diff(f(x, y, z, t), x), y), y))/f(x, y, z, t)+1440*(diff(f(x, y, z, t), x))^7/f(x, y, z, t)^7+18*(diff(diff(diff(f(x, y, z, t), t), x), x))/f(x, y, z, t)+280*(diff(diff(diff(f(x, y, z, t), x), x), x))^2*(diff(f(x, y, z, t), x))/f(x, y, z, t)^3-5040*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^5/f(x, y, z, t)^6+5040*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^5-1260*(diff(diff(f(x, y, z, t), x), x))^3*(diff(f(x, y, z, t), x))/f(x, y, z, t)^4-20*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))^2/f(x, y, z, t)^3+84*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^3-420*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^4+1680*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^4/f(x, y, z, t)^5+420*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(diff(f(x, y, z, t), x), x))^2/f(x, y, z, t)^3+36*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), t))/f(x, y, z, t)^3-36*(diff(diff(f(x, y, z, t), t), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2-18*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), t))/f(x, y, z, t)^2-14*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2-42*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^2-70*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(diff(diff(f(x, y, z, t), x), x), x))/f(x, y, z, t)^2+10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2+40*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2+40*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^2-120*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^3+60*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(diff(f(x, y, z, t), x), x), y))/f(x, y, z, t)^2-60*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3+240*(diff(f(x, y, z, t), x))^3*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^4-240*(diff(f(x, y, z, t), x))^4*(diff(f(x, y, z, t), y))/f(x, y, z, t)^5+20*(diff(diff(f(x, y, z, t), x), y))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2+10*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), y), y))/f(x, y, z, t)^2 = 0)) = numer(rhs(-80*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3+360*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), y))/f(x, y, z, t)^4-240*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^3+420*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^3-2520*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^4+alpha*(2*(diff(diff(diff(f(x, y, z, t), x), x), x))/f(x, y, z, t)-6*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2+4*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^3)+beta*(2*(diff(diff(diff(f(x, y, z, t), x), x), y))/f(x, y, z, t)-2*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2-4*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^2+4*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3)+delta*(2*(diff(diff(diff(f(x, y, z, t), x), x), z))/f(x, y, z, t)-2*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), z))/f(x, y, z, t)^2-4*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), z))/f(x, y, z, t)^2+4*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), z))/f(x, y, z, t)^3)+2*(diff(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x), x))/f(x, y, z, t)-10*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), y))/f(x, y, z, t)-10*(diff(diff(diff(f(x, y, z, t), x), y), y))/f(x, y, z, t)+1440*(diff(f(x, y, z, t), x))^7/f(x, y, z, t)^7+18*(diff(diff(diff(f(x, y, z, t), t), x), x))/f(x, y, z, t)+280*(diff(diff(diff(f(x, y, z, t), x), x), x))^2*(diff(f(x, y, z, t), x))/f(x, y, z, t)^3-5040*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^5/f(x, y, z, t)^6+5040*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^5-1260*(diff(diff(f(x, y, z, t), x), x))^3*(diff(f(x, y, z, t), x))/f(x, y, z, t)^4-20*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))^2/f(x, y, z, t)^3+84*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^3-420*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^4+1680*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^4/f(x, y, z, t)^5+420*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(diff(f(x, y, z, t), x), x))^2/f(x, y, z, t)^3+36*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), t))/f(x, y, z, t)^3-36*(diff(diff(f(x, y, z, t), t), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2-18*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), t))/f(x, y, z, t)^2-14*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2-42*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^2-70*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(diff(diff(f(x, y, z, t), x), x), x))/f(x, y, z, t)^2+10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2+40*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2+40*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^2-120*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^3+60*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(diff(f(x, y, z, t), x), x), y))/f(x, y, z, t)^2-60*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3+240*(diff(f(x, y, z, t), x))^3*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^4-240*(diff(f(x, y, z, t), x))^4*(diff(f(x, y, z, t), y))/f(x, y, z, t)^5+20*(diff(diff(f(x, y, z, t), x), y))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2+10*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), y), y))/f(x, y, z, t)^2 = 0))*denom(lhs(-80*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3+360*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), y))/f(x, y, z, t)^4-240*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^3+420*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^3-2520*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^4+alpha*(2*(diff(diff(diff(f(x, y, z, t), x), x), x))/f(x, y, z, t)-6*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2+4*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^3)+beta*(2*(diff(diff(diff(f(x, y, z, t), x), x), y))/f(x, y, z, t)-2*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2-4*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^2+4*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3)+delta*(2*(diff(diff(diff(f(x, y, z, t), x), x), z))/f(x, y, z, t)-2*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), z))/f(x, y, z, t)^2-4*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), z))/f(x, y, z, t)^2+4*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), z))/f(x, y, z, t)^3)+2*(diff(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x), x))/f(x, y, z, t)-10*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), y))/f(x, y, z, t)-10*(diff(diff(diff(f(x, y, z, t), x), y), y))/f(x, y, z, t)+1440*(diff(f(x, y, z, t), x))^7/f(x, y, z, t)^7+18*(diff(diff(diff(f(x, y, z, t), t), x), x))/f(x, y, z, t)+280*(diff(diff(diff(f(x, y, z, t), x), x), x))^2*(diff(f(x, y, z, t), x))/f(x, y, z, t)^3-5040*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^5/f(x, y, z, t)^6+5040*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^5-1260*(diff(diff(f(x, y, z, t), x), x))^3*(diff(f(x, y, z, t), x))/f(x, y, z, t)^4-20*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))^2/f(x, y, z, t)^3+84*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^3-420*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^4+1680*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^4/f(x, y, z, t)^5+420*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(diff(f(x, y, z, t), x), x))^2/f(x, y, z, t)^3+36*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), t))/f(x, y, z, t)^3-36*(diff(diff(f(x, y, z, t), t), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2-18*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), t))/f(x, y, z, t)^2-14*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2-42*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^2-70*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(diff(diff(f(x, y, z, t), x), x), x))/f(x, y, z, t)^2+10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2+40*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2+40*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^2-120*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^3+60*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(diff(f(x, y, z, t), x), x), y))/f(x, y, z, t)^2-60*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3+240*(diff(f(x, y, z, t), x))^3*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^4-240*(diff(f(x, y, z, t), x))^4*(diff(f(x, y, z, t), y))/f(x, y, z, t)^5+20*(diff(diff(f(x, y, z, t), x), y))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2+10*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), y), y))/f(x, y, z, t)^2 = 0))

