## 235 Reputation

10 years, 351 days
Beijing, China

## Problem in import excel file...

Maple 2015

Dears!

Hope everyone should be fine. I am face to import excel sheet in maple. I saved execl sheet with name "Employees.xlsx" at desktop. When I use the following command
S := Import("Employees.xlsx", 1, "A1:B101");

I got the following error.

"Error, (in ExcelTools:-Import) Could not open the file"

Special request to:

## Need help in simplification...

Maple 2015

Dear users! I need the help in attached file. Please see and fix it. I am waiting your positive answer.

File_to_help.mw

## Need the numerical solution of system of...

Maple 2015

Dears

Hope you all are fine. I want to solve the following nonlinear system ODEs numerically

Eq1 := diff(F(eta), eta, eta, eta)-phi1*((diff(F(eta), eta))^2-(diff(F(eta), eta)+diff(G(eta), eta))*(diff(F(eta), eta, eta)))+alpha*(1-phi)^2.5*((diff(F(eta), eta, eta))^2+2*(diff(F(eta), eta))*(diff(F(eta), eta, eta))-(diff(F(eta), eta)+diff(G(eta), eta))*(diff(F(eta), eta, eta, eta, eta))+A*(2*(diff(F(eta), eta, eta, eta))+(1/2)*eta*(diff(F(eta), eta, eta, eta, eta))))-A*phi1*(diff(F(eta), eta)+(1/2)*eta*(diff(F(eta), eta, eta))) = 0; Eq2 := diff(G(eta), eta, eta, eta)-phi1*((diff(G(eta), eta))^2-(diff(F(eta), eta)+diff(G(eta), eta))*(diff(G(eta), eta, eta)))+alpha*(1-phi)^2.5*((diff(G(eta), eta, eta))^2+2*(diff(G(eta), eta))*(diff(G(eta), eta, eta))-(diff(F(eta), eta)+diff(G(eta), eta))*(diff(G(eta), eta, eta, eta, eta))+A*(2*(diff(G(eta), eta, eta, eta))+(1/2)*eta*(diff(G(eta), eta, eta, eta, eta))))-A*phi1*(diff(F(eta), eta)+(1/2)*eta*(diff(F(eta), eta, eta))) = 0;

assoicated with the following BCs

F(0)=0,D(F)(0)=1,G(0)=0,D(G)(0)=p, D(F)(L)=0, D( G(L)=0;

for phi1 := 1.2; alpha := 2; A := 1.5;phi:=0.1;

Special request to @acer@Carl Love @Preben Alsholm

## Animation of the numerical solution of O...

Maple 2015

Hellow dears!!!

Hope everyone is fine with everything. I want the animation of the numerical solution of ODE i,e., f4 for delta=[0,1.5]. Please see the attachment and fix my problem. I Shall be very thankful to you.

Graph.mw

Special request to  acer 13834@Carl Love ,Preben Alsholm 10271

## Problem in solving linear system of equa...

Maple 2015

Dearz

Hope you would be fine with everything. I try to solve the following linear system of equations via fsolve command but the solution doesn't satisfied the system please see and put your valueable comments. Waiting your positive response.

-5.7167551941125971285 d[1, 1] - 0.23520507704562101132 d[1, 2]

- 4.7759348859301130832 d[1, 3]

+ 82.882747548740738074 d[1, 4]

+ 1.5473302855836067493 d[2, 1]

+ 0.063661977236758134308 d[2, 2]

+ 1.2926823766365742120 d[2, 3]

- 22.433527600870893213 d[2, 4]

- 11.906076336447024126 d[3, 1]

- 0.48985298599265354856 d[3, 2]

- 9.9466643924764099316 d[3, 3]

+ 172.61685795222431091 d[3, 4]

+ 153.42462622364681378 d[4, 1]

- 17.156128463674125233 d[4, 2]

+ 222.04914007834331471 d[4, 3]

- 2162.1913920527683546 d[4, 4] = 0
-6.3505370802317673052 d[1, 1] - 0.23520507704562101132 d[1, 2]

- 5.4097167720492832599 d[1, 3]

+ 54.802782951629695640 d[1, 4]

