mathiaszip

10 Reputation

One Badge

1 years, 355 days

MaplePrimes Activity


These are questions asked by mathiaszip

Hi

I d like to limit my solution to a real (non complex) solution
There should be a simple solution to my calculation but maple can t process the solutions in one of my "solve" commands.

How can do I tell maple to limit itself to one
 

NULL

restart

with(Student[Calculus1]):


#geometry [mm]

b := 250:

h := 720:

ds := 70:

d := h-ds:

As := 3000:


#concrete [MPa]

fck := 30:

fcm := fck+8;

38

(1)

Ecm := 33000;

33000

(2)

`ϵc1` := 2.2*(1/1000);

0.2200000000e-2

(3)

eta := `ϵc`/`ϵc1`;

454.5454545*`ϵc`

(4)

Ec1 := fck/`ϵc1`;

13636.36364

(5)

k := 1.05*Ecm/Ec1;

2.540999999

(6)

sigma := fcm*(-eta^2+eta*k)/(1+(k-2)*eta);

38*(-206611.5702*`ϵc`^2+1154.999999*`ϵc`)/(1+245.9090904*`ϵc`)

(7)


#steel [MPa]

Es := 200000:

fsy := 400:

fsu := 600:

`ϵy` := fsy/Es;

1/500

(8)

`ϵsh` := 0.9e-2:

`ϵsu` := 0.75e-1:

P := 4:

`ϵs` := `ϵcm`*(d-c)/c;

`ϵcm`*(650-c)/c

(9)

i := 1;

1

(10)

for `ϵcm` from .1*(1/1000) by .1*(1/1000) to 10*(1/1000) do `ϵs` := `ϵcm`*(d-c)/c; T[1] := `ϵs`*Es*As; T[2] := fsy*As; T[3] := (fsu+(fsy-fsu)*((`ϵsu`-`ϵs`)/(`ϵsu`-`ϵsh`))^P)*As; C := b*c*(int(sigma, `ϵc` = 0 .. `ϵcm`))/`ϵcm`; eq[1] := T[1] = C; `ϵl`[1] := `ϵy`; eq[2] := T[2] = C; `ϵl`[2] := `ϵsh`; eq[3] := T[3] = C; cc := max(solve(eq[1], c)); `ϵss` := subs(c = cc, `ϵs`); Ta := subs(c = cc, T[1]); if `ϵss` >= `ϵl`[1] then cc := max(solve(eq[2], c)); Ta := subs(c = cc, T[2]); `ϵss` := subs(c = cc, `ϵs`) end if; if `ϵss` >= `ϵl`[2] then cc := max(`assuming`([solve(eq[3], c, useassumptions)], [c::real])); Ta := subs(c = cc, T[3]); `ϵss` := subs(c = cc, `ϵs`) end if; M[i] := b*cc^2*fcm*(int(sigma*`ϵc`, `ϵc` = 0 .. `ϵcm`))*10^(-6)/`ϵcm`^2+T*(d-cc)*10^(-6); phi[i] := `ϵcm`/cc; cd[i] := cc/d; print(`ϵcm`, `ϵss`, Ta/As); i := i+1 end do

0.1000000000e-3, 0.1955232439e-3, 39.10464877

 

0.2000000000e-3, 0.3845102290e-3, 76.90204580

 

0.3000000000e-3, 0.5671741821e-3, 113.4348364

 

0.4000000000e-3, 0.7437144096e-3, 148.7428819

 

0.5000000000e-3, 0.9143174400e-3, 182.8634880

 

0.6000000000e-3, 0.1079158043e-2, 215.8316087

 

0.7000000000e-3, 0.1238400148e-2, 247.6800297

 

0.8000000000e-3, 0.1392197667e-2, 278.4395334

 

0.9000000000e-3, 0.1540695238e-2, 308.1390476

 

0.1000000000e-2, 0.1684028897e-2, 336.8057793

 

0.1100000000e-2, 0.1822326682e-2, 364.4653363

 

0.1200000000e-2, 0.1955709188e-2, 391.1418377

 

