MaplePrimes Questions

Hi, I'm trying to solve these 2 nonlinear equations in f, g, and x, where x is from 0 to 1 with an increment of 0.1.

I am new to Maple and do not know the basics. Please try and help me. I'd highly appreciate it.

Since this is a nonlinear system, multiple solutions exist, I need to find the first 3 or 5 solutions. Once I solve the system, I would like to plot 2 plots, y-x and z-x.

Why does _EnvLinalg95 only affect  (and ) and not and ? 
 

restart;

m := <3 , 4 | 4 , 3>;

m := Matrix(2, 2, {(1, 1) = 3, (1, 2) = 4, (2, 1) = 4, (2, 2) = 3})

(1)

LinearAlgebra:-Eigenvalues(m);

Vector(2, {(1) = 7, (2) = -1})

(2)

LinearAlgebra:-Eigenvectors(m);

Vector(2, {(1) = -1, (2) = 7}), Matrix(2, 2, {(1, 1) = -1, (1, 2) = 1, (2, 1) = 1, (2, 2) = 1})

(3)

LinearAlgebra:-EigenConditionNumbers(m);

Vector(2, {(1) = 1.00000000000000, (2) = 1.00000000000000}), Vector(2, {(1) = 8., (2) = 8.})

(4)

_EnvLinalg95 := true:

whattype(m);

Matrix

(5)

LinearAlgebra:-Eigenvalues(m);

Vector(2, {(1) = 7, (2) = -1})

(6)

LinearAlgebra:-Eigenvectors(m):

Error, (in Matrix) invalid input: `Matrix/MakeInit` expects its 1st argument, initializer, to be of type list(list), but received [proc (i, j) options operator, arrow; `if`(j = 1 and i <= 2, (Vector(2, {(1) = 1, (2) = 1}))[i], rhs(fill_opt)) end proc]

 

LinearAlgebra:-EigenConditionNumbers(m);

Vector(2, {(1) = 1.00000000000000, (2) = 1.00000000000000}), Vector(2, {(1) = 8., (2) = 8.})

(7)

_EnvLinalg95 := false:

LinearAlgebra:-Eigenvectors(m);

Vector(2, {(1) = -1, (2) = 7}), Matrix(2, 2, {(1, 1) = -1, (1, 2) = 1, (2, 1) = 1, (2, 2) = 1})

(8)


 

Download _EnvLinalg95.mw

I have read the help page of Eigenvectors but couldn't find anything related.

how to find CharacteristicPolynomiall of matrix with vector entries? 

restart

with(LinearAlgebra)

with(ArrayTools)

M := Matrix([[-(I*2)*lambda+I*(lambda+m0), c], [-Transpose(c), I*a+I*(lambda+m0)]])

Matrix(%id = 36893490099698106484)

(1)

P := CharacteristicPolynomial(M, eta)

eta^2+(-I*a-(2*I)*m0)*eta+a*lambda-a*m0+c^2+lambda^2-m0^2

(2)

NULL

NULL

NULL

NULL

Download characpol.mw

This plot does not have units on the y-axis

Unit(('W')/'m'^2)*max(t/Unit('s'), 0);
plot(%, t = -Unit('s') .. 2*Unit('s'));

Any idea why and how to get them back when max is involved?

Hello,

I want to use the spline options in the SavitzkyGolayFilter, but I don't understand the description in the Maple help. Can someone give me Sytax examples? I would also like to specify the 1st and 2nd derivatives of the endpoints.

I am grateful for any help!

I was wondering if there was a command that could tell me if an expression consisting of undermined functions was always positive (with real domain).

For example f1:=f(x)^2+g(y)^4 is always positive.

but f(x)^2-g(y)^2 is only positive on a restricted domain.

This looks like a bug I have not seen before. Any one seen this before?

Error, (in Handlers:-TrigExpOnly) cannot determine if this expression is true or false: tr_is_cos

Can others reproduce it? I am using Maple 2023.2 on windows 10

btw, I found that by doing int(evala(integrand),t) instead of int(integrand,t) then the error goes away but not all the time. Below are two examples. The first where evala() fixes it, but the second it does not fix it. 

Physics:-Version()

`The "Physics Updates" version in the MapleCloud is 1585 and is the same as the version installed in this computer, created 2023, October 29, 6:31 hours Pacific Time.`

interface(version);

`Standard Worksheet Interface, Maple 2023.2, Windows 10, October 25 2023 Build ID 1753458`

restart;

15332

integrand:=-(((sqrt(3)*sqrt(27983)*I + 276)*(-594 + 6*I*sqrt(3)*sqrt(27983))^(1/3) + 15*I*sqrt(3)*sqrt(27983) + (25*(-594 + 6*I*sqrt(3)*sqrt(27983))^(2/3))/2 + 2265)*(-150 + (-150 + (-594 + 6*I*sqrt(3)*sqrt(27983))^(2/3))*sqrt(3)*I - (-594 + 6*I*sqrt(3)*sqrt(27983))^(2/3) + 24*(-594 + 6*I*sqrt(3)*sqrt(27983))^(1/3))*(150 + (-150 + (-594 + 6*I*sqrt(3)*sqrt(27983))^(2/3))*sqrt(3)*I + (-594 + 6*I*sqrt(3)*sqrt(27983))^(2/3) - 24*(-594 + 6*I*sqrt(3)*sqrt(27983))^(1/3))*((sqrt(3)*sqrt(27983)*I + 276)*(-594 + 6*I*sqrt(3)*sqrt(27983))^(1/3) - 15*I*sqrt(3)*sqrt(27983) - 2265)*exp(-t*((-594 + 6*I*sqrt(83949))^(2/3)/3 + (-594 + 6*I*sqrt(83949))^(1/3) + 50)/(-594 + 6*I*sqrt(83949))^(1/3))*(-594 + 6*I*sqrt(3)*sqrt(27983))^(2/3)*((-594 + 6*I*sqrt(3)*sqrt(27983))^(2/3) + 12*(-594 + 6*I*sqrt(3)*sqrt(27983))^(1/3) + 150)*sin(t)*cos(t))/(10101630528*(sqrt(3)*sqrt(27983)*I - 99)^2*(sqrt(3)*sqrt(27983)*I + 27983/33)*exp(t)) - ((-594 + 6*I*sqrt(83949))^(2/3) + 12*(-594 + 6*I*sqrt(83949))^(1/3) + 150)*(2*I*sqrt(83949)*(-594 + 6*I*sqrt(83949))^(1/3) + 30*I*sqrt(83949) + 25*(-594 + 6*I*sqrt(83949))^(2/3) + 552*(-594 + 6*I*sqrt(83949))^(1/3) + 4530)*(-594 + 6*I*sqrt(83949))^(1/3)*(sqrt(83949)*(-594 + 6*I*sqrt(83949))^(1/3)*I - 15*I*sqrt(83949) + 276*(-594 + 6*I*sqrt(83949))^(1/3) - 2265)*exp(-t*((-594 + 6*I*sqrt(83949))^(2/3)/3 + (-594 + 6*I*sqrt(83949))^(1/3) + 50)/(-594 + 6*I*sqrt(83949))^(1/3))*(8*cos(t)^2/exp(t) - 4/exp(t))/(5196312*(sqrt(83949)*I + 27983/33)*(sqrt(83949)*I - 99)) + ((-594 + 6*I*sqrt(83949))^(2/3) + 12*(-594 + 6*I*sqrt(83949))^(1/3) + 150)*(2*I*sqrt(83949)*(-594 + 6*I*sqrt(83949))^(1/3) + 30*I*sqrt(83949) + 25*(-594 + 6*I*sqrt(83949))^(2/3) + 552*(-594 + 6*I*sqrt(83949))^(1/3) + 4530)*(-150 + (-594 + 6*I*sqrt(83949))^(2/3))*(-594 + 6*I*sqrt(83949))^(2/3)*exp(-t*((-594 + 6*I*sqrt(83949))^(2/3)/3 + (-594 + 6*I*sqrt(83949))^(1/3) + 50)/(-594 + 6*I*sqrt(83949))^(1/3))/(1154736*(sqrt(83949)*I + 27983/33)*(sqrt(83949)*I - 99)*exp(t)):