+ 1.7188733853924696263 d[2, 1]

+ 0.063661977236758134308 d[2, 2]

+ 1.4642254764454370890 d[2, 3]

- 14.833240696164645293 d[2, 4]

- 13.226030621801645811 d[3, 1]

- 0.48985298599265354856 d[3, 2]

- 11.266618677831031617 d[3, 3]

+ 114.13574573628827681 d[3, 4]

+ 107.19584752215150208 d[4, 1]

- 17.156128463674125233 d[4, 2]

+ 175.82036137684800302 d[4, 3]

- 1136.3239123361047712 d[4, 4] = 0
-6.7642088272251297212 d[1, 1] - 0.23520507704562101132 d[1, 2]

- 5.8233885190426456759 d[1, 3]

+ 34.632657184619275137 d[1, 4]

+ 1.8308401918550417305 d[2, 1]

+ 0.063661977236758134308 d[2, 2]

+ 1.5761922829080091932 d[2, 3] - 9.373876878125528749 d[2, 4]

- 14.087569594645296643 d[3, 1]

- 0.48985298599265354856 d[3, 2]

- 12.128157650674682449 d[3, 3]

+ 72.128164697121390121 d[3, 4]

+ 77.022155175221117487 d[4, 1]

- 17.156128463674125233 d[4, 2]

+ 145.64666902991761843 d[4, 3]

- 601.11088029977885095 d[4, 4] = 0
-1.5473302855836067487 d[1, 1] - 0.06366197723675813430 d[1, 2]

- 1.2926823766365742115 d[1, 3]

+ 22.433527600870893218 d[1, 4]

+ 1.5473302855836067493 d[2, 1]

+ 0.063661977236758134308 d[2, 2]

+ 1.2926823766365742120 d[2, 3]

- 22.433527600870893213 d[2, 4]

- 7.7366514279180337465 d[3, 1]

- 0.31830988618379067154 d[3, 2]

- 6.4634118831828710599 d[3, 3]

+ 112.16763800435446606 d[3, 4]

+ 104.66490008068725185 d[4, 1]

- 19.162255148264198426 d[4, 2]

+ 181.31392067374404557 d[4, 3]

- 1455.2623850848598494 d[4, 4] = 0
-1.7188733853924696257 d[1, 1] - 0.06366197723675813430 d[1, 2]

- 1.4642254764454370885 d[1, 3]

+ 14.833240696164645297 d[1, 4]

+ 1.7188733853924696263 d[2, 1]

+ 0.063661977236758134308 d[2, 2]

+ 1.4642254764454370890 d[2, 3]

- 14.833240696164645293 d[2, 4]

- 8.5943669269623481316 d[3, 1]

- 0.31830988618379067154 d[3, 2]

- 7.3211273822271854450 d[3, 3]

+ 74.166203480823226458 d[3, 4]

+ 53.030427038219525869 d[4, 1]

- 19.162255148264198426 d[4, 2]

+ 129.67944763127631958 d[4, 3]

- 668.89639482661771723 d[4, 4] = 0
-1.8308401918550417299 d[1, 1] - 0.06366197723675813430 d[1, 2]

- 1.5761922829080091926 d[1, 3] + 9.373876878125528754 d[1, 4]

+ 1.8308401918550417305 d[2, 1]

+ 0.063661977236758134308 d[2, 2]

+ 1.5761922829080091932 d[2, 3] - 9.373876878125528749 d[2, 4]

- 9.1542009592752086523 d[3, 1]

- 0.31830988618379067154 d[3, 2]

- 7.8809614145400459657 d[3, 3]

+ 46.869384390627643742 d[3, 4]

+ 19.328418292985322519 d[4, 1]

- 19.162255148264198426 d[4, 2]

+ 95.977438886042116228 d[4, 3]

- 305.71973224709969080 d[4, 4] = 0
7.0561523113686303394 d[1, 1] - 1.9098593171027440292 d[1, 2]

+ 14.695589579779606456 d[1, 3]

- 96.471127562654332340 d[1, 4]

- 2.3520507704562101132 d[2, 1]

+ 0.63661977236758134308 d[2, 2]