420*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))*f(x, y, z, t)^4-2520*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), x))*f(x, y, z, t)^3-6*f(x, y, z, t)^5*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*alpha-2*f(x, y, z, t)^5*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), y))*beta-4*f(x, y, z, t)^5*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), y))*beta+4*f(x, y, z, t)^4*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), y))*beta-2*f(x, y, z, t)^5*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), z))*delta-4*f(x, y, z, t)^5*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), z))*delta+4*f(x, y, z, t)^4*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), z))*delta-80*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))*f(x, y, z, t)^4+360*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), y))*f(x, y, z, t)^3-240*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), y))*f(x, y, z, t)^4+2*(diff(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x), x))*f(x, y, z, t)^6-10*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), y))*f(x, y, z, t)^6-10*(diff(diff(diff(f(x, y, z, t), x), y), y))*f(x, y, z, t)^6+18*(diff(diff(diff(f(x, y, z, t), t), x), x))*f(x, y, z, t)^6-14*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))*(diff(f(x, y, z, t), x))*f(x, y, z, t)^5-42*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(diff(f(x, y, z, t), x), x))*f(x, y, z, t)^5-70*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(diff(diff(f(x, y, z, t), x), x), x))*f(x, y, z, t)^5+10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), y))*f(x, y, z, t)^5+40*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))*(diff(f(x, y, z, t), x))*f(x, y, z, t)^5+40*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(diff(f(x, y, z, t), x), y))*f(x, y, z, t)^5-120*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^4+60*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(diff(f(x, y, z, t), x), x), y))*f(x, y, z, t)^5-60*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), y))*f(x, y, z, t)^4+240*(diff(f(x, y, z, t), x))^3*(diff(diff(f(x, y, z, t), x), y))*f(x, y, z, t)^3-240*(diff(f(x, y, z, t), x))^4*(diff(f(x, y, z, t), y))*f(x, y, z, t)^2+20*(diff(diff(f(x, y, z, t), x), y))*(diff(f(x, y, z, t), y))*f(x, y, z, t)^5+10*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), y), y))*f(x, y, z, t)^5+280*(diff(diff(diff(f(x, y, z, t), x), x), x))^2*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4-5040*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^5*f(x, y, z, t)+5040*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^3*f(x, y, z, t)^2-1260*(diff(diff(f(x, y, z, t), x), x))^3*(diff(f(x, y, z, t), x))*f(x, y, z, t)^3-20*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))^2*f(x, y, z, t)^4+84*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^4-420*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))^3*f(x, y, z, t)^3+1680*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^4*f(x, y, z, t)^2+420*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(diff(f(x, y, z, t), x), x))^2*f(x, y, z, t)^4+36*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), t))*f(x, y, z, t)^4-36*(diff(diff(f(x, y, z, t), t), x))*(diff(f(x, y, z, t), x))*f(x, y, z, t)^5-18*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), t))*f(x, y, z, t)^5+2*f(x, y, z, t)^6*(diff(diff(diff(f(x, y, z, t), x), x), x))*alpha+4*f(x, y, z, t)^4*(diff(f(x, y, z, t), x))^3*alpha+2*f(x, y, z, t)^6*(diff(diff(diff(f(x, y, z, t), x), x), y))*beta+2*f(x, y, z, t)^6*(diff(diff(diff(f(x, y, z, t), x), x), z))*delta+1440*(diff(f(x, y, z, t), x))^7 = 0

