Thomas Dean

287 Reputation

10 Badges

18 years, 100 days

MaplePrimes Activity


These are questions asked by Thomas Dean

Heck Example 15.5 must have worked for an old version of maple.

restart;
## plot two functions and color the region between
sine :=   plot(sin(x), x=0..4*Pi, color=black,thickness=3):
s    :=   plot(sin(x), x=0..4*Pi, color=red, filled=true):
cosine := plot(cos(x), x=0..4*Pi, color=black,thickness=3):
c      := plot(cos(x), x=0..4*Pi, color=red, filled=true):
f := x -> if cos(x)>0 and sin(x)>0 then
              min(cos(x),sin(x))
          elif cos(x)<0 and sin(x)<0 then
              max(cos(x),sin(x))
          else 0
          end if;
b := plot(f(x), x=0..4*Pi, filled=true, color=green):

display([sine, cosine, b, s, c]):

Gives the error.

Error, (in f) cannot determine if this expression is true or false: 0 < cos(x)
and 0 < sin(x)

I tried verify(cos(x),0,less_than) and verify(sin(x),0,less_than), etc., but that makes f(x) always return 0.

f := sin(x);
g := cos(x);
plottools:-transform(unapply([x,y+g],x,y))(plot(f-g,x=0 .. 4*Pi,filled=true));
Works, but, I can not remember how that works.

Is it possible to use if in maple 2020.

In a recent question, the solution involved [...]::[list$3].

H:= proc(n, x, y)
    if n=0 then y+1
    elif n=1 and y=0 then x
    elif n=2 and y=0 then 0
    elif y=0 then 1
    elif not [n,x,y]::[nonnegint$3] then 
        'procname'(n-1, x, 'procname'(n, x, y-1))
    else
        thisproc(n-1, x, thisproc(n, x, y-1))
    fi
end proc

Where is  the  form [...]::[list$3] documented?

 

 

How do I convert the expression

y = (sqrt(x) + 10)^(1/3) - (sqrt(x) - 10)^(1/3);

into

y^3 = 20 - 3*(x - 100)^(2/3);

A post on the Maxima mailing list said this was done by cubing both sides.  I can not seem to be able to get there.  A suggestion that the process involved recognizing the product (a+b)*(a-b)

Where can I find a description of the []() syntax?

f:= 2*x^5-x^3*y+2*x^2*y^2-x*y^3+2*y^5;

This is symetrical in x and y.  subs(x=1,f) and  subs(y=1,f) are identical in form.

for idx to 10 do
    lim:=1/idx:
    plots[implicitplot](f,x=-lim..lim,y=-lim..lim,numpoints=1000000);
end do;

This shows a curve to (0,0) in quadrant 2, rabit ears in quadrant 1, and a curve from (0,0) in quadrant 4.

Plotting this with python matplotlib shows values in quadrant 3.  I assume that matplotlib plots only the real zeros of the polynomial.  Looks like it, the plotted values match the real zeros in maple.

use RealDomain in
    for idx from -1/100 to 1/100 by 1/1000 do
        lprint(idx,evalf(solve(subs(x=idx,f)=0)));
    end do;
end use;

This shows no values in quadrant 3.

How do I show/prove no zeros in quadrant 3?

4 5 6 7 8 9 10 Page 6 of 13