Joe Riel

7545 Reputation

20 Badges

13 years, 180 days

MaplePrimes Activity

These are Posts that have been published by Joe Riel

Over the holidays I reconnected with an old friend and occasional
chess partner who, upon hearing I was getting soundly thrashed by run
of the mill engines, recommended checking out the ChessTempo site.  It
has online tools for training your chess tactics.  As you attempt to
solve chess problems your rating is computed depending on how well you
do.  The chess problems, too, are rated and adjusted as visitors
attempt them.  This should be familar to any chess or table-tennis
player.  Rather than the Elo rating system, the Glicko rating system is

You have a choice of the relative difficulty of the problems.
After attempting a number of easy puzzles and seeing my rating slowly
climb, I wondered what was the most effective technique to raise my
rating (the classical blunder).  Attempting higher rated problems would lower my
solving rate, but this would be compensated by a smaller loss and
larger gain.  Assuming my actual playing strength is greater than my
current rating (a misconception common to us patzers), there should be a
rating that maximizes the rating gain per problem.

The following Maple module computes the expected rating change
using the Glicko system.

Glicko := module()

export DeltaRating
    ,  ExpectedDelta
    ,  Pwin

    # Return the change in rating for a loss and a win
    # for player 1 against player2
    DeltaRating := proc(r1,rd1,r2,rd2)
    local E, K, g, g2, idd, q;

        q := ln(10)/400;
        g := rd -> 1/sqrt(1 + 3*q^2*rd^2/Pi^2);
        g2 := g(rd2);
        E := 1/(1+10^(-g2*(r1-r2)/400));
        idd := q^2*(g2^2*E*(1-E));

        K := q/(1/rd1^2+idd)*g2;

        (K*(0-E), K*(1-E));

    end proc:

    # Compute the probability of a win
    # for a player with strength s1
    # vs a player with strength s2.

    Pwin := proc(s1, s2)
    local p;
        p := 10^((s1-s2)/400);
    end proc:

    # Compute the expected rating change for
    # player with strength s1, rating r1 vs a player with true rating r2.
    # The optional rating deviations are rd1 and rd2.

    ExpectedDelta := proc(s1,r1,r2,rd1 := 35, rd2 := 35)
    local P, l, w;
        P := Pwin(s1,r2);
        (l,w) := DeltaRating(r1,rd1,r2,rd2);
        P*w + (1-P)*l;
    end proc:

end module:

Assume a player has a rating of 1500 but an actual playing strength of 1700.  Compute the expected rating change for a given puzzle rating, then plot it.  As expected the graph has a peak.


Ept := Glicko:-ExpectedDelta(1700,1500,r2):
plot(Ept,r2 = 1000...2000);

Compute the optimum problem rating



                     {r2 = 1599.350691}

As your rating improves, you'll want to adjust the rating of the problems (the site doesn't allow that fine tuning). Here we plot the optimum puzzle rating (r2) for a given player rating (r1), assuming the player's strength remains at 1700.

Ept := Glicko:-ExpectedDelta(1700, r1, r2):
dEpt := diff(Ept,r2):
r2vsr1 := r -> fsolve(eval(dEpt,r1=r)):
plot(r2vsr1, 1000..1680);

Here is a Maple worksheet with the code and computations.


After pondering this, I realized there is a more useful way to present the results. The shape of the optimal curve is independent of the user's actual strength. Showing that is trivial, just substitute a symbolic value for the player's strength, offset the ratings from it, and verify that the result does not depend on the strength.

Ept := Glicko:-ExpectedDelta(S, S+r1, S+r2):
has(Ept, S);

Here's the general curve, shifted so the player's strength is 0, r1 and r2 are relative to that.

r2_r1 := r -> rhs(Optimization:-Maximize(eval(Ept,r1=r), r2=-500..0)[2][]):
p1 := plot(r2_r1, -500..0, 'numpoints'=30);

Compute and plot the expected points gained when playing the optimal partner and your rating is r-points higher than your strength.