(8)

F1 := %

420*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))*f(x, y, z, t)^4-2520*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), x))*f(x, y, z, t)^3-6*f(x, y, z, t)^5*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*alpha-2*f(x, y, z, t)^5*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), y))*beta-4*f(x, y, z, t)^5*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), y))*beta+4*f(x, y, z, t)^4*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), y))*beta-2*f(x, y, z, t)^5*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), z))*delta-4*f(x, y, z, t)^5*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), z))*delta+4*f(x, y, z, t)^4*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), z))*delta-80*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))*f(x, y, z, t)^4+360*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), y))*f(x, y, z, t)^3-240*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), y))*f(x, y, z, t)^4+2*(diff(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x), x))*f(x, y, z, t)^6-10*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), y))*f(x, y, z, t)^6-10*(diff(diff(diff(f(x, y, z, t), x), y), y))*f(x, y, z, t)^6+18*(diff(diff(diff(f(x, y, z, t), t), x), x))*f(x, y, z, t)^6-14*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))*(diff(f(x, y, z, t), x))*f(x, y, z, t)^5-42*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(diff(f(x, y, z, t), x), x))*f(x, y, z, t)^5-70*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(diff(diff(f(x, y, z, t), x), x), x))*f(x, y, z, t)^5+10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), y))*f(x, y, z, t)^5+40*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))*(diff(f(x, y, z, t), x))*f(x, y, z, t)^5+40*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(diff(f(x, y, z, t), x), y))*f(x, y, z, t)^5-120*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^4+60*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(diff(f(x, y, z, t), x), x), y))*f(x, y, z, t)^5-60*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), y))*f(x, y, z, t)^4+240*(diff(f(x, y, z, t), x))^3*(diff(diff(f(x, y, z, t), x), y))*f(x, y, z, t)^3-240*(diff(f(x, y, z, t), x))^4*(diff(f(x, y, z, t), y))*f(x, y, z, t)^2+20*(diff(diff(f(x, y, z, t), x), y))*(diff(f(x, y, z, t), y))*f(x, y, z, t)^5+10*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), y), y))*f(x, y, z, t)^5+280*(diff(diff(diff(f(x, y, z, t), x), x), x))^2*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4-5040*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^5*f(x, y, z, t)+5040*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^3*f(x, y, z, t)^2-1260*(diff(diff(f(x, y, z, t), x), x))^3*(diff(f(x, y, z, t), x))*f(x, y, z, t)^3-20*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))^2*f(x, y, z, t)^4+84*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^4-420*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))^3*f(x, y, z, t)^3+1680*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^4*f(x, y, z, t)^2+420*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(diff(f(x, y, z, t), x), x))^2*f(x, y, z, t)^4+36*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), t))*f(x, y, z, t)^4-36*(diff(diff(f(x, y, z, t), t), x))*(diff(f(x, y, z, t), x))*f(x, y, z, t)^5-18*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), t))*f(x, y, z, t)^5+2*f(x, y, z, t)^6*(diff(diff(diff(f(x, y, z, t), x), x), x))*alpha+4*f(x, y, z, t)^4*(diff(f(x, y, z, t), x))^3*alpha+2*f(x, y, z, t)^6*(diff(diff(diff(f(x, y, z, t), x), x), y))*beta+2*f(x, y, z, t)^6*(diff(diff(diff(f(x, y, z, t), x), x), z))*delta+1440*(diff(f(x, y, z, t), x))^7 = 0

