MaplePrimes Questions

Hi,

I would like to instal Maple 9.5 in my laptop, once I already have some few programs for his version. I don't know how much cost Maple 9.5, and how do download it. 

I live in Brazil.

Thanks in advance.

Carrijo.

jose.carrijo@gmail.com

Let L=[a1,a2,...,an] be a list of positive real numbers. 

My Question:

How to write a procedure to find a minimal interval such as [b,c] 

provided that this interval covers entries of L which are close together. 

Example: 

let L:=[8.1 , 2.03 , 3.5 , 0.05 , 4.1]. Then the output of the procedure is the interval [2.03 , 4.1].

In fact we want to eliminate some entries of L that are not close to other entries of L.

Thanks in advance

Hi

I am trying to implement a maplesim block that takes two vectors as input and a 6x6 matrix as an output. I alrady got help with how to implement the inputs and the outputs however it was for an one input one output system.

The current code is the following

However this results in both inputs being placed ontop of each other

Do anybody know how to change the position of the two inputs so that they are not on top of each other?

Mvh
Eric Ragnarsson

Hi

I am on my way to construct a matrix for centripetal and Coriolis forces for a robot arm. However this requeers that I use a sum where the matrix index is the sumations index.

So I started testing things out before I constructed the full expresion, this is what I did.

According to the error page, this is du to that k in M[1,k] is an bad index, however in the sum this would be k=1 och k=2 whitch are vallid.

Do anybody know a way around this problem or can tell me what I did wrong.

 

Many thanks

Eric Ragnarsson

I am trying to plot the contour plot between eta and x but getting complex value. can anyone help me to resolve it
 

restart

psi := -.5500000000*cosh(eta)/sinh(1.+.5000000000*x^2)-(0.5000000000e-1*(-9.+(10.*(4.412800000*cosh(1.+.5000000000*x^2)*sinh(1.+.5000000000*x^2)-.9000000000*exp(2.*x^2+4.)*exp(-1.*x^2-2.)+1.800000000*exp(x^2+2.)*exp(-1.*x^2-2.)-.9000000000*exp(-1.*x^2-2.)))/(exp(-1.*x^2-2.)*((1.+.5000000000*x^2)*exp(2.*x^2+4.)-2.-.5000000000*x^2+2.*exp(x^2+2.)-1.*exp(2.*x^2+4.)))))*sinh(eta)/cosh(1.+.5000000000*x^2)+(.5000000000*(4.412800000*cosh(1.+.5000000000*x^2)*sinh(1.+.5000000000*x^2)-.9000000000*exp(2.*x^2+4.)*exp(-1.*x^2-2.)+1.800000000*exp(x^2+2.)*exp(-1.*x^2-2.)-.9000000000*exp(-1.*x^2-2.)))*eta/(exp(-1.*x^2-2.)*((1.+.5000000000*x^2)*exp(2.*x^2+4.)-2.-.5000000000*x^2+2.*exp(x^2+2.)-1.*exp(2.*x^2+4.)))+(2.*(-.2750000000*exp(eta)-.2750000000*exp(-1.*eta)))*exp(1.+.5000000000*x^2)/(exp(x^2+2.)-1.)+.2032000000*eta/x^2+0.4000000000e-3*exp(-1.*eta)*(1125.*x^4*exp(2.*eta+1.+.5000000000*x^2)-508.*x^2*exp(2.*eta+1.+.5000000000*x^2)-1125.*x^4*exp(1.+.5000000000*x^2)+4500.*exp(eta)*eta*x^2+508.*x^2*exp(1.+.5000000000*x^2)-2032.*exp(eta)*eta)/(x^2*(x^2*exp(x^2+2.)+x^2+4.))