int(integrand,t)

Error, (in Handlers:-TrigExpOnly) cannot determine if this expression is true or false: tr_is_cos

 

Download handler_trig_exp_only_nov_18_2023.mw

But the trick of using evala() to avoid this error does not always work. Here is an example below. So need to find another workaround for this.

restart;

18704

interface(version);

`Standard Worksheet Interface, Maple 2023.2, Windows 10, October 25 2023 Build ID 1753458`

integrand2:=1/40406522112*I*(-594+6*I*3^(1/2)*27983^(1/2))^(2/3)*exp(t*(5/3*3^(1/2)*2^(1/2)
*sin(1/3*arctan(1/99*83949^(1/2))+1/6*Pi)-5*cos(1/3*arctan(1/99*83949^(1/2))+1/
6*Pi)*2^(1/2)-1))*(150+I*(-150+(-594+6*I*3^(1/2)*27983^(1/2))^(2/3))*3^(1/2)+(-\
594+6*I*3^(1/2)*27983^(1/2))^(2/3)-24*(-594+6*I*3^(1/2)*27983^(1/2))^(1/3))*(
2265+(276+I*(27983^(1/2)+92)*3^(1/2)-27983^(1/2))*(-594+6*I*3^(1/2)*27983^(1/2)
)^(1/3)+5*I*(-151+3*27983^(1/2))*3^(1/2)+15*27983^(1/2))*(2265-25*(-594+6*I*3^(
1/2)*27983^(1/2))^(2/3)+(276+I*(-276+27983^(1/2))*3^(1/2)+3*27983^(1/2))*(-594+
6*I*3^(1/2)*27983^(1/2))^(1/3)+15*I*(151+27983^(1/2))*3^(1/2)-45*27983^(1/2))*(
(-594+6*I*3^(1/2)*27983^(1/2))^(2/3)+12*(-594+6*I*3^(1/2)*27983^(1/2))^(1/3)+
150)*3^(1/2)*(-150+I*(-150+(-594+6*I*3^(1/2)*27983^(1/2))^(2/3))*3^(1/2)-(-594+
6*I*3^(1/2)*27983^(1/2))^(2/3)+24*(-594+6*I*3^(1/2)*27983^(1/2))^(1/3))/(I*3^(1
/2)*27983^(1/2)+27983/33)/(I*3^(1/2)*27983^(1/2)-99)^2/exp(t)*sin(t)*cos(t)-1/
20785248*I*(I*(-594+6*I*3^(1/2)*27983^(1/2))^(2/3)*3^(1/2)+(-594+6*I*3^(1/2)*
27983^(1/2))^(2/3)-150*I*3^(1/2)-24*(-594+6*I*3^(1/2)*27983^(1/2))^(1/3)+150)*
exp(5/3*3^(1/2)*sin(1/3*arctan(1/99*83949^(1/2))+1/6*Pi)*2^(1/2)*t-5*cos(1/3*
arctan(1/99*83949^(1/2))+1/6*Pi)*2^(1/2)*t-t)*(2265-25*(-594+6*I*3^(1/2)*27983^
(1/2))^(2/3)+(276+I*(-276+27983^(1/2))*3^(1/2)+3*27983^(1/2))*(-594+6*I*3^(1/2)
*27983^(1/2))^(1/3)+15*I*(151+27983^(1/2))*3^(1/2)-45*27983^(1/2))*(2265+(276+I
*(27983^(1/2)+92)*3^(1/2)-27983^(1/2))*(-594+6*I*3^(1/2)*27983^(1/2))^(1/3)+5*I
*(-151+3*27983^(1/2))*3^(1/2)+15*27983^(1/2))*(-594+6*I*3^(1/2)*27983^(1/2))^(1
/3)*3^(1/2)/(I*3^(1/2)*27983^(1/2)+27983/33)/(I*3^(1/2)*27983^(1/2)-99)*(8/exp(
t)*cos(t)^2-4/exp(t))+1/13856832*I*(-594+6*I*3^(1/2)*27983^(1/2))^(2/3)*(-450+I
*(-150+(-594+6*I*3^(1/2)*27983^(1/2))^(2/3))*3^(1/2)-3*(-594+6*I*3^(1/2)*27983^
(1/2))^(2/3))*exp(t*(5/3*3^(1/2)*2^(1/2)*sin(1/3*arctan(1/99*83949^(1/2))+1/6*
Pi)-5*cos(1/3*arctan(1/99*83949^(1/2))+1/6*Pi)*2^(1/2)-1))*(150+I*(-150+(-594+6
*I*3^(1/2)*27983^(1/2))^(2/3))*3^(1/2)+(-594+6*I*3^(1/2)*27983^(1/2))^(2/3)-24*
(-594+6*I*3^(1/2)*27983^(1/2))^(1/3))*(2265-25*(-594+6*I*3^(1/2)*27983^(1/2))^(
2/3)+(276+I*(-276+27983^(1/2))*3^(1/2)+3*27983^(1/2))*(-594+6*I*3^(1/2)*27983^(
1/2))^(1/3)+15*I*(151+27983^(1/2))*3^(1/2)-45*27983^(1/2))*3^(1/2)/(I*3^(1/2)*
27983^(1/2)+27983/33)/(I*3^(1/2)*27983^(1/2)-99)/exp(t):

int(integrand2,t);

Error, (in Handlers:-TrigExpOnly) cannot determine if this expression is true or false: tr_is_cos

int(evala(integrand2),t);

Error, (in Handlers:-TrigExpOnly) cannot determine if this expression is true or false: tr_is_cos

 

Download handler_trig_exp_version_2.mw

ps. send to Maplesoft support.