0.1300000000e-2, 0.2226921078e-2, 400

 

0.1400000000e-2, 0.2583745185e-2, 400

 

0.1500000000e-2, 0.2954159196e-2, 400

 

0.1600000000e-2, 0.3336139462e-2, 400

 

0.1700000000e-2, 0.3727768551e-2, 400

 

0.1800000000e-2, 0.4127227927e-2, 400

 

0.1900000000e-2, 0.4532791280e-2, 400

 

0.2000000000e-2, 0.4942818378e-2, 400

 

0.2100000000e-2, 0.5355749454e-2, 400

 

0.2200000000e-2, 0.5770100024e-2, 400

 

0.2300000000e-2, 0.6184456101e-2, 400

 

0.2400000000e-2, 0.6597469817e-2, 400

 

0.2500000000e-2, 0.7007855358e-2, 400

 

0.2600000000e-2, 0.7414385220e-2, 400

 

0.2700000000e-2, 0.7815886744e-2, 400

 

0.2800000000e-2, 0.8211238846e-2, 400

 

0.2900000000e-2, 0.8599369121e-2, 400

 

0.3000000000e-2, 0.8979250971e-2, 400

 

Error, complex argument to max/min

 

`ϵcm` := 0.35e-2; `ϵs` := `ϵcm`*(d-c)/c; T[1] := `ϵs`*Es*As; T[2] := fsy*As; T[3] := (fsu+(fsy-fsu)*((`ϵsu`-`ϵs`)/(`ϵsu`-`ϵsh`))^P)*As; C := b*c*(int(sigma, `ϵc` = 0 .. `ϵcm`))/`ϵcm`; eq[1] := T[1] = C; `ϵl`[1] := `ϵy`; eq[2] := T[2] = C; `ϵl`[2] := `ϵsh`; eq[3] := T[3] = C; cc1 := max(solve(eq[1], c)); `ϵss1` := subs(c = cc, `ϵs`); Ta1 := subs(c = cc, T[1]); cc2 := max(solve(eq[2], c)); `ϵss1` := subs(c = cc, `ϵs`); Ta2 := subs(c = cc, T[2]); cc3 := max(solve(eq[3], c)); `ϵss3` := subs(c = cc, `ϵs`); Ta3 := subs(c = cc, T[3]); M[i] := b*cc^2*fcm*(int(sigma*`ϵc`, `ϵc` = 0 .. `ϵcm`))*10^(-6)/`ϵcm`^2+T*(d-cc)*10^(-6); phi[i] := `ϵcm`/cc; cd[i] := cc/d; print(`ϵcm`, `ϵss`, Ta/As); i := i+1

7501.663386*c

 

308.9753080

 

0.1055633997e-1

 

6333803.979

 

159.9645223

 

0.1055633997e-1

 

1200000

 

Error, complex argument to max/min

 

0.1055633997e-1

 

1254623.652

 

0.35e-2, 0.9349901112e-2, 400

(11)

``

``

``

``

``

NULL

NULL

``

``

``

``

``

``

``

``

``

``

``

``

``

NULL

``

``

``

``

``

``

``

``

``


 

Download mathias.mw

simple non complex solutions ?

Hi

I m trying to do a nested loop but for some reason maple tells me my for loop is unterminated 

I d love some feedback on my code and on how to make it work
 

NULL

restart

with(Student[Calculus1]):


#geometry [mm]

b := 250:

h := 720:

ds := 70:

d := h-ds:

As := 3000:


#concrete [MPa]

fck := 30:

fcm := fck+8;

38

(1)

Ecm := 33000;

33000

(2)

`ϵc1` := 2.2*(1/1000);

0.2200000000e-2

(3)

eta := `ϵc`/`ϵc1`;

454.5454545*`ϵc`

(4)

Ec1 := fck/`ϵc1`;

13636.36364

(5)

k := 1.05*Ecm/Ec1;

2.540999999

(6)

sigma := fcm*(-eta^2+eta*k)/(1+(k-2)*eta);

38*(-206611.5702*`ϵc`^2+1154.999999*`ϵc`)/(1+245.9090904*`ϵc`)