(9)

NULL

S := f(x, y, z, t) = a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1])

f(x, y, z, t) = a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1])

(10)

A := eval(F1, S)

600*a[1]^4*k[1]^4*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^4*p[1]*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^3+1204*a[1]^3*k[1]^7*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^3*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^4-4200*a[1]^4*k[1]^7*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^4*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^3-500*a[1]^3*k[1]^4*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^3*p[1]*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^4+30*a[1]^2*k[1]*p[1]^2*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^2*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^5-54*a[1]^2*w[1]*k[1]^2*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^2*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^5-6*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^5*a[1]^2*k[1]^3*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^2*alpha-6*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^5*a[1]^2*k[1]^2*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^2*p[1]*beta+4*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^4*a[1]^3*k[1]^2*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^3*p[1]*beta-6*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^5*a[1]^2*k[1]^2*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^2*r[1]*delta+4*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^4*a[1]^3*k[1]^2*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^3*r[1]*delta+18*a[1]*w[1]*k[1]^2*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1])*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^6-10*a[1]*k[1]*p[1]^2*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1])*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^6+2*a[1]*k[1]^7*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1])*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^6-10*a[1]*k[1]^4*p[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1])*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^6+2*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^6*a[1]*k[1]^2*p[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1])*beta+2*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^6*a[1]*k[1]^2*r[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1])*delta+1440*a[1]^7*k[1]^7*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^7-5040*a[1]^6*k[1]^7*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^6*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))+6720*a[1]^5*k[1]^7*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^5*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^2-20*a[1]^3*k[1]*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^3*p[1]^2*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^4+36*a[1]^3*k[1]^2*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^3*w[1]*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^4+2*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^6*a[1]*k[1]^3*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1])*alpha+4*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^4*a[1]^3*k[1]^3*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^3*alpha-126*a[1]^2*k[1]^7*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^2*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^5+150*a[1]^2*k[1]^4*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^2*p[1]*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^5-240*a[1]^5*k[1]^4*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^5*p[1]*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^2 = 0

