janhardo

695 Reputation

12 Badges

11 years, 39 days

MaplePrimes Activity


These are questions asked by janhardo

Thought always that the round d is reserved for function of two variables x,y , but  that seems to be not the case here ?

restart;

Comparing Different Answers

 

Een antwoord ergens gegeven is

Int(sqrt(x^2+1), x) = (1/2)*x*sqrt(x^2+1)+(1/2)*ln(x+sqrt(x^2+1)) + C                                                             (vb)

 

Mple geeft

 

Int(sqrt(x^2+1),x)=int(sqrt(x^2+1),x)+C[1];

Int((x^2+1)^(1/2), x) = (1/2)*x*(x^2+1)^(1/2)+(1/2)*arcsinh(x)+C[1]

(1)

 

De twee antwoorden lijken nog niet opelkaar !
In het gegeven antwoord staat er een ln en in Maple kan een expressie omgezet worden in ln termen
  

convert(%,ln);

Int((x^2+1)^(1/2), x) = (1/2)*x*(x^2+1)^(1/2)+(1/2)*ln(x+(x^2+1)^(1/2))+C[1]

(2)

(2)  is hetzelfde (vb)

Dezelfde integraal i sook gegeven als

Int(sqrt(x^2+1),x)=((x+sqrt(x^2+1))^2+4*ln(x+sqrt(x^2+1))-(x+sqrt(x^2+1))^(-2))/8+C[2];

Int((x^2+1)^(1/2), x) = (1/8)*(x+(x^2+1)^(1/2))^2+(1/2)*ln(x+(x^2+1)^(1/2))-(1/8)/(x+(x^2+1)^(1/2))^2+C[2]

(3)

Controle

een effectieve manier om twe antwoorden t evergelijken voor hetzelfde probleem is het verschil te berekenen van een vergelijking met de twee integralen

#lhs(%);

#rhs(%%);

 

#diff(lhs(%)-rhs(%)=0,x);

NULL

#diff(f,x);

diff(lhs(%)-rhs(%)=0,x);

(x^2+1)^(1/2)-(1/4)*(x+(x^2+1)^(1/2))*(1+x/(x^2+1)^(1/2))-(1/2)*(1+x/(x^2+1)^(1/2))/(x+(x^2+1)^(1/2))-(1/4)*(1+x/(x^2+1)^(1/2))/(x+(x^2+1)^(1/2))^3 = 0

(4)

simplify(%);

0 = 0

(5)

Strange that  diff(lhs(%)-rhs(%)=0,x);  is translated by 2 d input with round d notation for functions with two variables ?
The two integrals are functions of one variable
diff(f, x)

Download Controleren_dezelfde_antwoord_voo_expressies.mw

Sometimes its easier when doing math in maple input mode to use first the 2d maple input mode and convert this to maple input
Is there a hotkey assigned in Maple to do this toggling from 1d input to 2d input ( also from 1d output to 2d output  )

Now it must be done by mouse

This is so useful to see geometrical mapping diagram to visualize Complex analysis

Something that also can be made for Maple 

Mapping Diagram for Cauchy Integral Formula – GeoGebra

Using GeoGebra for visualizing complex variable. (google.com)

I highly encourage everyone interested in complex variable to read Tristan Needham „Visual Complex Analysis” and try to solve problems with or without aid of GeoGebra. I hope that in this workshop we will manage to get a feeling of complex functions and as a final point understand how complex integration works. It is a common misconception that complex integration can't be visualized, and using Tristan Needham's ideas we will try to explore this idea. It's a pity that we don't have a lot of time, thus we will skip a lot of important information and construct only some graphs. 

There is so much experimenting with Geogebra software and doing too this in Maple ?

I am studying the help pages for declare() statement in the PDEtool package. 
It can be used also for calculus(prime notation) for 1 variable and two variables (subscript notation) as i understand it now.

There is no input possible in Maple by using a prime notation and indexed functions notation?

Maybe with a alias ? ..remember that I can be chanced I (default) into the i for complex numbers 

I must feed the not trivial zeros numbers into this aproximation formula ?

 

Riemann hypothese and staircase of primes

 

restart;

with(NumberTheory)

PrimeCounting(1)

0

(1)

pi(Pi)

2

(2)

PrimeCounting(10000)

1229

(3)

numelems(select(isprime, [seq(1 .. 10000)]))

1229

(4)

The prime counting function is approximated by Li(x) and x/ln(x).

plot([PrimeCounting(x), Li(x), x/ln(x)], x = 1 .. 500, legend = [pi(x), Li(x), x/ln(x)])

The staircase of primes approximated by two functions
Interesting is the video: How i learned to love and fear the Riemann Hypothesis

https://www.quantamagazine.org/how-i-learned-to-love-and-fear-the-riemann-hypothesis-20210104/

NULL

ps:=Array(1..30):
y:=0:
for n from 1 to 30 do
 if is(n,prime)
     then ps[n]:=plot([[n,y],[n,y+1],[n+1,y+1]]):
     y:=y+1;
     else ps[n]:=plot([[n,y],[n+1,y]]):
 end if ;
od;
with(plots):
display({seq(ps[n],n=1..30)}):  

plot([PrimeCounting(x)] ,x = 1 .. 35, legend = [pi(x)]):

plot([PrimeCounting(x), Li(x), x/ln(x)], x = 1 .. 35, legend = [pi(x), Li(x), x/ln(x)])

 

 

 

 

Prime counting function
What found RIEMANN for the prime counting function in relation to the zeta function after he defined the zeta function?

 

He found further a function what follows exactly the shape of the prime counting function

Final discovery v. Riemann.  

- step in the omhoog in de priemtelfunctie = log(p) (zie video)

 

Using the logarithmic primecount function( from Chebyshev) (approximation)
Further  analyse with this Chebyshev approximation formula in relation to the not trivial zero points from Riemann zeta function ( zeros) gives another real function for approximating the primecounting function what uses the non trivial zeros from Riemanns zeta function  in this function:

 

"(not trivial zeros ) u[k ] = "i*w[k]+v[k]   
Number now all nottrivial zeros in the upperhalfplane from down to bottom,  as u[1], u[2], u[3, () .. ()]

"`ϕ`(x)  := x-ln(2Pi)-1/(2 )ln(1-1/(x^(2))) - (∑)2/(|u[k]|) x^(v[k]) cos(w[k] ln(x)-alpha[k])"

NULL

Its only alpha[k] that must be calculated out of the not trivial zeros and i must have a list of  serie of not trivial zeroes from the zeta function. => see Hardy's Z(t) ? from this ..... alpha[k]  can be calculated ?
All not trivial zeros are complex numbers laying on a line ,but  orginating from (0,0) in the complex plane as  vectors to the points    

varphi(x):= x - ln(2*Pi) - 1/2*ln(1 - 1/x^2) - sum(2*x^v[k]*cos(w[k]*ln(x) - alpha[k])/abs(u[k]), k = 1 .. infinity);

x-ln(2*Pi)-(1/2)*ln(1-1/x^2)-(sum(2*x^v[k]*cos(-w[k]*ln(x)+alpha[k])/abs(u[k]), k = 1 .. infinity))

(5)

This formula seems to be correct .
Now how to make a plot ?
Hardy's Z(t) function shows the not trivial zeros in the upperhalfplane of the critical strip of the Riemann zeta function  as zeros in this Z(t) real function : derived from a alternating serie ?

Download priem_staircase_en_riemann_functie.mw

5 6 7 8 9 10 11 Last Page 7 of 22