Why aren't all the variables in fin 1 equation?

And the answers are different from the solutions?

 

restart

with(student)

eq1 := 12*gamma^3*rho[3]^2*(diff(w(psi), `$`(psi, 2)))+(-3*gamma*rho[2]^2+4*omega*rho[3]^2)*w(psi)+gamma*rho[3]^2*(rho[1]+2*rho[3])*w(psi)^3

12*gamma^3*rho[3]^2*(diff(diff(w(psi), psi), psi))+(-3*gamma*rho[2]^2+4*omega*rho[3]^2)*w(psi)+gamma*rho[3]^2*(rho[1]+2*rho[3])*w(psi)^3

(1)

NULL

"w(psi):=kappa[0]+sum(kappa[i]*((diff(E,psi))^(i))/((E(psi))^(i)),i=1..1)+sum(h[i]*(((diff(E,psi))^())/((E(psi))^()))^(-i),i=1..1);"

proc (psi) options operator, arrow, function_assign; kappa[0]+sum(kappa[i]*(diff(E, psi))^i/E(psi)^i, i = 1 .. 1)+sum(h[i]*((diff(E, psi))/E(psi))^(-i), i = 1 .. 1) end proc

(2)

"E(psi):=((epsilon[1]*jacobiCN(Zeta[1]*psi))+(epsilon[2]*jacobiSN(Zeta[2]*psi)))/((epsilon[3]*jacobiCN(Zeta[3]*psi))+(epsilon[4]*jacobiSN(Zeta[4]*psi))) ;"

proc (psi) options operator, arrow, function_assign; (varepsilon[1]*jacobiCN(Zeta[1]*psi)+varepsilon[2]*jacobiSN(Zeta[2]*psi))/(varepsilon[3]*jacobiCN(Zeta[3]*psi)+varepsilon[4]*jacobiSN(Zeta[4]*psi)) end proc

(3)

 

NULL

fin1 := simplify(eq1)

kappa[0]*(gamma*rho[3]^2*(rho[1]+2*rho[3])*kappa[0]^2-3*gamma*rho[2]^2+4*omega*rho[3]^2)

(4)

Sol := solve(fin1, {omega, Zeta[1], Zeta[2], Zeta[3], Zeta[4], epsilon[1], epsilon[2], epsilon[3], epsilon[4], h[1], kappa[0], kappa[1]})

{omega = omega, Zeta[1] = Zeta[1], Zeta[2] = Zeta[2], Zeta[3] = Zeta[3], Zeta[4] = Zeta[4], h[1] = h[1], kappa[0] = 0, kappa[1] = kappa[1], varepsilon[1] = varepsilon[1], varepsilon[2] = varepsilon[2], varepsilon[3] = varepsilon[3], varepsilon[4] = varepsilon[4]}, {omega = -(1/4)*gamma*(kappa[0]^2*rho[1]*rho[3]^2+2*kappa[0]^2*rho[3]^3-3*rho[2]^2)/rho[3]^2, Zeta[1] = Zeta[1], Zeta[2] = Zeta[2], Zeta[3] = Zeta[3], Zeta[4] = Zeta[4], h[1] = h[1], kappa[0] = kappa[0], kappa[1] = kappa[1], varepsilon[1] = varepsilon[1], varepsilon[2] = varepsilon[2], varepsilon[3] = varepsilon[3], varepsilon[4] = varepsilon[4]}

(5)

for i to 2 do Case[i] := allvalues(Sol[i]) end do

{omega = omega, Zeta[1] = Zeta[1], Zeta[2] = Zeta[2], Zeta[3] = Zeta[3], Zeta[4] = Zeta[4], h[1] = h[1], kappa[0] = 0, kappa[1] = kappa[1], varepsilon[1] = varepsilon[1], varepsilon[2] = varepsilon[2], varepsilon[3] = varepsilon[3], varepsilon[4] = varepsilon[4]}

 

{omega = -(1/4)*gamma*(kappa[0]^2*rho[1]*rho[3]^2+2*kappa[0]^2*rho[3]^3-3*rho[2]^2)/rho[3]^2, Zeta[1] = Zeta[1], Zeta[2] = Zeta[2], Zeta[3] = Zeta[3], Zeta[4] = Zeta[4], h[1] = h[1], kappa[0] = kappa[0], kappa[1] = kappa[1], varepsilon[1] = varepsilon[1], varepsilon[2] = varepsilon[2], varepsilon[3] = varepsilon[3], varepsilon[4] = varepsilon[4]}

(6)

NULL

NULL

Download 0123.mw

Since C2=D1.D1inv should be equal to I. But return is just an expression (see attached). Further, how to obtain residue for a function C2?

residue.mw

MmaTranslator:-Mma:-Chop  does not seem to work as advertised.. It is supposed to work like Mathematica's Chop, but it does not. Is this by design or is it a bug?

restart;

MmaTranslator:-Mma:-Chop(((1.378834798932344*10^(-15))*I)*t) ;

returns the same input (1.378834799*10^(-15))*I*t but

MmaTranslator:-Mma:-Chop(((1.378834798932344*10^(-15))*I));

now returns 0.

But compare to Mathematica:

This makes it not very useful to use if one has to remove all symbols from an expression first, Any workaround? Here is an actual example where I wanted to use it

ode:=[diff(x(t), t) = -3*x(t) + 4*y(t), diff(y(t), t) = 5*x(t) + 9*z(t), diff(z(t), t) = y(t) + 6*z(t)];
sol:=dsolve(ode):
evalf[16](sol);

gives

Gives

{x(t) = (0.8172764110864494 - (7.853170607134887*10^(-16))*I)*c__1*exp((1.894304969211800 - (1.378834798932344*10^(-15))*I)*t) - (1.150854759654687 + (3.398186702482929*10^(-16))*I)*c__2*exp((-6.475677505300665 + (3.730232887526917*10^(-17))*I)*t) + (0.3780227930126823 + (9.268277369231981*10^(-16))*I)*c__3*exp((7.581372536088866 + (1.198480681985453*10^(-15))*I)*t), y(t) = c__1*exp((1.894304969211800 - (1.378834798932344*10^(-15))*I)*t) + c__2*exp((-6.475677505300665 + (3.730232887526917*10^(-17))*I)*t) + c__3*exp((7.581372536088866 + (1.198480681985453*10^(-15))*I)*t), z(t) = (-0.2435641206911610 + (1.431838044809606*10^(-16))*I)*c__1*exp((1.894304969211800 - (1.378834798932344*10^(-15))*I)*t) + (-0.08015596744746927 + (4.286632781083632*10^(-16))*I)*c__2*exp((-6.475677505300665 + (3.730232887526917*10^(-17))*I)*t) + (0.6323620634472722 - (5.261170533293161*10^(-16))*I)*c__3*exp((7.581372536088866 + (1.198480681985453*10^(-15))*I)*t)}

But Chop does not work on this. 