(11)

simplify(1440*a[1]^7*k[1]^7*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^7+6720*a[1]^5*k[1]^7*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^5*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^2-126*a[1]^2*k[1]^7*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^2*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^5+1204*a[1]^3*k[1]^7*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^3*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^4-4200*a[1]^4*k[1]^7*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^4*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^3+2*a[1]*k[1]^7*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1])*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^6-5040*a[1]^6*k[1]^7*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^6*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))+600*a[1]^4*k[1]^4*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^4*p[1]*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^3-500*a[1]^3*k[1]^4*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^3*p[1]*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^4+30*a[1]^2*k[1]*p[1]^2*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^2*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^5-54*a[1]^2*w[1]*k[1]^2*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^2*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^5-6*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^5*a[1]^2*k[1]^3*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^2*alpha+18*a[1]*w[1]*k[1]^2*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1])*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^6-10*a[1]*k[1]*p[1]^2*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1])*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^6-10*a[1]*k[1]^4*p[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1])*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^6-20*a[1]^3*k[1]*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^3*p[1]^2*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^4+36*a[1]^3*k[1]^2*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^3*w[1]*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^4+2*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^6*a[1]*k[1]^3*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1])*alpha+4*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^4*a[1]^3*k[1]^3*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^3*alpha+150*a[1]^2*k[1]^4*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^2*p[1]*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^5-240*a[1]^5*k[1]^4*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^5*p[1]*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^2-6*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^5*a[1]^2*k[1]^2*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^2*p[1]*beta+4*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^4*a[1]^3*k[1]^2*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^3*p[1]*beta-6*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^5*a[1]^2*k[1]^2*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^2*r[1]*delta+4*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^4*a[1]^3*k[1]^2*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^3*r[1]*delta+2*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^6*a[1]*k[1]^2*p[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1])*beta+2*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^6*a[1]*k[1]^2*r[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1])*delta = 0)

2*a[0]*k[1]*(-57*a[0]^4*(k[1]^6-(15/19)*k[1]^3*p[1]-(1/19)*k[1]^2*alpha+(1/19)*(-beta*p[1]-delta*r[1]-9*w[1])*k[1]+(5/19)*p[1]^2)*a[1]*exp(2*t*w[1]+2*x*k[1]+2*y*p[1]+2*z*r[1])+302*a[0]^3*(k[1]^6+(25/151)*k[1]^3*p[1]+(1/151)*k[1]^2*alpha+(1/151)*(beta*p[1]+delta*r[1]+9*w[1])*k[1]-(5/151)*p[1]^2)*a[1]^2*exp(3*t*w[1]+3*x*k[1]+3*y*p[1]+3*z*r[1])-302*a[0]^2*(k[1]^6+(25/151)*k[1]^3*p[1]+(1/151)*k[1]^2*alpha+(1/151)*(beta*p[1]+delta*r[1]+9*w[1])*k[1]-(5/151)*p[1]^2)*a[1]^3*exp(4*t*w[1]+4*x*k[1]+4*y*p[1]+4*z*r[1])+57*a[0]*(k[1]^6-(15/19)*k[1]^3*p[1]-(1/19)*k[1]^2*alpha+(1/19)*(-beta*p[1]-delta*r[1]-9*w[1])*k[1]+(5/19)*p[1]^2)*a[1]^4*exp(5*t*w[1]+5*x*k[1]+5*y*p[1]+5*z*r[1])+(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1])*a[0]^5-exp(6*t*w[1]+6*x*k[1]+6*y*p[1]+6*z*r[1])*a[1]^5)*(k[1]^6-5*k[1]^3*p[1]+k[1]^2*alpha+(beta*p[1]+delta*r[1]+9*w[1])*k[1]-5*p[1]^2))*a[1] = 0

(12)