- 4.8985298599265354856 d[2, 3]

+ 32.157042520884777447 d[2, 4]

+ 16.464355393193470792 d[3, 1]

- 4.4563384065730694016 d[3, 2]

+ 34.289709019485748399 d[3, 3]

- 225.09929764619344213 d[3, 4]

- 96.434081588704614639 d[4, 1]

+ 26.101410667070835066 d[4, 2]

- 200.83972425698795490 d[4, 3]

+ 1318.4387433562758754 d[4, 4] = 0
-2.3520507704562101132 d[1, 1] + 0.6366197723675813431 d[1, 2]

- 4.898529859926535486 d[1, 3] + 32.157042520884777450 d[1, 4]

- 2.3520507704562101132 d[2, 1]

+ 0.63661977236758134308 d[2, 2]

- 4.8985298599265354856 d[2, 3]

+ 32.157042520884777447 d[2, 4]

+ 7.0561523113686303394 d[3, 1]

- 1.9098593171027440293 d[3, 2]

+ 14.695589579779606457 d[3, 3] - 96.47112756265433234 d[3, 4]

- 11.760253852281050559 d[4, 1] + 3.183098861837906715 d[4, 2]

- 24.49264929963267742 d[4, 3] + 160.7852126044238874 d[4, 4] =

1
1.9098593171027440291 d[1, 1] - 1.9098593171027440292 d[1, 2]

+ 9.5492965855137201456 d[1, 3]

- 36.287327024952136554 d[1, 4]

- 0.6366197723675813430 d[2, 1]

+ 0.63661977236758134308 d[2, 2]

- 3.1830988618379067154 d[2, 3]

+ 12.095775674984045518 d[2, 4]

+ 4.4563384065730694010 d[3, 1]

- 4.4563384065730694016 d[3, 2]

+ 22.281692032865347008 d[3, 3] - 84.67042972488831863 d[3, 4]

- 26.101410667070835067 d[4, 1]

+ 26.101410667070835066 d[4, 2]

- 130.50705333535417533 d[4, 3]

+ 495.92680267434586630 d[4, 4] = 0
-0.6366197723675813431 d[1, 1] + 0.6366197723675813431 d[1, 2]

- 3.1830988618379067164 d[1, 3]

+ 12.095775674984045516 d[1, 4]

- 0.6366197723675813430 d[2, 1]

+ 0.63661977236758134308 d[2, 2]

- 3.1830988618379067154 d[2, 3]

+ 12.095775674984045518 d[2, 4]

+ 1.9098593171027440288 d[3, 1]

- 1.9098593171027440293 d[3, 2] + 9.549296585513720146 d[3, 3]

- 36.287327024952136560 d[3, 4] - 3.183098861837906717 d[4, 1]

+ 3.183098861837906715 d[4, 2] - 15.91549430918953358 d[4, 3]

+ 60.47887837492022764 d[4, 4] = 1
-1.4491448767744190950 d[1, 1] - 1.9098593171027440292 d[1, 2]

+ 6.1902923916365570215 d[1, 3]

- 11.964006709004497915 d[1, 4]

+ 0.4830482922581396984 d[2, 1]

+ 0.63661977236758134308 d[2, 2]

- 2.0634307972121856740 d[2, 3] + 3.988002236334832639 d[2, 4]

- 3.381338045806977889 d[3, 1] - 4.4563384065730694016 d[3, 2]

+ 14.444015580485299718 d[3, 3] - 27.91601565434382847 d[3, 4]

+ 19.804979982583727629 d[4, 1]

+ 26.101410667070835066 d[4, 2]

- 84.600662685699612634 d[4, 3] + 163.5080916897281382 d[4, 4] =

0
0.4830482922581396984 d[1, 1] + 0.6366197723675813431 d[1, 2]

- 2.0634307972121856744 d[1, 3] + 3.988002236334832645 d[1, 4]

+ 0.4830482922581396984 d[2, 1]

+ 0.63661977236758134308 d[2, 2]

- 2.0634307972121856740 d[2, 3] + 3.988002236334832639 d[2, 4]

- 1.4491448767744190956 d[3, 1]

- 1.9098593171027440293 d[3, 2]