Maple 2023.2

There seems to be a consensus about using ListTools:-SearchAll to locate an item in a list. However, this subroutine does not work on other expressions; A simple instance is that “ListTools:-SearchAll(1, [[1], 1]);” only outputs  while what I need is  (because both “op([1, 1], [[1], 1])” and “op([2], [[1], 1])” are ). And actually, I hope that there is a more general version in Maple.
For example, I intend to do something like 

restart;
expr, elem := ToInert(eval(`print/Diff`)), '_Inert_NAME'("_syslib"):
SearchAll(elem, expr);

and 

List:=[[[[cS,[[[cS,cS],cS],[[[cS,cS],[[cK,cK],cS]],cS]]],cS],cS],[[[cS,[[cK,cS],cK]],cK],cS]]: 
items:=Or([[[identical(cS),anything],anything],anything],[[identical(cK),anything],anything]): 
SearchAll(items,List); 

In other words, I need all positions of an operand of an expression (cf. op).

It may be manually checked that the "indices" of  in  include [5,1,1,2,1,1,1,2,1,2,1,2], [5,1,2,2,1,1,1,1,2,1,2], and [5,2,2,1,1,3,1,2], since 

patmatch(op([5, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2], expr), elem);
 = 
                              true

patmatch(op([5, 1, 2, 2, 1, 1, 1, 1, 2, 1, 2], expr), elem);
 = 
                              true

patmatch(op([5, 2, 2, 1, 1, 3, 1, 2], expr), elem);
 = 
                              true

Similarly, after some manual searchs, 

[[1], [1, 1, 1, 2], [1, 1, 1, 2, 2], [1, 1, 1, 2, 2, 1, 2], [2], [2, 1, 1, 2]]:
convert(typematch~(map2(`?[]`, List, `%`), items), `and`);
 = 
                              true

It turns out that all "indices" in  of  are [1][1,1,1,2][1,1,1,2,2][1,1,1,2,2,1,2][2], and [2,1,1,2].
But isn't there such a  command that can eliminate the need to manually retrieve them?

When the original poster receives or finds the answer to the question he/she posed, should he/she

  1. Reply to it
  2. Answer to it?

I have seen "true answers" that were converted to a reply, despite addressing the initial answer correctly. In case there are no other answers, the question will still be listed under unanswered question which is incorrect.

What practice should be applied in MaplePrimes for "true answers"?

I'm stucked in trying to prove that rel(n)  is true for each integer n > 1.

restart

rel := n -> (n-3)^(n/(n-1))*2^(n/(n-1))-((n-1)*2^(n/(n-1))-4*2^(1/(n-1)))*(n-3)^(1/(n-1)) = 0

proc (n) options operator, arrow; (n-3)^(n/(n-1))*2^(n/(n-1))-((n-1)*2^(n/(n-1))-4*2^(1/(n-1)))*(n-3)^(1/(n-1)) = 0 end proc

(1)

 

Download Prove_It_True.mw

Do you have any idea to do this?

TIA

Would Any one be able to give some explanation as to why calling a proc, which does not change anything globally but only acts on the input given, returns different answer the second time it is called with the same exact input? I am not able to understand this result at all. 

Maple 2023.2 on windows 10.

restart;