EptMax := r -> eval(Ept, [r1=r, r2=r2_r1(r)]):
plot(EptMax, -200..200, 'numpoints'=30, 'labels' = ["r","Ept"]);

When your playing strength matches your rating, the optimal opponent has a relative rating of


The expected points you win is


Am pondering how to best provide user-configurable options for a few packages I've written. The easiest method is to use global variables, preassign their default values during the package definition (but don't protect them) and save them with the mla used for the package. A user could then assign new values, say in their Maple initialization file or in a worksheet.  For example

  FooDefaultBar := true:
  FooDefaultBaz := false:

That works for a few variables, but is unwieldy if there are many, as the names generally have to be long and verbose to avoid accidental collision. Better may be to use a single record

  FooDefaults := Record('Bar' = true, 'Baz' = false):

To change one or more values, the user could do

   use FooDefaults in
      Bar := false;
   end use:

A drawback of using a global variable or record is that the user can assign any type to the variable, so the using program will have to check it. While one could use a record with typed fields, for example,

  FooDefaults := Record('Bar' :: truefalse = true, 'Baz' :: truefalse := false):

that only has an effect on assignments if kernelopts(assertlevel) is 2, which isn't the default.

A different approach is to use a Maple object to handle configuration variables. The object should be defined separate from the package it is configuring, so that the target package doesn't have to be loaded to customize its configuration. I've created a small object for this, but am not satisfied with its usage. Here is how it is currently used

# Create configuration object for package foo
Configure('fooDefaults', 'Bar' :: truefalse = true, 'Baz' :: truefalse = false):

The Assign method is used to reassign one or more fields

Assign(fooDefaults, 'Bar' = false, 'Baz' = true):

If a value does not match the declared type, an error is raised. Values from the object are available via the index operator:


Am not wild about this approach, the assignment seems clunky and would require a user to consult a help page to learn about the existence of the Assign method, though that would probably be necessary, regardless, to learn about the defaults themselves. Any thoughts on improvements? Attached is the current code.

Configure := module()

option object;

local Default # record of values
    , Type    # record of types
    , nomen   # string corresponding to name of assigned object
    , all :: static := {}

    ModuleApply :: static := proc()
        Object(Configure, _passed);
    end proc;

    ModuleCopy :: static := proc(self :: Configure
                                 , proto :: Configure
                                 , nm :: name
                                 , defaults :: seq(name :: type = anything)
                                 , $
    local eq;
        self:-Default := Record(defaults);
        self:-Type    := Record(seq(op([1,1], eq) = op([1,2], eq), eq = [defaults]));
        self:-nomen   := convert(nm,'`local`');
        nm := self;
        self:-all := {op(self:-all), self:-nomen};
    end proc;

    ModulePrint :: static := proc(self :: Configure)
    local default;
        if self:-Default :: 'record' then
            self:-nomen(seq(default = self:-Default[default]
                            , default = exports(self:-Default)
        end if;
    end proc;

    Assign :: static := proc(self :: Configure
                             , eqs :: seq(name = anything)
                             , $
    local eq, nm, val;
        # Check eqs
        for eq in [eqs] do
            (nm, val) := op(eq);
            if not assigned(self:-Default[nm]) then
                error "%1 is not a default of %2", nm, self:-nomen;
            elif not val :: self:-Type[nm] then
                error ("%1 must be of type %2, received %3"
                       , nm, self:-Type[nm], val);
            end if;
        end do;
        # Assign defaults
        for eq in [eqs] do
            (nm, val) := op(eq);
            self:-Default[nm] := val;
        end do;
    end proc;

    `?[]` :: static := proc(self :: Configure
                            , indx :: list
                            , val :: list
    local opt;
        opt := op(indx);
        if not assigned(self:-Default[opt]) then
            error "'%0' is not an assigned field of this Configure object", indx[];
        elif nargs = 2 then
        elif not val :: [self:-Type[opt]] then
            error "value for %1 must be of type %2", opt, self:-Type[opt];
            self:-Default[opt] := op(val);
        end if;
    end proc;

    ListAll :: static := proc(self :: Configure)
    end proc;

end module:

Later: Observing that this is just a glorified record with an assurance that the values match their declared types, but with less nice methods to set and get the values, I concluded that what I really want is a record that enforces types regardless the setting of . Maybe created with

   FooDefaults := Record[strict]('Bar' :: truefalse = true, 'Baz :: truefalse = false):

In the meantime, I'll probably just use a record and not worry about whether a user has assigned an invalid value.