E := %

2*a[0]*k[1]*(-57*a[0]^4*(k[1]^6-(15/19)*k[1]^3*p[1]-(1/19)*k[1]^2*alpha+(1/19)*(-beta*p[1]-delta*r[1]-9*w[1])*k[1]+(5/19)*p[1]^2)*a[1]*exp(2*t*w[1]+2*x*k[1]+2*y*p[1]+2*z*r[1])+302*a[0]^3*(k[1]^6+(25/151)*k[1]^3*p[1]+(1/151)*k[1]^2*alpha+(1/151)*(beta*p[1]+delta*r[1]+9*w[1])*k[1]-(5/151)*p[1]^2)*a[1]^2*exp(3*t*w[1]+3*x*k[1]+3*y*p[1]+3*z*r[1])-302*a[0]^2*(k[1]^6+(25/151)*k[1]^3*p[1]+(1/151)*k[1]^2*alpha+(1/151)*(beta*p[1]+delta*r[1]+9*w[1])*k[1]-(5/151)*p[1]^2)*a[1]^3*exp(4*t*w[1]+4*x*k[1]+4*y*p[1]+4*z*r[1])+57*a[0]*(k[1]^6-(15/19)*k[1]^3*p[1]-(1/19)*k[1]^2*alpha+(1/19)*(-beta*p[1]-delta*r[1]-9*w[1])*k[1]+(5/19)*p[1]^2)*a[1]^4*exp(5*t*w[1]+5*x*k[1]+5*y*p[1]+5*z*r[1])+(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1])*a[0]^5-exp(6*t*w[1]+6*x*k[1]+6*y*p[1]+6*z*r[1])*a[1]^5)*(k[1]^6-5*k[1]^3*p[1]+k[1]^2*alpha+(beta*p[1]+delta*r[1]+9*w[1])*k[1]-5*p[1]^2))*a[1] = 0

(13)

indets(E)

{alpha, beta, delta, t, x, y, z, a[0], a[1], k[1], p[1], r[1], w[1], exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]), exp(2*t*w[1]+2*x*k[1]+2*y*p[1]+2*z*r[1]), exp(3*t*w[1]+3*x*k[1]+3*y*p[1]+3*z*r[1]), exp(4*t*w[1]+4*x*k[1]+4*y*p[1]+4*z*r[1]), exp(5*t*w[1]+5*x*k[1]+5*y*p[1]+5*z*r[1]), exp(6*t*w[1]+6*x*k[1]+6*y*p[1]+6*z*r[1])}

(14)

E1 := subs({exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]) = eX, exp(2*t*w[1]+2*x*k[1]+2*y*p[1]+2*z*r[1]) = eY, exp(3*t*w[1]+3*x*k[1]+3*y*p[1]+3*z*r[1]) = eZ, exp(4*t*w[1]+4*x*k[1]+4*y*p[1]+4*z*r[1]) = eW, exp(5*t*w[1]+5*x*k[1]+5*y*p[1]+5*z*r[1]) = eV, exp(6*t*w[1]+6*x*k[1]+6*y*p[1]+6*z*r[1]) = eB}, E)

2*a[0]*k[1]*(-57*a[0]^4*(k[1]^6-(15/19)*k[1]^3*p[1]-(1/19)*k[1]^2*alpha+(1/19)*(-beta*p[1]-delta*r[1]-9*w[1])*k[1]+(5/19)*p[1]^2)*a[1]*eY+302*a[0]^3*(k[1]^6+(25/151)*k[1]^3*p[1]+(1/151)*k[1]^2*alpha+(1/151)*(beta*p[1]+delta*r[1]+9*w[1])*k[1]-(5/151)*p[1]^2)*a[1]^2*eZ-302*a[0]^2*(k[1]^6+(25/151)*k[1]^3*p[1]+(1/151)*k[1]^2*alpha+(1/151)*(beta*p[1]+delta*r[1]+9*w[1])*k[1]-(5/151)*p[1]^2)*a[1]^3*eW+57*a[0]*(k[1]^6-(15/19)*k[1]^3*p[1]-(1/19)*k[1]^2*alpha+(1/19)*(-beta*p[1]-delta*r[1]-9*w[1])*k[1]+(5/19)*p[1]^2)*a[1]^4*eV+(-eB*a[1]^5+eX*a[0]^5)*(k[1]^6-5*k[1]^3*p[1]+k[1]^2*alpha+(beta*p[1]+delta*r[1]+9*w[1])*k[1]-5*p[1]^2))*a[1] = 0