(7)


#steel [MPa]

Es := 200000:

fsy := 400:

fsu := 600:

`ϵy` := fsy/Es;

1/500

(8)

`ϵsh` := 0.9e-2:

`ϵsu` := 0.75e-1:

P := 4:

`ϵs` := `ϵcm`*(d-c)/c;

`ϵcm`*(650-c)/c

(9)

i := 1;

1

(10)

"for epsiloncm from 0.1/(1000) by 0.1/(1000)to (3.5)/(1000) do  print(epsiloncm);     epsilons:=(epsiloncm)/(c)*(d-c):  T[1]:=epsilons*Es*As:  T[2]:=fsy*As:  T[3]:=fsu+(fsy-fsu)*((epsilonsu-epsilons)/((epsilonsu-epsilonsh)))^(P):  T[4]:=0:  C:=(b*c)/(epsiloncm)*int(sigma,epsilonc=0..epsiloncm):  eq[1]:=T[1]=C:  epsilonl[1]:=epsilony:  eq[2]:=T[2]=C:  epsilonl[2]:=epsilonsh:  eq[3]:=T[3]=C:  a:=1          for j from 1 by 1 to 3 do          if a=1 then          cc:=max(solve(eq[j],c)):          epsilons:=subs(c=cc,epsilons):          if epsilons<=epsilonl[j] then T:=subs(c=cc,T[j]): a:=0:          end if:          end if:          end do:  M[i]:=(b*cc^(2)*fcm)/(epsiloncm^(2))*int(sigma*epsilonc,epsilonc=0..epsiloncm)*10^(-6)+T*(d-cc)*10^(-6):  phi[i]:=(epsiloncm)/(cc):  T[i]:=T:  cd[i]:=(cc)/(d):    print(M[i],epsiloncm,phi[i]);  i:=i+1:  end do:                                        "

Error, unterminated loop

"for epsiloncm from 0.1/1000 by 0.1/1000to 3.5/1000 do  print(epsiloncm);     epsilons:=epsiloncm/c*(d-c):  T[1]:=epsilons*Es*As:  T[2]:=fsy*As:  T[3]:=fsu+(fsy-fsu)*((epsilonsu-epsilons)/(epsilonsu-epsilonsh))^P:  T[4]:=0:  C:=(b*c)/epsiloncm*int(sigma,epsilonc=0..epsiloncm):  eq[1]:=T[1]=C:  epsilonl[1]:=epsilony:  eq[2]:=T[2]=C:  epsilonl[2]:=epsilonsh:  eq[3]:=T[3]=C:  a:=1         for j from 1 by 1 to 3 do          if a=1 then  cc:=max(solve(eq[j],c)):  epsilons:=subs(c=cc,epsilons):          if epsilons<=epsilonl[j] then T:=subs(c=cc,T[j]): a:=0:          end if:          end if:          end do:  M[i]:=(b*cc^2*fcm)/(epsiloncm^2)*int(sigma*epsilonc,epsilonc=0..epsiloncm)*10^(-6)+T*(d-cc)*10^(-6):  phi[i]:=epsiloncm/cc:  T[i]:=T:  cd[i]:=cc/d:  print(M[i],epsiloncm,phi[i]);  i:=i+1:  end do:                                        "

 

``

``

``

``

``

``

NULL

NULL

``

``

``

``

``

``

``

``

``

``

``

``

``

NULL

``

``

``

``

``

``

``

``

``


 

Download mathias.mw

 

Thanks in advance

Hi

II ve managed to build an expression with one variable 
I me trying to plot this expression on a defined range but maple doesn t not let me.

How do I manage to plot this expression ?