27260

W:=Matrix(3, 3, [[x^(1/12*(44+12*69^(1/2))^(1/3)-5/3/(44+12*69^(1/2))^(1/3)+2/3)*cos(1/2*3^(1/2)*(-1/6*(44+12*69^(1/2))^(1/3)-10/3/(44+12*69^(1/2))^(1/3))*ln(x)),-x^(1/12*(44+12*69^(1/2))^(1/3)-5/3/(44+12*69^(1/2))^(1/3)+2/3)*sin(1/2*3^(1/2)*(-1/6*(44+12*69^(1/2))^(1/3)-10/3/(44+12*69^(1/2))^(1/3))*ln(x)),x^(-1/6*(44+12*69^(1/2))^(1/3)+10/3/(44+12*69^(1/2))^(1/3)+2/3)],[x^(1/12*(44+12*69^(1/2))^(1/3)-5/3/(44+12*69^(1/2))^(1/3)+2/3)*(1/12*(44+12*69^(1/2))^(1/3)-5/3/(44+12*69^(1/2))^(1/3)+2/3)/x*cos(1/2*3^(1/2)*(-1/6*(44+12*69^(1/2))^(1/3)-10/3/(44+12*69^(1/2))^(1/3))*ln(x))-1/2*x^(1/12*(44+12*69^(1/2))^(1/3)-5/3/(44+12*69^(1/2))^(1/3)+2/3)*3^(1/2)*(-1/6*(44+12*69^(1/2))^(1/3)-10/3/(44+12*69^(1/2))^(1/3))/x*sin(1/2*3^(1/2)*(-1/6*(44+12*69^(1/2))^(1/3)-10/3/(44+12*69^(1/2))^(1/3))*ln(x)),-x^(1/12*(44+12*69^(1/2))^(1/3)-5/3/(44+12*69^(1/2))^(1/3)+2/3)*(1/12*(44+12*69^(1/2))^(1/3)-5/3/(44+12*69^(1/2))^(1/3)+2/3)/x*sin(1/2*3^(1/2)*(-1/6*(44+12*69^(1/2))^(1/3)-10/3/(44+12*69^(1/2))^(1/3))*ln(x))-1/2*x^(1/12*(44+12*69^(1/2))^(1/3)-5/3/(44+12*69^(1/2))^(1/3)+2/3)*3^(1/2)*(-1/6*(44+12*69^(1/2))^(1/3)-10/3/(44+12*69^(1/2))^(1/3))/x*cos(1/2*3^(1/2)*(-1/6*(44+12*69^(1/2))^(1/3)-10/3/(44+12*69^(1/2))^(1/3))*ln(x)),x^(-1/6*(44+12*69^(1/2))^(1/3)+10/3/(44+12*69^(1/2))^(1/3)+2/3)*(-1/6*(44+12*69^(1/2))^(1/3)+10/3/(44+12*69^(1/2))^(1/3)+2/3)/x],[x^(1/12*(44+12*69^(1/2))^(1/3)-5/3/(44+12*69^(1/2))^(1/3)+2/3)*(1/12*(44+12*69^(1/2))^(1/3)-5/3/(44+12*69^(1/2))^(1/3)+2/3)^2/x^2*cos(1/2*3^(1/2)*(-1/6*(44+12*69^(1/2))^(1/3)-10/3/(44+12*69^(1/2))^(1/3))*ln(x))-x^(1/12*(44+12*69^(1/2))^(1/3)-5/3/(44+12*69^(1/2))^(1/3)+2/3)*(1/12*(44+12*69^(1/2))^(1/3)-5/3/(44+12*69^(1/2))^(1/3)+2/3)/x^2*cos(1/2*3^(1/2)*(-1/6*(44+12*69^(1/2))^(1/3)-10/3/(44+12*69^(1/2))^(1/3))*ln(x))-x^(1/12*(44+12*69^(1/2))^(1/3)-5/3/(44+12*69^(1/2))^(1/3)+2/3)*(1/12*(44+12*69^(1/2))^(1/3)-5/3/(44+12*69^(1/2))^(1/3)+2/3)/x^2*3^(1/2)*(-1/6*(44+12*69^(1/2))^(1/3)-10/3/(44+12*69^(1/2))^(1/3))*sin(1/2*3^(1/2)*(-1/6*(44+12*69^(1/2))^(1/3)-10/3/(44+12*69^(1/2))^(1/3))*ln(x))+1/2*x^(1/12*(44+12*69^(1/2))^(1/3)-5/3/(44+12*69^(1/2))^(1/3)+2/3)*3^(1/2)*(-1/6*(44+12*69^(1/2))^(1/3)-10/3/(44+12*69^(1/2))^(1/3))/x^2*sin(1/2*3^(1/2)*(-1/6*(44+12*69^(1/2))^(1/3)-10/3/(44+12*69^(1/2))^(1/3))*ln(x))-3/4*x^(1/12*(44+12*69^(1/2))^(1/3)-5/3/(44+12*69^(1/2))^(1/3)+2/3)*(-1/6*(44+12*69^(1/2))^(1/3)-10/3/(44+12*69^(1/2))^(1/3))^2/x^2*cos(1/2*3^(1/2)*(-1/6*(44+12*69^(1/2))^(1/3)-10/3/(44+12*69^(1/2))^(1/3))*ln(x)),-x^(1/12*(44+12*69^(1/2))^(1/3)-5/3/(44+12*69^(1/2))^(1/3)+2/3)*(1/12*(44+12*69^(1/2))^(1/3)-5/3/(44+12*69^(1/2))^(1/3)+2/3)^2/x^2*sin(1/2*3^(1/2)*(-1/6*(44+12*69^(1/2))^(1/3)-10/3/(44+12*69^(1/2))^(1/3))*ln(x))+x^(1/12*(44+12*69^(1/2))^(1/3)-5/3/(44+12*69^(1/2))^(1/3)+2/3)*(1/12*(44+12*69^(1/2))^(1/3)-5/3/(44+12*69^(1/2))^(1/3)+2/3)/x^2*sin(1/2*3^(1/2)*(-1/6*(44+12*69^(1/2))^(1/3)-10/3/(44+12*69^(1/2))^(1/3))*ln(x))-x^(1/12*(44+12*69^(1/2))^(1/3)-5/3/(44+12*69^(1/2))^(1/3)+2/3)*(1/12*(44+12*69^(1/2))^(1/3)-5/3/(44+12*69^(1/2))^(1/3)+2/3)/x^2*3^(1/2)*(-1/6*(44+12*69^(1/2))^(1/3)-10/3/(44+12*69^(1/2))^(1/3))*cos(1/2*3^(1/2)*(-1/6*(44+12*69^(1/2))^(1/3)-10/3/(44+12*69^(1/2))^(1/3))*ln(x))+1/2*x^(1/12*(44+12*69^(1/2))^(1/3)-5/3/(44+12*69^(1/2))^(1/3)+2/3)*3^(1/2)*(-1/6*(44+12*69^(1/2))^(1/3)-10/3/(44+12*69^(1/2))^(1/3))/x^2*cos(1/2*3^(1/2)*(-1/6*(44+12*69^(1/2))^(1/3)-10/3/(44+12*69^(1/2))^(1/3))*ln(x))+3/4*x^(1/12*(44+12*69^(1/2))^(1/3)-5/3/(44+12*69^(1/2))^(1/3)+2/3)*(-1/6*(44+12*69^(1/2))^(1/3)-10/3/(44+12*69^(1/2))^(1/3))^2/x^2*sin(1/2*3^(1/2)*(-1/6*(44+12*69^(1/2))^(1/3)-10/3/(44+12*69^(1/2))^(1/3))*ln(x)),x^(-1/6*(44+12*69^(1/2))^(1/3)+10/3/(44+12*69^(1/2))^(1/3)+2/3)*(-1/6*(44+12*69^(1/2))^(1/3)+10/3/(44+12*69^(1/2))^(1/3)+2/3)^2/x^2-x^(-1/6*(44+12*69^(1/2))^(1/3)+10/3/(44+12*69^(1/2))^(1/3)+2/3)*(-1/6*(44+12*69^(1/2))^(1/3)+10/3/(44+12*69^(1/2))^(1/3)+2/3)/x^2]]):
 

foo:=proc(W::Matrix,x::symbol)
   local W1:=W,W_det,W1_det;
   local F:=2*x^3-ln(x):

   W_det := LinearAlgebra:-Determinant(W);

   #change the first column
   W1[1..3,1] := Vector['column']([0,0,F/x^3]):

   W1_det := simplify(LinearAlgebra:-Determinant(W1)):

   simplify(W1_det/W_det);
end proc:
 

foo(W,x);

-x^(-(1/12)*((44+12*3^(1/2)*23^(1/2))^(2/3)+20*(44+12*3^(1/2)*23^(1/2))^(1/3)-20)/(44+12*3^(1/2)*23^(1/2))^(1/3))*(x^3-(1/2)*ln(x))*(3^(1/2)*((44+12*3^(1/2)*23^(1/2))^(2/3)+20)*cos((1/12)*3^(1/2)*((44+12*3^(1/2)*23^(1/2))^(2/3)+20)*ln(x)/(44+12*3^(1/2)*23^(1/2))^(1/3))+3*sin((1/12)*3^(1/2)*((44+12*3^(1/2)*23^(1/2))^(2/3)+20)*ln(x)/(44+12*3^(1/2)*23^(1/2))^(1/3))*((44+12*3^(1/2)*23^(1/2))^(2/3)-20))*3^(1/2)*(3^(1/2)*23^(1/2)+11/3)/((44+12*3^(1/2)*23^(1/2))^(1/3)*(11*3^(1/2)*23^(1/2)+207))

foo(W,x)

1

 

Download why_different_answer.mw

Hi there

I am using the Determinant() function in maple to calculate the determinant of 32 by 32 matrix consisting of variables like x1,x2, x3... as well as the products of these variables. This determinant calculation works very well less for 16x16 matrices. However in the 32 by 32 case it takes days and still no result (attached and below you can see the matrix) My first question is that problem actually solvable in reasonable time like within 2 days and do you have any advice how I can achieve this goal.