(15)

indets(E1)

{alpha, beta, delta, eB, eV, eW, eX, eY, eZ, a[0], a[1], k[1], p[1], r[1], w[1]}

(16)

p2c := normal(E1)

-2*a[0]*k[1]*(eB*a[1]^5*k[1]^6-57*eV*a[0]*a[1]^4*k[1]^6+302*eW*a[0]^2*a[1]^3*k[1]^6-eX*a[0]^5*k[1]^6+57*eY*a[0]^4*a[1]*k[1]^6-302*eZ*a[0]^3*a[1]^2*k[1]^6-5*eB*a[1]^5*k[1]^3*p[1]+45*eV*a[0]*a[1]^4*k[1]^3*p[1]+50*eW*a[0]^2*a[1]^3*k[1]^3*p[1]+5*eX*a[0]^5*k[1]^3*p[1]-45*eY*a[0]^4*a[1]*k[1]^3*p[1]-50*eZ*a[0]^3*a[1]^2*k[1]^3*p[1]+alpha*eB*a[1]^5*k[1]^2+3*alpha*eV*a[0]*a[1]^4*k[1]^2+2*alpha*eW*a[0]^2*a[1]^3*k[1]^2-alpha*eX*a[0]^5*k[1]^2-3*alpha*eY*a[0]^4*a[1]*k[1]^2-2*alpha*eZ*a[0]^3*a[1]^2*k[1]^2+beta*eB*a[1]^5*k[1]*p[1]+3*beta*eV*a[0]*a[1]^4*k[1]*p[1]+2*beta*eW*a[0]^2*a[1]^3*k[1]*p[1]-beta*eX*a[0]^5*k[1]*p[1]-3*beta*eY*a[0]^4*a[1]*k[1]*p[1]-2*beta*eZ*a[0]^3*a[1]^2*k[1]*p[1]+delta*eB*a[1]^5*k[1]*r[1]+3*delta*eV*a[0]*a[1]^4*k[1]*r[1]+2*delta*eW*a[0]^2*a[1]^3*k[1]*r[1]-delta*eX*a[0]^5*k[1]*r[1]-3*delta*eY*a[0]^4*a[1]*k[1]*r[1]-2*delta*eZ*a[0]^3*a[1]^2*k[1]*r[1]+9*eB*a[1]^5*k[1]*w[1]-5*eB*a[1]^5*p[1]^2+27*eV*a[0]*a[1]^4*k[1]*w[1]-15*eV*a[0]*a[1]^4*p[1]^2+18*eW*a[0]^2*a[1]^3*k[1]*w[1]-10*eW*a[0]^2*a[1]^3*p[1]^2-9*eX*a[0]^5*k[1]*w[1]+5*eX*a[0]^5*p[1]^2-27*eY*a[0]^4*a[1]*k[1]*w[1]+15*eY*a[0]^4*a[1]*p[1]^2-18*eZ*a[0]^3*a[1]^2*k[1]*w[1]+10*eZ*a[0]^3*a[1]^2*p[1]^2)*a[1] = 0

(17)

indets(p2c)

{alpha, beta, delta, eB, eV, eW, eX, eY, eZ, a[0], a[1], k[1], p[1], r[1], w[1]}

(18)

eqns := {coeffs(collect(p2c, {eB, eV, eW, eX, eY, eZ}, distributed), {eB, eV, eW, eX, eY, eZ})}; nops(%)

Error, invalid arguments to coeffs

 

1

(19)

NULL

Co := solve(E1, {a[0], a[1], k[1], n[1], p[1], r[1], w[1]}, explicit)