If you have any advise on how to improve my code I m open to comments 

 

Thanks a lot in advance
 

restart


#data

`&varepsilon;c1` := 2.1*10^(-3);

0.2100000000e-2

(1)

`&varepsilon;cu1` := 3.5*10^(-3):

Ecm := 31000:

fcm := 25:

Fy := 500:

Es := 200000:

#geometry

As := 1885:

b := 250:

d := 450:


#coefficients

eta := epsilon/`&varepsilon;c1`:

k := 1.05*Ecm*`&varepsilon;c1`/fcm:

NULL


#formula

 

NULL

`&sigma;c` := proc (epsilon) options operator, arrow; fcm*(k*epsilon/`&varepsilon;c1`-epsilon^2/`&varepsilon;c1`^2)/(1+(k-2)*epsilon/`&varepsilon;c1`) end proc;

proc (epsilon) options operator, arrow; fcm*(k*epsilon/`&varepsilon;c1`-epsilon^2/`&varepsilon;c1`^2)/(1+(k-2)*epsilon/`&varepsilon;c1`) end proc

(2)

plot(`&sigma;c`, 0 .. `&varepsilon;cu1`);

 

NULL

#Pressure as a function of y (y=`&varepsilon;c`*y/x) :

`&sigma;c` := proc (y) options operator, arrow; fcm*(k*`&varepsilon;c`*y/(x*`&varepsilon;c1`)-`&varepsilon;c`^2*y^2/(x^2*`&varepsilon;c1`^2))/(1+(k-2)*`&varepsilon;c`*y/(x*`&varepsilon;c1`)) end proc;

proc (y) options operator, arrow; fcm*(k*`&varepsilon;c`*y/(x*`&varepsilon;c1`)-`&varepsilon;c`^2*y^2/(x^2*`&varepsilon;c1`^2))/(1+(k-2)*`&varepsilon;c`*y/(x*`&varepsilon;c1`)) end proc

(3)

`assuming`([int(`&sigma;c`, 0 .. x)], [0 <= x and x <= (1/2)*d, 0 <= `&varepsilon;c` and `&varepsilon;c` <= 0.35e-2]);

int(25*(1302.000000*`&varepsilon;c`*x/x-226757.3696*`&varepsilon;c`^2*x^2/x^2)/(1+349.6190476*`&varepsilon;c`*x/x), x = 0 .. x)

(4)

C := `assuming`([int(fcm*(k*`&varepsilon;c`*s/(x*`&varepsilon;c1`)-(`&varepsilon;c`*s/(x*`&varepsilon;c1`))^2)*b/(1+(k-2)*`&varepsilon;c`*s/(x*`&varepsilon;c1`)), s = 0 .. x)], [0 < x and x <= (1/2)*d, 0 <= `&varepsilon;c` and `&varepsilon;c` <= 0.35e-2]);

-0.7487980799e-19*x*(0.2706771684e26*`&varepsilon;c`^2+0.1331955800e22*ln(874047619.*`&varepsilon;c`+2500000.)-0.1962210817e23-0.4656771182e24*`&varepsilon;c`)/`&varepsilon;c`

(5)

T := `assuming`([(d-x)*`&varepsilon;c`*Es*As/x], [0 < x and x <= (1/2)*d, 0 <= `&varepsilon;c` and `&varepsilon;c` <= 0.35e-2]);

377000000*(450-x)*`&varepsilon;c`/x

(6)

``

x := `assuming`([solve(C = T, x)], [0 < x and x <= (1/2)*d, 0 <= `&varepsilon;c` and `&varepsilon;c` <= 0.35e-2]);

868.0577815*(0.2900000000e12*`&varepsilon;c`+(-0.7297483689e24*`&varepsilon;c`^2+0.1400157114e23*`&varepsilon;c`-0.4004807874e20*ln(874047619.*`&varepsilon;c`+2500000.)+0.5899803379e21)^(1/2))*`&varepsilon;c`/(0.2706771684e13*`&varepsilon;c`^2+133195580.*ln(874047619.*`&varepsilon;c`+2500000.)-0.4656771182e11*`&varepsilon;c`-1962210817.), -868.0577815*(-0.2900000000e12*`&varepsilon;c`+(-0.7297483689e24*`&varepsilon;c`^2+0.1400157114e23*`&varepsilon;c`-0.4004807874e20*ln(874047619.*`&varepsilon;c`+2500000.)+0.5899803379e21)^(1/2))*`&varepsilon;c`/(0.2706771684e13*`&varepsilon;c`^2+133195580.*ln(874047619.*`&varepsilon;c`+2500000.)-0.4656771182e11*`&varepsilon;c`-1962210817.)

