Muhammad Usman

235 Reputation

5 Badges

11 years, 154 days
Beijing, China

MaplePrimes Activity


These are questions asked by Muhammad Usman

Dear Users!

Hoped everyone fine with everything. I the following maple expression, I need a matrix A for each n. Like if I take k =1 I want A[1]; if I take k=2, I want A[1], A[2]; for k=3 I want A[1], A[2], A[3] and so on. A[i]'s is square matrix having order M-1 by M-1.

Further I want to generate a block matrix for k. Like for k=1 I want a block matrix as Vector(1, {(1) = A[1]}), for k=2 I want a block matrix as Matrix(2, 2, {(1, 1) = A[1], (1, 2) = 0, (2, 1) = 0, (2, 2) = A[2]}), for k =3 I want a block matrix as Matrix(3, 3, {(1, 1) = A[1], (1, 2) = 0, (1, 3) = 0, (2, 1) = 0, (2, 2) = A[2], (2, 3) = 0, (3, 1) = 0, (3, 2) = 0, (3, 3) = A[3]}) and so on.

restart; alpha := 1;
k := 2; M := 3;
printlevel := 3;

for n while n <= 2^(k-1) do

for m from 0 while m <= M-1 do

for j from 0 while j <= M-1 do

Omega[m, j] := 2^((1/2)*k)*sqrt(GAMMA(j+1)*(j+alpha)*GAMMA(alpha)^2/(Pi*2^(1-2*alpha)*GAMMA(j+2*alpha)))*(sum((-1)^i*GAMMA(j-i+alpha)*2^(j-2*i)*(sum((1/2)*binomial(m, l)*(2*n-1)^(m-l)*(1+(-1)^(j-2*i+l))*GAMMA((1/2)*j-i+(1/2)*l+1/2)*GAMMA(alpha+1/2)/GAMMA(alpha+1+(1/2)*j-i+(1/2)*l), l = 0 .. m))/(GAMMA(alpha)*factorial(i)*factorial(j-2*i)), i = 0 .. floor((1/2)*j)))/2^(k*(m+1))

end do

end do;

A[n]:=???

end do;

I am waiting for your positive response.

Thanks
 

Dear Users!

Hoped everyone is good. I am facing problem to write the following sigma notation for any m.

Please help me to fix this problem. Thanks

Dear User!

Hoped you all are fine with everything. I am facing to determinte the integration of the following for n = 0 and for n>=1.

int(2*x^i*(x+n)^m*sqrt(-x^2+x), x = 0 .. 1)

Dear Users!

Hoped everyone fine with everything! I want to define a square matrix P whose elements are

p[i,j]=<φ[i],ψψ[j]>

printlevel := 2; for i from 0 while i <= 2^k-1 do for j from 0 while j <= M-1 do varphi[i, j] := t^j end do end do;
printlevel := 2; for i from 0 while i <= 2^k-1 do for j from 0 while j <= M-1 do phi[M*i+j+1] := varphi[i, j] end do end do;
printlevel := 2; for i from 0 while i <= 2^k-1 do for j from 0 while j <= M-1 do psi[i, j] := 2^((1/2)*k)*sqrt(2*j+1)*(sum((-1)^(j+i1)*factorial(j+i1)*(2*t-i)^i1/(factorial(j-i1)*factorial(i1)^2), i1 = 0 .. j)) end do end do;
printlevel := 2; for i from 0 while i <= 2^k-1 do for j from 0 while j <= M-1 do `&psi;&psi;`[M*i+j+1] := psi[i, j] end do end do;
 

take k=2,M=3

Dear Users!

Hope everyone is fine. I am want use the command of isolate only red color term. Then I need help to simplify the expression term by term like simplify the rational expressions, combine powers, simplify radicals etc..

x*c*(diff(f(eta), eta))*epsilon/(-epsilon*t+1)^2+(1/2)*x*c^2*(diff(f(eta), eta, eta))*y*epsilon/((-epsilon*t+1)^3*sqrt(c/(nu*(-epsilon*t+1)))*nu)+x*c^2*(diff(f(eta), eta))^2/(-epsilon*t+1)^2-sqrt(c*nu/(-epsilon*t+1))*f(eta)*x*c*(diff(f(eta), eta, eta))*sqrt(c/(nu*(-epsilon*t+1)))/(-epsilon*t+1) = a*x*epsilon/(-epsilon*t+1)^2+a^2*x/(-epsilon*t+1)^2+x*c^2*(diff(f(eta), eta, eta, eta))/(-epsilon*t+1)^2+sqrt(2)*GAMMA*x^2*c^3*(diff(f(eta), eta, eta))*sqrt(c/(nu*(-epsilon*t+1)))*(diff(f(eta), eta, eta, eta))/(-epsilon*t+1)^3+A*g*beta[T]*theta(eta)*T[w]-A*g*beta[T]*theta(eta)*T[infinity]+A*g*beta[C]*phi(eta)*C[w]-A*g*beta[C]*phi(eta)*C[infinity]-sigma*B^2*x*c*(diff(f(eta), eta))/(rho*(-epsilon*t+1))+sigma*B^2*a*x/(rho*(-epsilon*t+1))

I am waiting your postive answer on it.

 

First 14 15 16 17 18 19 20 Last Page 16 of 38