I write shell scripts that call Maple to automate frequent tasks. Because I prefer writing Maple code to shell code, I've created a Maple package, Bark, that generates a shell script from Maple source code. It provides a compact notation for defining both optional and positional command-line parameters, and a mechanism to print a help page, from the command-line, for the script. The optional parameters can be both traditional single letter Unix options, or the more expressive GNU-style long options.

As an example, here is the Maple code, using Bark, for a hello-world script.

hello := module()
    Parser := Bark:-ArgParser(NULL
                              , 'prologue' = ( "Print `Hello, World!'" )
                              , 'opts' = ['help' :: 'help' &c "Print this help page"]
    ModuleApply := proc(cmdline :: string := "")
        Bark:-ArgParser:-Parse(Parser, cmdline);
        Bark:-printf("Hello, World!\n");
    end proc;
end module:

The following command creates and installs the shell script in the user's bin directory.

Bark:-CreateScript("hello", hello
                   , 'add_libname' = Bark:-SaveLib(hello, 'mla' = "hello.mla")

The hello script is executed from the command-line as

$ hello
Hello,  World!

Pass the -h (or --help) option to display the help.

$ hello -h
Usage: hello [-h|--help] [--]

Print `Hello, World!'

Optional parameters:
-h, --help Print this help page

CreateScript creates two files that are installed in the bin directory: the shell script and a Maple archive file that contains the Maple procedures. The shell script passes its argument in a call to the parser (a Maple procedure) saved in the archive file (.mla file). Here's the created shell script for the hello command:

#!/usr/bin/env sh
CMD_LINE=$(echo $0; for arg in "$@"; do printf '%s\n' "$arg"; done)
echo "hello(\"$CMD_LINE\");" | "$MAPLE" -q -w2 -B --historyfile=none -b '/home/joe/bin/hello.mla'

I've used Bark on Linux and Windows (with Cygwin tools). It should work on any unix-compatible OS with the Bash shell. If you use a different shell that does not work with it, let me know and I should be able to modify the CreateScript command to have options for specific shells.

Bark is available on the MapleCloud. To install it, open the MapleCloud palette in Maple, select packages in the drop-down menu and go to the New tab (or possibly the Popular tab). You will also need the TextTools package which is also on the MapleCloud. The intro page for Bark has a command that automatically installs TextTools. Alternatively, executing the following commands in Maple 2017 should install both TextTools and Bark.


The source for a few useful scripts are included in the examples directory of the installed Bark toolbox. Maple help pages are included with Bark, use "Bark" as the topic.

A number of MaplePrimers have asked how one might use the section and subsections of a Maple worksheet to structure the source code of an extended Maple package.  The usual answer is that it cannot be done; a module-based Maple package must be assigned in a single input region in a worksheet.  A recommended alternative is to write the source in text files and use either command line tools or the Maple read command from a worksheet to assign the package.  Because the read command handles Maple preprocessor macros, specifically the $include macro, the source can be conveniently split into smaller files.

I prefer this file-based method for development because text files are generally more robust than Maple worksheets, can be edited with the user's preferred editor, can be put under version control, and can be searched and modified by standard Unix-based tools.  However, not everyone is familiar with this method of development.  With that in mind, I wrote a small Maple package, CodeBuilder, that permits splitting the source of a Maple package (or any Maple code) into separate code edit regions in a standard Maple worksheet, using $include macros to include the source of other regions.  To build the package, the code edit regions are written to external files, using the names of the regions as the local file name relative to a temporary directory.

The package includes a method to run mint on the source code.  The result can be either printed in the worksheet or displayed in a pop-up maplet that allows selecting the infolevel and the region to check.

CodeBuilder includes help pages and a simple example (referenced from the top-level help page) demonstrating the usage.  To install the package, unzip the attached zip file and follow the directions in the README file.

Errata Just noticed that a last minute change broke some of the code.  Do not bother with the 1-0-1 version; I'll upload a new version shortly.  The latest version (1-0-3) is now available.

The latest version of the Iterator package is now available at the Maplesoft Application Center.  It provides a new export, MultiPartition, extensions to existing exports, and options to most exports for transforming the output to a more desirable form. The help pages have been improved, with some hopefully interesting examples.  Here is one, showing how it can be used to write a procedure for solving a generalized ...

1 2 3 4 5 6 7 Last Page 1 of 16