(7)

``

``

``

l

(8)

plot(l, `&varepsilon;c` = 0 .. 0.34e-2)

Error, (in plot) expected a range but received `&varepsilon;c` = 0 .. 0.34e-2

 

``

NULL


 

Download HW1_-_EC2_strain-pressure_graph.mw
 

restart


#data

`&varepsilon;c1` := 2.1*10^(-3);

0.2100000000e-2

(1)

`&varepsilon;cu1` := 3.5*10^(-3):

Ecm := 31000:

fcm := 25:

Fy := 500:

Es := 200000:

#geometry

As := 1885:

b := 250:

d := 450:


#coefficients

eta := epsilon/`&varepsilon;c1`:

k := 1.05*Ecm*`&varepsilon;c1`/fcm:

NULL


#formula

 

NULL

`&sigma;c` := proc (epsilon) options operator, arrow; fcm*(k*epsilon/`&varepsilon;c1`-epsilon^2/`&varepsilon;c1`^2)/(1+(k-2)*epsilon/`&varepsilon;c1`) end proc;

proc (epsilon) options operator, arrow; fcm*(k*epsilon/`&varepsilon;c1`-epsilon^2/`&varepsilon;c1`^2)/(1+(k-2)*epsilon/`&varepsilon;c1`) end proc

(2)

plot(`&sigma;c`, 0 .. `&varepsilon;cu1`);

 

NULL

#Pressure as a function of y (y=`&varepsilon;c`*y/x) :

`&sigma;c` := proc (y) options operator, arrow; fcm*(k*`&varepsilon;c`*y/(x*`&varepsilon;c1`)-`&varepsilon;c`^2*y^2/(x^2*`&varepsilon;c1`^2))/(1+(k-2)*`&varepsilon;c`*y/(x*`&varepsilon;c1`)) end proc;

proc (y) options operator, arrow; fcm*(k*`&varepsilon;c`*y/(x*`&varepsilon;c1`)-`&varepsilon;c`^2*y^2/(x^2*`&varepsilon;c1`^2))/(1+(k-2)*`&varepsilon;c`*y/(x*`&varepsilon;c1`)) end proc

(3)

`assuming`([int(`&sigma;c`, 0 .. x)], [0 <= x and x <= (1/2)*d, 0 <= `&varepsilon;c` and `&varepsilon;c` <= 0.35e-2]);

int(25*(1302.000000*`&varepsilon;c`*x/x-226757.3696*`&varepsilon;c`^2*x^2/x^2)/(1+349.6190476*`&varepsilon;c`*x/x), x = 0 .. x)

(4)

C := `assuming`([int(fcm*(k*`&varepsilon;c`*s/(x*`&varepsilon;c1`)-(`&varepsilon;c`*s/(x*`&varepsilon;c1`))^2)*b/(1+(k-2)*`&varepsilon;c`*s/(x*`&varepsilon;c1`)), s = 0 .. x)], [0 < x and x <= (1/2)*d, 0 <= `&varepsilon;c` and `&varepsilon;c` <= 0.35e-2]);

-0.7487980799e-19*x*(0.2706771684e26*`&varepsilon;c`^2+0.1331955800e22*ln(874047619.*`&varepsilon;c`+2500000.)-0.1962210817e23-0.4656771182e24*`&varepsilon;c`)/`&varepsilon;c`

(5)

T := `assuming`([(d-x)*`&varepsilon;c`*Es*As/x], [0 < x and x <= (1/2)*d, 0 <= `&varepsilon;c` and `&varepsilon;c` <= 0.35e-2]);

377000000*(450-x)*`&varepsilon;c`/x

(6)

``

x := `assuming`([solve(C = T, x)], [0 < x and x <= (1/2)*d, 0 <= `&varepsilon;c` and `&varepsilon;c` <= 0.35e-2]);