-.5500000000*cosh(eta)/sinh(1.+.5000000000*x^2)-0.5000000000e-1*(-9.+10.*(4.412800000*cosh(1.+.5000000000*x^2)*sinh(1.+.5000000000*x^2)-.9000000000*exp(2.*x^2+4.)*exp(-1.*x^2-2.)+1.800000000*exp(x^2+2.)*exp(-1.*x^2-2.)-.9000000000*exp(-1.*x^2-2.))/(exp(-1.*x^2-2.)*((1.+.5000000000*x^2)*exp(2.*x^2+4.)-2.-.5000000000*x^2+2.*exp(x^2+2.)-1.*exp(2.*x^2+4.))))*sinh(eta)/cosh(1.+.5000000000*x^2)+.5000000000*(4.412800000*cosh(1.+.5000000000*x^2)*sinh(1.+.5000000000*x^2)-.9000000000*exp(2.*x^2+4.)*exp(-1.*x^2-2.)+1.800000000*exp(x^2+2.)*exp(-1.*x^2-2.)-.9000000000*exp(-1.*x^2-2.))*eta/(exp(-1.*x^2-2.)*((1.+.5000000000*x^2)*exp(2.*x^2+4.)-2.-.5000000000*x^2+2.*exp(x^2+2.)-1.*exp(2.*x^2+4.)))+2.*(-.2750000000*exp(eta)-.2750000000*exp(-1.*eta))*exp(1.+.5000000000*x^2)/(exp(x^2+2.)-1.)+.2032000000*eta/x^2+0.4000000000e-3*exp(-1.*eta)*(1125.*x^4*exp(2.*eta+1.+.5000000000*x^2)-508.*x^2*exp(2.*eta+1.+.5000000000*x^2)-1125.*x^4*exp(1.+.5000000000*x^2)+4500.*exp(eta)*eta*x^2+508.*x^2*exp(1.+.5000000000*x^2)-2032.*exp(eta)*eta)/(x^2*(x^2*exp(x^2+2.)+x^2+4.))

(1)

solve(-.5500000000*cosh(eta)/sinh(1.+.5000000000*x^2)-(0.5000000000e-1*(-9.+(10.*(4.412800000*cosh(1.+.5000000000*x^2)*sinh(1.+.5000000000*x^2)-.9000000000*exp(2.*x^2+4.)*exp(-1.*x^2-2.)+1.800000000*exp(x^2+2.)*exp(-1.*x^2-2.)-.9000000000*exp(-1.*x^2-2.)))/(exp(-1.*x^2-2.)*((1.+.5000000000*x^2)*exp(2.*x^2+4.)-2.-.5000000000*x^2+2.*exp(x^2+2.)-1.*exp(2.*x^2+4.)))))*sinh(eta)/cosh(1.+.5000000000*x^2)+(.5000000000*(4.412800000*cosh(1.+.5000000000*x^2)*sinh(1.+.5000000000*x^2)-.9000000000*exp(2.*x^2+4.)*exp(-1.*x^2-2.)+1.800000000*exp(x^2+2.)*exp(-1.*x^2-2.)-.9000000000*exp(-1.*x^2-2.)))*eta/(exp(-1.*x^2-2.)*((1.+.5000000000*x^2)*exp(2.*x^2+4.)-2.-.5000000000*x^2+2.*exp(x^2+2.)-1.*exp(2.*x^2+4.)))+(2.*(-.2750000000*exp(eta)-.2750000000*exp(-1.*eta)))*exp(1.+.5000000000*x^2)/(exp(x^2+2.)-1.)+.2032000000*eta/x^2+0.4000000000e-3*exp(-1.*eta)*(1125.*x^4*exp(2.*eta+1.+.5000000000*x^2)-508.*x^2*exp(2.*eta+1.+.5000000000*x^2)-1125.*x^4*exp(1.+.5000000000*x^2)+4500.*exp(eta)*eta*x^2+508.*x^2*exp(1.+.5000000000*x^2)-2032.*exp(eta)*eta)/(x^2*(x^2*exp(x^2+2.)+x^2+4.)) = 0, eta)