{a[0] = a[0], a[1] = a[1], k[1] = 0, n[1] = n[1], p[1] = p[1], r[1] = r[1], w[1] = w[1]}, {a[0] = a[0], a[1] = 0, k[1] = k[1], n[1] = n[1], p[1] = p[1], r[1] = r[1], w[1] = w[1]}, {a[0] = 0, a[1] = a[1], k[1] = k[1], n[1] = n[1], p[1] = p[1], r[1] = r[1], w[1] = w[1]}, {a[0] = a[0], a[1] = a[1], k[1] = k[1], n[1] = n[1], p[1] = p[1], r[1] = -(eB*a[1]^5*k[1]^6-57*eV*a[0]*a[1]^4*k[1]^6+302*eW*a[0]^2*a[1]^3*k[1]^6-eX*a[0]^5*k[1]^6+57*eY*a[0]^4*a[1]*k[1]^6-302*eZ*a[0]^3*a[1]^2*k[1]^6-5*eB*a[1]^5*k[1]^3*p[1]+45*eV*a[0]*a[1]^4*k[1]^3*p[1]+50*eW*a[0]^2*a[1]^3*k[1]^3*p[1]+5*eX*a[0]^5*k[1]^3*p[1]-45*eY*a[0]^4*a[1]*k[1]^3*p[1]-50*eZ*a[0]^3*a[1]^2*k[1]^3*p[1]+alpha*eB*a[1]^5*k[1]^2+3*alpha*eV*a[0]*a[1]^4*k[1]^2+2*alpha*eW*a[0]^2*a[1]^3*k[1]^2-alpha*eX*a[0]^5*k[1]^2-3*alpha*eY*a[0]^4*a[1]*k[1]^2-2*alpha*eZ*a[0]^3*a[1]^2*k[1]^2+beta*eB*a[1]^5*k[1]*p[1]+3*beta*eV*a[0]*a[1]^4*k[1]*p[1]+2*beta*eW*a[0]^2*a[1]^3*k[1]*p[1]-beta*eX*a[0]^5*k[1]*p[1]-3*beta*eY*a[0]^4*a[1]*k[1]*p[1]-2*beta*eZ*a[0]^3*a[1]^2*k[1]*p[1]+9*eB*a[1]^5*k[1]*w[1]-5*eB*a[1]^5*p[1]^2+27*eV*a[0]*a[1]^4*k[1]*w[1]-15*eV*a[0]*a[1]^4*p[1]^2+18*eW*a[0]^2*a[1]^3*k[1]*w[1]-10*eW*a[0]^2*a[1]^3*p[1]^2-9*eX*a[0]^5*k[1]*w[1]+5*eX*a[0]^5*p[1]^2-27*eY*a[0]^4*a[1]*k[1]*w[1]+15*eY*a[0]^4*a[1]*p[1]^2-18*eZ*a[0]^3*a[1]^2*k[1]*w[1]+10*eZ*a[0]^3*a[1]^2*p[1]^2)/(delta*k[1]*(eB*a[1]^5+3*eV*a[0]*a[1]^4+2*eW*a[0]^2*a[1]^3-eX*a[0]^5-3*eY*a[0]^4*a[1]-2*eZ*a[0]^3*a[1]^2)), w[1] = w[1]}

(20)

NULL

case1 := Co[1]

{a[0] = a[0], a[1] = a[1], k[1] = 0, n[1] = n[1], p[1] = p[1], r[1] = r[1], w[1] = w[1]}

(21)

F := subs(case1, S)

f(x, y, z, t) = a[0]+a[1]*exp(t*w[1]+y*p[1]+z*r[1])

(22)

F1 := eval(H, F)

u(x, y, z, t) = 0

(23)

NULL

pdetest(F1, pde)

0

(24)

Download F-P-O-W.mw

Dear community,

i want to create my own RGB Matrix for a plot. In this picture from maple soft homepage you can see a matrix A. I created a Matrix with 49 rows and 49 columns. From Datatyp Float. The plots is just red. Has anybody an idea how I can create a Matrix, which works?

3 4 5 6 7 8 9 Last Page 5 of 2411