868.0577815*(0.2900000000e12*`&varepsilon;c`+(-0.7297483689e24*`&varepsilon;c`^2+0.1400157114e23*`&varepsilon;c`-0.4004807874e20*ln(874047619.*`&varepsilon;c`+2500000.)+0.5899803379e21)^(1/2))*`&varepsilon;c`/(0.2706771684e13*`&varepsilon;c`^2+133195580.*ln(874047619.*`&varepsilon;c`+2500000.)-0.4656771182e11*`&varepsilon;c`-1962210817.), -868.0577815*(-0.2900000000e12*`&varepsilon;c`+(-0.7297483689e24*`&varepsilon;c`^2+0.1400157114e23*`&varepsilon;c`-0.4004807874e20*ln(874047619.*`&varepsilon;c`+2500000.)+0.5899803379e21)^(1/2))*`&varepsilon;c`/(0.2706771684e13*`&varepsilon;c`^2+133195580.*ln(874047619.*`&varepsilon;c`+2500000.)-0.4656771182e11*`&varepsilon;c`-1962210817.)

(7)

``

``

``

l

(8)

plot(l, `&varepsilon;c` = 0 .. 0.34e-2)

Error, (in plot) expected a range but received `&varepsilon;c` = 0 .. 0.34e-2

 

``

NULL


 

Download HW1_-_EC2_strain-pressure_graph.mw

 

 


Hi

I have to create a function "I(epsilonc)" by integrating a function "sigma(y)"  from 0 to the variable "epsilonc"

but maple doesn t give me the actual formula of the integrated function, it only gives me equation 4 which is utterly useless to me.

 

How do I get Maple to actually calculate and give me the integrated function ??

Any help will be greatly appreciated

restart


#data

`&varepsilon;c1` := 2.1*10^(-3);

0.2100000000e-2

(1)

`&varepsilon;cu1` := 3.5*10^(-3):

Ecm := 31000:

fcm := 25:

Fy := 500:

Es := 200000:

#geometry

As := 1885:

b = 250:

d := 450:


#coefficients

eta := epsilon/`&varepsilon;c1`:

k := 1.05*Ecm*`&varepsilon;c1`/fcm:

``


#formula

 

``

`&sigma;c` := proc (epsilon) options operator, arrow; fcm*(k*epsilon/`&varepsilon;c1`-epsilon^2/`&varepsilon;c1`^2)/(1+(k-2)*epsilon/`&varepsilon;c1`) end proc;

proc (epsilon) options operator, arrow; fcm*(k*epsilon/`&varepsilon;c1`-epsilon^2/`&varepsilon;c1`^2)/(1+(k-2)*epsilon/`&varepsilon;c1`) end proc

(2)

plot(`&sigma;c`, 0 .. `&varepsilon;cu1`);

 

``

#Pressure as a function of y (y=`&varepsilon;c`*y/x) :

`&sigma;c` := proc (y) options operator, arrow; fcm*(k*`&varepsilon;c`*y/(x*`&varepsilon;c1`)-`&varepsilon;c`^2*y^2/(x^2*`&varepsilon;c1`^2))/(1+(k-2)*`&varepsilon;c`*y/(x*`&varepsilon;c1`)) end proc;

proc (y) options operator, arrow; fcm*(k*`&varepsilon;c`*y/(x*`&varepsilon;c1`)-`&varepsilon;c`^2*y^2/(x^2*`&varepsilon;c1`^2))/(1+(k-2)*`&varepsilon;c`*y/(x*`&varepsilon;c1`)) end proc

(3)

Iy := proc (y) options operator, arrow; int(fcm*(k*`&varepsilon;c`*y/(x*`&varepsilon;c1`)-`&varepsilon;c`^2*y^2/(x^2*`&varepsilon;c1`^2))/(1+(k-2)*`&varepsilon;c`*y/(x*`&varepsilon;c1`)), y = 0 .. `&varepsilon;c`/(`&varepsilon;c`+Fy/Es)) end proc;

proc (y) options operator, arrow; int(fcm*(k*`&varepsilon;c`*y/(x*`&varepsilon;c1`)-`&varepsilon;c`^2*y^2/(x^2*`&varepsilon;c1`^2))/(1+(k-2)*`&varepsilon;c`*y/(x*`&varepsilon;c1`)), y = 0 .. `&varepsilon;c`/(`&varepsilon;c`+Fy/Es)) end proc