(1250.*x^2*(exp(1.+.5000000000*x^2))^8+125.*x^2*(exp(1.+.5000000000*x^2))^6-254.*(exp(1.+.5000000000*x^2))^8+125.*x^2*exp(x^2+2.+2.*RootOf(-1250*x^2*(exp(1+(1/2)*x^2))^8-381*x^2*exp(3*x^2+_Z+6)+254*_Z*exp(3*x^2+_Z+6)-125*x^2*(exp(1+(1/2)*x^2))^6+254*(exp(1+(1/2)*x^2))^8-3375*x^2*exp(2*x^2+_Z+4)-762*exp(3*x^2+_Z+6)-125*x^2*exp(x^2+2*_Z+2)+2250*_Z*exp(2*x^2+_Z+4)-3004*(exp(1+(1/2)*x^2))^6+3756*x^2*exp(x^2+_Z+2)-6750*exp(2*x^2+_Z+4)-1250*x^2*(exp(_Z))^2-254*exp(x^2+2*_Z+2)-2504*_Z*exp(x^2+_Z+2)+7512*exp(x^2+_Z+2)-2496*(exp(_Z))^2))+3004.*(exp(1.+.5000000000*x^2))^6+1250.*x^2*(exp(RootOf(-1250*x^2*(exp(1+(1/2)*x^2))^8-381*x^2*exp(3*x^2+_Z+6)+254*_Z*exp(3*x^2+_Z+6)-125*x^2*(exp(1+(1/2)*x^2))^6+254*(exp(1+(1/2)*x^2))^8-3375*x^2*exp(2*x^2+_Z+4)-762*exp(3*x^2+_Z+6)-125*x^2*exp(x^2+2*_Z+2)+2250*_Z*exp(2*x^2+_Z+4)-3004*(exp(1+(1/2)*x^2))^6+3756*x^2*exp(x^2+_Z+2)-6750*exp(2*x^2+_Z+4)-1250*x^2*(exp(_Z))^2-254*exp(x^2+2*_Z+2)-2504*_Z*exp(x^2+_Z+2)+7512*exp(x^2+_Z+2)-2496*(exp(_Z))^2)))^2+254.*exp(x^2+2.+2.*RootOf(-1250*x^2*(exp(1+(1/2)*x^2))^8-381*x^2*exp(3*x^2+_Z+6)+254*_Z*exp(3*x^2+_Z+6)-125*x^2*(exp(1+(1/2)*x^2))^6+254*(exp(1+(1/2)*x^2))^8-3375*x^2*exp(2*x^2+_Z+4)-762*exp(3*x^2+_Z+6)-125*x^2*exp(x^2+2*_Z+2)+2250*_Z*exp(2*x^2+_Z+4)-3004*(exp(1+(1/2)*x^2))^6+3756*x^2*exp(x^2+_Z+2)-6750*exp(2*x^2+_Z+4)-1250*x^2*(exp(_Z))^2-254*exp(x^2+2*_Z+2)-2504*_Z*exp(x^2+_Z+2)+7512*exp(x^2+_Z+2)-2496*(exp(_Z))^2))+2496.*(exp(RootOf(-1250*x^2*(exp(1+(1/2)*x^2))^8-381*x^2*exp(3*x^2+_Z+6)+254*_Z*exp(3*x^2+_Z+6)-125*x^2*(exp(1+(1/2)*x^2))^6+254*(exp(1+(1/2)*x^2))^8-3375*x^2*exp(2*x^2+_Z+4)-762*exp(3*x^2+_Z+6)-125*x^2*exp(x^2+2*_Z+2)+2250*_Z*exp(2*x^2+_Z+4)-3004*(exp(1+(1/2)*x^2))^6+3756*x^2*exp(x^2+_Z+2)-6750*exp(2*x^2+_Z+4)-1250*x^2*(exp(_Z))^2-254*exp(x^2+2*_Z+2)-2504*_Z*exp(x^2+_Z+2)+7512*exp(x^2+_Z+2)-2496*(exp(_Z))^2)))^2)/((254.*(exp(1.+.5000000000*x^2))^6+2250.*(exp(1.+.5000000000*x^2))^4-2504.*(exp(1.+.5000000000*x^2))^2)*exp(RootOf(-1250*x^2*(exp(1+(1/2)*x^2))^8-381*x^2*exp(3*x^2+_Z+6)+254*_Z*exp(3*x^2+_Z+6)-125*x^2*(exp(1+(1/2)*x^2))^6+254*(exp(1+(1/2)*x^2))^8-3375*x^2*exp(2*x^2+_Z+4)-762*exp(3*x^2+_Z+6)-125*x^2*exp(x^2+2*_Z+2)+2250*_Z*exp(2*x^2+_Z+4)-3004*(exp(1+(1/2)*x^2))^6+3756*x^2*exp(x^2+_Z+2)-6750*exp(2*x^2+_Z+4)-1250*x^2*(exp(_Z))^2-254*exp(x^2+2*_Z+2)-2504*_Z*exp(x^2+_Z+2)+7512*exp(x^2+_Z+2)-2496*(exp(_Z))^2)))

(2)

with(plots)

contourplot(eta, x = -1 .. 1)

Error, (in plots:-contourplot) invalid input: `plots/contplot` uses a 3rd argument, r2 (of type {range, name = range}), which is missing

 

``


 

Download Help_on_countour_plot.mw

plots:-contourplot(16.70196911*2^(1/2)*((x^2 + 0.1*y)/((1 - x)*(3*x^2 + 0.2*y)))^(1/2)/(4.373839156*(x^2 + 0.1*y)/((1 - x)*(3*x^2 + 0.2*y)) + 1)^(1/2), x = 0.001 .. 1, y = 0.001 .. 1, contours = 20, thickness = 0, coloring = ["blue", "yellow"], axes = "boxed", filledregions = true)

I have tried many times, such as adding legendstyle = [position=correct],legend = true command, but it always report errors.