Thx

Rgds

Birol

1,x5,x4,x4*x5,x1,x1*x5,x1*x4,x1*x4*x5,x2*x5,x2,x2*x4*x5,x2*x4,x1*x2*x5,x1*x2,x1*x2*x4*x5,x1*x2*x4,x1*x3,x1*x3*x5,x1*x3*x4,x1*x3*x4*x5,x3,x3*x5,x3*x4,x3*x4*x5,x1*x2*x3*x5,x1*x2*x3,x1*x2*x3*x4*x5,x1*x2*x3*x4,x2*x3*x5,x2*x3,x2*x3*x4*x5,x2*x3*x4
x5,1,x4*x5,x4,x1*x5,x1,x1*x4*x5,x1*x4,x2,x2*x5,x2*x4,x2*x4*x5,x1*x2,x1*x2*x5,x1*x2*x4,x1*x2*x4*x5,x1*x3*x5,x1*x3,x1*x3*x4*x5,x1*x3*x4,x3*x5,x3,x3*x4*x5,x3*x4,x1*x2*x3,x1*x2*x3*x5,x1*x2*x3*x4,x1*x2*x3*x4*x5,x2*x3,x2*x3*x5,x2*x3*x4,x2*x3*x4*x5
x4,x4*x5,1,x5,x1*x4,x1*x4*x5,x1,x1*x5,x2*x4*x5,x2*x4,x2*x5,x2,x1*x2*x4*x5,x1*x2*x4,x1*x2*x5,x1*x2,x1*x3*x4,x1*x3*x4*x5,x1*x3,x1*x3*x5,x3*x4,x3*x4*x5,x3,x3*x5,x1*x2*x3*x4*x5,x1*x2*x3*x4,x1*x2*x3*x5,x1*x2*x3,x2*x3*x4*x5,x2*x3*x4,x2*x3*x5,x2*x3
x4*x5,x4,x5,1,x1*x4*x5,x1*x4,x1*x5,x1,x2*x4,x2*x4*x5,x2,x2*x5,x1*x2*x4,x1*x2*x4*x5,x1*x2,x1*x2*x5,x1*x3*x4*x5,x1*x3*x4,x1*x3*x5,x1*x3,x3*x4*x5,x3*x4,x3*x5,x3,x1*x2*x3*x4,x1*x2*x3*x4*x5,x1*x2*x3,x1*x2*x3*x5,x2*x3*x4,x2*x3*x4*x5,x2*x3,x2*x3*x5
x1,x1*x5,x1*x4,x1*x4*x5,1,x5,x4,x4*x5,x1*x2*x5,x1*x2,x1*x2*x4*x5,x1*x2*x4,x2*x5,x2,x2*x4*x5,x2*x4,x3,x3*x5,x3*x4,x3*x4*x5,x1*x3,x1*x3*x5,x1*x3*x4,x1*x3*x4*x5,x2*x3*x5,x2*x3,x2*x3*x4*x5,x2*x3*x4,x1*x2*x3*x5,x1*x2*x3,x1*x2*x3*x4*x5,x1*x2*x3*x4
x1*x5,x1,x1*x4*x5,x1*x4,x5,1,x4*x5,x4,x1*x2,x1*x2*x5,x1*x2*x4,x1*x2*x4*x5,x2,x2*x5,x2*x4,x2*x4*x5,x3*x5,x3,x3*x4*x5,x3*x4,x1*x3*x5,x1*x3,x1*x3*x4*x5,x1*x3*x4,x2*x3,x2*x3*x5,x2*x3*x4,x2*x3*x4*x5,x1*x2*x3,x1*x2*x3*x5,x1*x2*x3*x4,x1*x2*x3*x4*x5
x1*x4,x1*x4*x5,x1,x1*x5,x4,x4*x5,1,x5,x1*x2*x4*x5,x1*x2*x4,x1*x2*x5,x1*x2,x2*x4*x5,x2*x4,x2*x5,x2,x3*x4,x3*x4*x5,x3,x3*x5,x1*x3*x4,x1*x3*x4*x5,x1*x3,x1*x3*x5,x2*x3*x4*x5,x2*x3*x4,x2*x3*x5,x2*x3,x1*x2*x3*x4*x5,x1*x2*x3*x4,x1*x2*x3*x5,x1*x2*x3
x1*x4*x5,x1*x4,x1*x5,x1,x4*x5,x4,x5,1,x1*x2*x4,x1*x2*x4*x5,x1*x2,x1*x2*x5,x2*x4,x2*x4*x5,x2,x2*x5,x3*x4*x5,x3*x4,x3*x5,x3,x1*x3*x4*x5,x1*x3*x4,x1*x3*x5,x1*x3,x2*x3*x4,x2*x3*x4*x5,x2*x3,x2*x3*x5,x1*x2*x3*x4,x1*x2*x3*x4*x5,x1*x2*x3,x1*x2*x3*x5
x2*x5,x2,x2*x4*x5,x2*x4,x1*x2*x5,x1*x2,x1*x2*x4*x5,x1*x2*x4,1,x5,x4,x4*x5,x1,x1*x5,x1*x4,x1*x4*x5,x1*x2*x3*x5,x1*x2*x3,x1*x2*x3*x4*x5,x1*x2*x3*x4,x2*x3*x5,x2*x3,x2*x3*x4*x5,x2*x3*x4,x1*x3,x1*x3*x5,x1*x3*x4,x1*x3*x4*x5,x3,x3*x5,x3*x4,x3*x4*x5
x2,x2*x5,x2*x4,x2*x4*x5,x1*x2,x1*x2*x5,x1*x2*x4,x1*x2*x4*x5,x5,1,x4*x5,x4,x1*x5,x1,x1*x4*x5,x1*x4,x1*x2*x3,x1*x2*x3*x5,x1*x2*x3*x4,x1*x2*x3*x4*x5,x2*x3,x2*x3*x5,x2*x3*x4,x2*x3*x4*x5,x1*x3*x5,x1*x3,x1*x3*x4*x5,x1*x3*x4,x3*x5,x3,x3*x4*x5,x3*x4
x2*x4*x5,x2*x4,x2*x5,x2,x1*x2*x4*x5,x1*x2*x4,x1*x2*x5,x1*x2,x4,x4*x5,1,x5,x1*x4,x1*x4*x5,x1,x1*x5,x1*x2*x3*x4*x5,x1*x2*x3*x4,x1*x2*x3*x5,x1*x2*x3,x2*x3*x4*x5,x2*x3*x4,x2*x3*x5,x2*x3,x1*x3*x4,x1*x3*x4*x5,x1*x3,x1*x3*x5,x3*x4,x3*x4*x5,x3,x3*x5