(4)

Iy(`&varepsilon;c`/(`&varepsilon;c`+Fy/Es))

Error, (in int) integration range or variable must be specified in the second argument, got `&varepsilon;c`/(`&varepsilon;c`+1/400) = 0 .. `&varepsilon;c`/(`&varepsilon;c`+1/400)

 

solve(Iyy*b = Fy*As, `&varepsilon;c`);

``

``


 

Download HW1_-_EC2_strain-pressure_graph.mw
 

restart


#data

`&varepsilon;c1` := 2.1*10^(-3);

0.2100000000e-2

(1)

`&varepsilon;cu1` := 3.5*10^(-3):

Ecm := 31000:

fcm := 25:

Fy := 500:

Es := 200000:

#geometry

As := 1885:

b = 250:

d := 450:


#coefficients

eta := epsilon/`&varepsilon;c1`:

k := 1.05*Ecm*`&varepsilon;c1`/fcm:

``


#formula

 

``

`&sigma;c` := proc (epsilon) options operator, arrow; fcm*(k*epsilon/`&varepsilon;c1`-epsilon^2/`&varepsilon;c1`^2)/(1+(k-2)*epsilon/`&varepsilon;c1`) end proc;

proc (epsilon) options operator, arrow; fcm*(k*epsilon/`&varepsilon;c1`-epsilon^2/`&varepsilon;c1`^2)/(1+(k-2)*epsilon/`&varepsilon;c1`) end proc

(2)

plot(`&sigma;c`, 0 .. `&varepsilon;cu1`);

 

``

#Pressure as a function of y (y=`&varepsilon;c`*y/x) :

`&sigma;c` := proc (y) options operator, arrow; fcm*(k*`&varepsilon;c`*y/(x*`&varepsilon;c1`)-`&varepsilon;c`^2*y^2/(x^2*`&varepsilon;c1`^2))/(1+(k-2)*`&varepsilon;c`*y/(x*`&varepsilon;c1`)) end proc;

proc (y) options operator, arrow; fcm*(k*`&varepsilon;c`*y/(x*`&varepsilon;c1`)-`&varepsilon;c`^2*y^2/(x^2*`&varepsilon;c1`^2))/(1+(k-2)*`&varepsilon;c`*y/(x*`&varepsilon;c1`)) end proc

(3)

Iy := proc (y) options operator, arrow; int(fcm*(k*`&varepsilon;c`*y/(x*`&varepsilon;c1`)-`&varepsilon;c`^2*y^2/(x^2*`&varepsilon;c1`^2))/(1+(k-2)*`&varepsilon;c`*y/(x*`&varepsilon;c1`)), y = 0 .. `&varepsilon;c`/(`&varepsilon;c`+Fy/Es)) end proc;

proc (y) options operator, arrow; int(fcm*(k*`&varepsilon;c`*y/(x*`&varepsilon;c1`)-`&varepsilon;c`^2*y^2/(x^2*`&varepsilon;c1`^2))/(1+(k-2)*`&varepsilon;c`*y/(x*`&varepsilon;c1`)), y = 0 .. `&varepsilon;c`/(`&varepsilon;c`+Fy/Es)) end proc

(4)

Iy(`&varepsilon;c`/(`&varepsilon;c`+Fy/Es))

Error, (in int) integration range or variable must be specified in the second argument, got `&varepsilon;c`/(`&varepsilon;c`+1/400) = 0 .. `&varepsilon;c`/(`&varepsilon;c`+1/400)

 

solve(Iyy*b = Fy*As, `&varepsilon;c`);

``

``


 

Download HW1_-_EC2_strain-pressure_graph.mw

 

Hi I have a function i d live to plot and integrate but maple tells me there is a probleme with the range when i want to plot and will not give me a numerical value of the integral :