Can anyone help me solve this problem? Thank you.

Hi.

in the ThermophysicalData[Chemicals] package that compute the coefficients for different species how I can find that coefficients for seven coefficients not nine of them

in other words, I am seeking to find Databases for the NASA Seven-Coefficient Polynomial Fits for Calculating Thermodynamic Properties of Individual Species.

Best

Hi,

I'm trying to make Maple reduce an extensively simple complex equation, something so simple anybody with basic knowledge of complex numbers would take about 2 mins to solve manually.

Yet, I can't seem to get Maple to do it, which is disappointing. I can only hope the issue is on my side (I would be glad to be the one in the wrong).

 

example.mw

 

I expect at the last line a reduction to s^2 + 2*z*omega__n * s + omega__n^2

I tried different combinations of simplification functions without success. Simplify doesn't work much better.

 

Basically looking at something like this, but on Maple (this comes from Maxima), if possible *WITHOUT* the need for assume() on any scale (just like Maxima and Mathematica) :

Thanks!

I made a customised procedure of Elzaki transform which  is working for functions but  it is not for derivatives.Elziki_costume.mw

I remember seeing sometime ago an option called something like "fraction free" in LinearAlgebra. But may be I was looking at something else or different package. I can't remember now. I searched the help pages now and googled and can't find it.

In Maple, when asking for eigenvectors of matrix, I'd like the vectors to come out fraction free, like with Mathematica.

It is ofcourse easy to write code to post process this and remove the fractions.

But before I do this, I thought to ask. Here is an example

restart;
A:=Matrix([[48,-30,-14,1],[65,-41,-19,0],[17,-10,-5,3],[-35,22,10,0]]);
(e,v):=LinearAlgebra:-Eigenvectors(A);

In Mathematica:

Anyone knows if such option exists somewhere?

Maple 2020.1

Heck Example 15.5 must have worked for an old version of maple.

restart;
## plot two functions and color the region between
sine :=   plot(sin(x), x=0..4*Pi, color=black,thickness=3):
s    :=   plot(sin(x), x=0..4*Pi, color=red, filled=true):
cosine := plot(cos(x), x=0..4*Pi, color=black,thickness=3):
c      := plot(cos(x), x=0..4*Pi, color=red, filled=true):
f := x -> if cos(x)>0 and sin(x)>0 then
              min(cos(x),sin(x))
          elif cos(x)<0 and sin(x)<0 then
              max(cos(x),sin(x))
          else 0
          end if;
b := plot(f(x), x=0..4*Pi, filled=true, color=green):

display([sine, cosine, b, s, c]):

Gives the error.

Error, (in f) cannot determine if this expression is true or false: 0 < cos(x)
and 0 < sin(x)

I tried verify(cos(x),0,less_than) and verify(sin(x),0,less_than), etc., but that makes f(x) always return 0.

f := sin(x);
g := cos(x);
plottools:-transform(unapply([x,y+g],x,y))(plot(f-g,x=0 .. 4*Pi,filled=true));
Works, but, I can not remember how that works.

Is it possible to use if in maple 2020.

In this example, PDEtools:-Solve throws an error, while solve returns empty solution.

Why the different behavior? Should PDEtools:-Solve also return empty solution like solve?

I noticed this, when I changed my code from using solve to using PDEtools:-Solve

restart;
eq:=[ eta1+2*eta2 = 0, eta1+2*eta2 = a1+a3, eta2 = a2+2*a3];
PDEtools:-Solve(eq,[a1, a2, a3]);


solve(eq,[a1, a2, a3])

interface(version)
Standard Worksheet Interface, Maple 2020.1, Windows 10, July 30 

   2020 Build ID 1482634


Physics:-Version()

The "Physics Updates" version in the MapleCloud is 832 and is 

   the same as the version installed in this computer, created 

   2020, October 3, 5:34 hours Pacific Time.


Maple 2020.1 

How do I use to compute d(logS(t)) and use this to find the closed form solution of S(t)

Hello

Just started out with maple. 

I entered a function that looks like this, to find the volume of a sphere: V := (4*Pi(d/2)^3)/3

then I use the eval command like this: eval(V, d = 6.35*mm)

and I get this:(4*Pi(3.175000000*mm)^3)/3

Anything I tried, maple doesn't want to spit out one number! I just need what that is equal to, I don't need an expression with Pi. Spent over two hours trying to figure it out, watching videos etc but no luck! hoping that someone can help me with this!

Is there any way to get maple to use zero index offseting?

n[0] actually represents the first element?

 

3 4 5 6 7 8 9 Last Page 5 of 1943