x2*x4,x2*x4*x5,x2,x2*x5,x1*x2*x4,x1*x2*x4*x5,x1*x2,x1*x2*x5,x4*x5,x4,x5,1,x1*x4*x5,x1*x4,x1*x5,x1,x1*x2*x3*x4,x1*x2*x3*x4*x5,x1*x2*x3,x1*x2*x3*x5,x2*x3*x4,x2*x3*x4*x5,x2*x3,x2*x3*x5,x1*x3*x4*x5,x1*x3*x4,x1*x3*x5,x1*x3,x3*x4*x5,x3*x4,x3*x5,x3
x1*x2*x5,x1*x2,x1*x2*x4*x5,x1*x2*x4,x2*x5,x2,x2*x4*x5,x2*x4,x1,x1*x5,x1*x4,x1*x4*x5,1,x5,x4,x4*x5,x2*x3*x5,x2*x3,x2*x3*x4*x5,x2*x3*x4,x1*x2*x3*x5,x1*x2*x3,x1*x2*x3*x4*x5,x1*x2*x3*x4,x3,x3*x5,x3*x4,x3*x4*x5,x1*x3,x1*x3*x5,x1*x3*x4,x1*x3*x4*x5
x1*x2,x1*x2*x5,x1*x2*x4,x1*x2*x4*x5,x2,x2*x5,x2*x4,x2*x4*x5,x1*x5,x1,x1*x4*x5,x1*x4,x5,1,x4*x5,x4,x2*x3,x2*x3*x5,x2*x3*x4,x2*x3*x4*x5,x1*x2*x3,x1*x2*x3*x5,x1*x2*x3*x4,x1*x2*x3*x4*x5,x3*x5,x3,x3*x4*x5,x3*x4,x1*x3*x5,x1*x3,x1*x3*x4*x5,x1*x3*x4
x1*x2*x4*x5,x1*x2*x4,x1*x2*x5,x1*x2,x2*x4*x5,x2*x4,x2*x5,x2,x1*x4,x1*x4*x5,x1,x1*x5,x4,x4*x5,1,x5,x2*x3*x4*x5,x2*x3*x4,x2*x3*x5,x2*x3,x1*x2*x3*x4*x5,x1*x2*x3*x4,x1*x2*x3*x5,x1*x2*x3,x3*x4,x3*x4*x5,x3,x3*x5,x1*x3*x4,x1*x3*x4*x5,x1*x3,x1*x3*x5
x1*x2*x4,x1*x2*x4*x5,x1*x2,x1*x2*x5,x2*x4,x2*x4*x5,x2,x2*x5,x1*x4*x5,x1*x4,x1*x5,x1,x4*x5,x4,x5,1,x2*x3*x4,x2*x3*x4*x5,x2*x3,x2*x3*x5,x1*x2*x3*x4,x1*x2*x3*x4*x5,x1*x2*x3,x1*x2*x3*x5,x3*x4*x5,x3*x4,x3*x5,x3,x1*x3*x4*x5,x1*x3*x4,x1*x3*x5,x1*x3
x1*x3,x1*x3*x5,x1*x3*x4,x1*x3*x4*x5,x3,x3*x5,x3*x4,x3*x4*x5,x1*x2*x3*x5,x1*x2*x3,x1*x2*x3*x4*x5,x1*x2*x3*x4,x2*x3*x5,x2*x3,x2*x3*x4*x5,x2*x3*x4,1,x5,x4,x4*x5,x1,x1*x5,x1*x4,x1*x4*x5,x2*x5,x2,x2*x4*x5,x2*x4,x1*x2*x5,x1*x2,x1*x2*x4*x5,x1*x2*x4
x1*x3*x5,x1*x3,x1*x3*x4*x5,x1*x3*x4,x3*x5,x3,x3*x4*x5,x3*x4,x1*x2*x3,x1*x2*x3*x5,x1*x2*x3*x4,x1*x2*x3*x4*x5,x2*x3,x2*x3*x5,x2*x3*x4,x2*x3*x4*x5,x5,1,x4*x5,x4,x1*x5,x1,x1*x4*x5,x1*x4,x2,x2*x5,x2*x4,x2*x4*x5,x1*x2,x1*x2*x5,x1*x2*x4,x1*x2*x4*x5
x1*x3*x4,x1*x3*x4*x5,x1*x3,x1*x3*x5,x3*x4,x3*x4*x5,x3,x3*x5,x1*x2*x3*x4*x5,x1*x2*x3*x4,x1*x2*x3*x5,x1*x2*x3,x2*x3*x4*x5,x2*x3*x4,x2*x3*x5,x2*x3,x4,x4*x5,1,x5,x1*x4,x1*x4*x5,x1,x1*x5,x2*x4*x5,x2*x4,x2*x5,x2,x1*x2*x4*x5,x1*x2*x4,x1*x2*x5,x1*x2
x1*x3*x4*x5,x1*x3*x4,x1*x3*x5,x1*x3,x3*x4*x5,x3*x4,x3*x5,x3,x1*x2*x3*x4,x1*x2*x3*x4*x5,x1*x2*x3,x1*x2*x3*x5,x2*x3*x4,x2*x3*x4*x5,x2*x3,x2*x3*x5,x4*x5,x4,x5,1,x1*x4*x5,x1*x4,x1*x5,x1,x2*x4,x2*x4*x5,x2,x2*x5,x1*x2*x4,x1*x2*x4*x5,x1*x2,x1*x2*x5
x3,x3*x5,x3*x4,x3*x4*x5,x1*x3,x1*x3*x5,x1*x3*x4,x1*x3*x4*x5,x2*x3*x5,x2*x3,x2*x3*x4*x5,x2*x3*x4,x1*x2*x3*x5,x1*x2*x3,x1*x2*x3*x4*x5,x1*x2*x3*x4,x1,x1*x5,x1*x4,x1*x4*x5,1,x5,x4,x4*x5,x1*x2*x5,x1*x2,x1*x2*x4*x5,x1*x2*x4,x2*x5,x2,x2*x4*x5,x2*x4