+ 6.1902923916365570221 d[3, 3] - 11.96400670900449791 d[3, 4]

+ 2.415241461290698491 d[4, 1] + 3.183098861837906715 d[4, 2]

- 10.317153986060928369 d[4, 3] + 19.94001118167416332 d[4, 4] =

1
11.581726419330485018 d[1, 1] - 3.8605754731101616728 d[1, 2]

+ 27.024028311771131709 d[1, 3]

- 158.28359439751662858 d[1, 4]

- 1.9098593171027440292 d[2, 1]

+ 0.63661977236758134308 d[2, 2]

- 4.4563384065730694016 d[2, 3]

+ 26.101410667070835066 d[2, 4]

+ 19.221163687741461135 d[3, 1]

- 6.4070545625804870452 d[3, 2]

+ 44.849381938063409316 d[3, 3]

- 262.68923706579996884 d[3, 4]

- 172.31418534244454203 d[4, 1]

+ 57.438061780814847345 d[4, 2]

- 402.06643246570393142 d[4, 3]

+ 2354.9605330134087411 d[4, 4] = 0
7.0561523113686303394 d[1, 1] - 2.3520507704562101132 d[1, 2]

+ 16.464355393193470792 d[1, 3]

- 96.434081588704614639 d[1, 4]

- 1.9098593171027440292 d[2, 1]

+ 0.63661977236758134308 d[2, 2]

- 4.4563384065730694016 d[2, 3]

+ 26.101410667070835066 d[2, 4]

+ 14.695589579779606456 d[3, 1]

- 4.8985298599265354856 d[3, 2]

+ 34.289709019485748399 d[3, 3]

- 200.83972425698795490 d[3, 4]

- 96.471127562654332340 d[4, 1]

+ 32.157042520884777447 d[4, 2]

- 225.09929764619344213 d[4, 3]

+ 1318.4387433562758753 d[4, 4] = 0
1.9098593171027440291 d[1, 1] - 0.6366197723675813430 d[1, 2]

+ 4.4563384065730694010 d[1, 3]

- 26.101410667070835067 d[1, 4]

- 1.9098593171027440292 d[2, 1]

+ 0.63661977236758134308 d[2, 2]

- 4.4563384065730694016 d[2, 3]

+ 26.101410667070835066 d[2, 4]

+ 9.5492965855137201456 d[3, 1]

- 3.1830988618379067154 d[3, 2]

+ 22.281692032865347008 d[3, 3]

- 130.50705333535417533 d[3, 4]

- 36.287327024952136554 d[4, 1]

+ 12.095775674984045518 d[4, 2]

- 84.670429724888318626 d[4, 3]

+ 495.92680267434586626 d[4, 4] = 0
-1.4491448767744190950 d[1, 1] + 0.4830482922581396984 d[1, 2]

- 3.381338045806977889 d[1, 3] + 19.804979982583727629 d[1, 4]

- 1.9098593171027440292 d[2, 1]

+ 0.63661977236758134308 d[2, 2]

- 4.4563384065730694016 d[2, 3]

+ 26.101410667070835066 d[2, 4]

+ 6.1902923916365570215 d[3, 1]

- 2.0634307972121856740 d[3, 2]

+ 14.444015580485299718 d[3, 3]

- 84.600662685699612634 d[3, 4]

- 11.964006709004497917 d[4, 1] + 3.988002236334832638 d[4, 2]

- 27.91601565434382847 d[4, 3] + 163.50809168972813819 d[4, 4] =

0
Sols := solve([seq(`\$`(F1[l1, l2], l1 = 2 .. 2^K*M-1), l2 = 2 .. 2^K*M), seq(`\$`(F2[l1], l1 = 2 .. 2^K*M)), seq(`\$`(F3[l1], l1 = 2 .. 2^K*M)), seq(`\$`(F4[l1], l1 = 1 .. 2^K*M))], {seq(`\$`(d[l1, l2], l1 = 1 .. 2^K*M), l2 = 1 .. 2^K*M)});
map(evalf, subs(Sols, convert(F4, list)));

 First 15 16 17 18 19 20 21 Last Page 17 of 37
﻿