x3*x5,x3,x3*x4*x5,x3*x4,x1*x3*x5,x1*x3,x1*x3*x4*x5,x1*x3*x4,x2*x3,x2*x3*x5,x2*x3*x4,x2*x3*x4*x5,x1*x2*x3,x1*x2*x3*x5,x1*x2*x3*x4,x1*x2*x3*x4*x5,x1*x5,x1,x1*x4*x5,x1*x4,x5,1,x4*x5,x4,x1*x2,x1*x2*x5,x1*x2*x4,x1*x2*x4*x5,x2,x2*x5,x2*x4,x2*x4*x5
x3*x4,x3*x4*x5,x3,x3*x5,x1*x3*x4,x1*x3*x4*x5,x1*x3,x1*x3*x5,x2*x3*x4*x5,x2*x3*x4,x2*x3*x5,x2*x3,x1*x2*x3*x4*x5,x1*x2*x3*x4,x1*x2*x3*x5,x1*x2*x3,x1*x4,x1*x4*x5,x1,x1*x5,x4,x4*x5,1,x5,x1*x2*x4*x5,x1*x2*x4,x1*x2*x5,x1*x2,x2*x4*x5,x2*x4,x2*x5,x2
x3*x4*x5,x3*x4,x3*x5,x3,x1*x3*x4*x5,x1*x3*x4,x1*x3*x5,x1*x3,x2*x3*x4,x2*x3*x4*x5,x2*x3,x2*x3*x5,x1*x2*x3*x4,x1*x2*x3*x4*x5,x1*x2*x3,x1*x2*x3*x5,x1*x4*x5,x1*x4,x1*x5,x1,x4*x5,x4,x5,1,x1*x2*x4,x1*x2*x4*x5,x1*x2,x1*x2*x5,x2*x4,x2*x4*x5,x2,x2*x5
x1*x2*x3*x5,x1*x2*x3,x1*x2*x3*x4*x5,x1*x2*x3*x4,x2*x3*x5,x2*x3,x2*x3*x4*x5,x2*x3*x4,x1*x3,x1*x3*x5,x1*x3*x4,x1*x3*x4*x5,x3,x3*x5,x3*x4,x3*x4*x5,x2*x5,x2,x2*x4*x5,x2*x4,x1*x2*x5,x1*x2,x1*x2*x4*x5,x1*x2*x4,1,x5,x4,x4*x5,x1,x1*x5,x1*x4,x1*x4*x5
x1*x2*x3,x1*x2*x3*x5,x1*x2*x3*x4,x1*x2*x3*x4*x5,x2*x3,x2*x3*x5,x2*x3*x4,x2*x3*x4*x5,x1*x3*x5,x1*x3,x1*x3*x4*x5,x1*x3*x4,x3*x5,x3,x3*x4*x5,x3*x4,x2,x2*x5,x2*x4,x2*x4*x5,x1*x2,x1*x2*x5,x1*x2*x4,x1*x2*x4*x5,x5,1,x4*x5,x4,x1*x5,x1,x1*x4*x5,x1*x4
x1*x2*x3*x4*x5,x1*x2*x3*x4,x1*x2*x3*x5,x1*x2*x3,x2*x3*x4*x5,x2*x3*x4,x2*x3*x5,x2*x3,x1*x3*x4,x1*x3*x4*x5,x1*x3,x1*x3*x5,x3*x4,x3*x4*x5,x3,x3*x5,x2*x4*x5,x2*x4,x2*x5,x2,x1*x2*x4*x5,x1*x2*x4,x1*x2*x5,x1*x2,x4,x4*x5,1,x5,x1*x4,x1*x4*x5,x1,x1*x5
x1*x2*x3*x4,x1*x2*x3*x4*x5,x1*x2*x3,x1*x2*x3*x5,x2*x3*x4,x2*x3*x4*x5,x2*x3,x2*x3*x5,x1*x3*x4*x5,x1*x3*x4,x1*x3*x5,x1*x3,x3*x4*x5,x3*x4,x3*x5,x3,x2*x4,x2*x4*x5,x2,x2*x5,x1*x2*x4,x1*x2*x4*x5,x1*x2,x1*x2*x5,x4*x5,x4,x5,1,x1*x4*x5,x1*x4,x1*x5,x1
x2*x3*x5,x2*x3,x2*x3*x4*x5,x2*x3*x4,x1*x2*x3*x5,x1*x2*x3,x1*x2*x3*x4*x5,x1*x2*x3*x4,x3,x3*x5,x3*x4,x3*x4*x5,x1*x3,x1*x3*x5,x1*x3*x4,x1*x3*x4*x5,x1*x2*x5,x1*x2,x1*x2*x4*x5,x1*x2*x4,x2*x5,x2,x2*x4*x5,x2*x4,x1,x1*x5,x1*x4,x1*x4*x5,1,x5,x4,x4*x5
x2*x3,x2*x3*x5,x2*x3*x4,x2*x3*x4*x5,x1*x2*x3,x1*x2*x3*x5,x1*x2*x3*x4,x1*x2*x3*x4*x5,x3*x5,x3,x3*x4*x5,x3*x4,x1*x3*x5,x1*x3,x1*x3*x4*x5,x1*x3*x4,x1*x2,x1*x2*x5,x1*x2*x4,x1*x2*x4*x5,x2,x2*x5,x2*x4,x2*x4*x5,x1*x5,x1,x1*x4*x5,x1*x4,x5,1,x4*x5,x4
x2*x3*x4*x5,x2*x3*x4,x2*x3*x5,x2*x3,x1*x2*x3*x4*x5,x1*x2*x3*x4,x1*x2*x3*x5,x1*x2*x3,x3*x4,x3*x4*x5,x3,x3*x5,x1*x3*x4,x1*x3*x4*x5,x1*x3,x1*x3*x5,x1*x2*x4*x5,x1*x2*x4,x1*x2*x5,x1*x2,x2*x4*x5,x2*x4,x2*x5,x2,x1*x4,x1*x4*x5,x1,x1*x5,x4,x4*x5,1,x5
x2*x3*x4,x2*x3*x4*x5,x2*x3,x2*x3*x5,x1*x2*x3*x4,x1*x2*x3*x4*x5,x1*x2*x3,x1*x2*x3*x5,x3*x4*x5,x3*x4,x3*x5,x3,x1*x3*x4*x5,x1*x3*x4,x1*x3*x5,x1*x3,x1*x2*x4,x1*x2*x4*x5,x1*x2,x1*x2*x5,x2*x4,x2*x4*x5,x2,x2*x5,x1*x4*x5,x1*x4,x1*x5,x1,x4*x5,x4,x5,1

Download VarchenkoMatrix.txt

2 3 4 5 6 7 8 Last Page 4 of 2279