Maple 18 Questions and Posts

These are Posts and Questions associated with the product, Maple 18

I am solving this question :the line joining the ends of 2 rectangular diameters of an ellipse, remains tangent to a fixed circumference. My code is :

restart; with(geometry); with(plots); unprotect(O);
_EnvHorizontalName := x; _EnvVerticalName := y;
ell := x^2/a^2+y^2/b^2 = 1;
a := 5; b := 3; alpha := (1/6)*Pi; p := sqrt(a^2*b^2/(a^2+b^2));
PQ := x*cos(alpha)+y*sin(alpha)-p; drPQ := solve(PQ, y);
OPQ := x^2/a^2+y^2/b^2-((x*cos(alpha)+y*sin(alpha))/p)^2;
sol := solve({OPQ, ell}, {x, y}, explicit); P := [subs(sol[1], x), subs(sol[1], y)]; Q := [subs(sol[3], x), subs(sol[3], y)];
O := [0, 0];
Ell := implicitplot(ell, x = -a .. a, y = -b .. b, color = red);
DrOPQ := implicitplot(OPQ, x = -a .. a, y = -b .. b, color = magenta, numpoints = 5000);
DrPQ := plot(drPQ, x = -6 .. 6, color = green);
line(OP, 2*x-y); line(OQ, -(1/2)*x-y);

Points := pointplot([O[],P[],Q[]], symbol = solidcircle, color = red, symbolsize = 10):

T := textplot([[O[], "O"],[P[],"P"],[Q[],"Q"]], font = [times, 15], align = {below, right}):
cir := x^2+y^2 = p^2;
Cir := implicitplot(cir, x = -a .. a, y = -b .. b, color = black);
display([Ell, Cir, DrPQ, DrOPQ, Points, T], view = [-6 .. 6, -4 .. 6], axes = normal, scaling = constrained);
Fig := proc (k) local alpha, PQ, drPQ, DrPQ, OPQ, DrOPQ, sol, P, Q, Points, T; global a, b, p, ell, Ell, Cir; alpha := k; PQ := x*cos(alpha)+y*sin(alpha)+p; drPQ := solve(PQ, y); OPQ := x^2/a^2+y^2/b^2-(x*cos(alpha)+y*sin(alpha))^2/p^2; sol := solve({ell, OPQ}, {x, y}, explicit); P := [subs(sol[1], x), subs(sol[1], y)]; Q := [subs(sol[3], x), subs(sol[3], y)]; Points := pointplot([P[], Q[]], symbol = solidcircle, color = red, symbolsize = 10);
T := textplot([[P[], "P"], [Q[], "Q"]], font = [times, 15], align = {below, right}); DrPQ := plot(drPQ, x = -6 .. 6, color = green);µ DrOPQ := implicitplot(OPQ, x = -a .. a, y = -b .. b, color = magenta, numpoints = 5000);
display([Ell, Cir, DrPQ, DrOPQ, Points, T], view = [-a .. a, -b .. b], axes = normal, scaling = constrained) end proc;

Fig((1/4)*Pi);
Error, (in Fig) invalid subscript selector
nframes := 100; plots:-display([seq(Fig(2*Pi*i/nframes), i = 0 .. nframes)], insequence, scaling = constrained);
Error, (in Fig) invalid subscript selector
Explore(Fig(n), n = 0 .. 2*Pi);
Thank you for your help.

Dear maple users,

In this code, how to find out the f'(x,t) and f''(x,t) values.
How to export the computed values in the excel file.JVB.mw

restart:

with(PDEtools):

with(plots):

fcns := {f(x,t)};

{f(x, t)}

(1)

ra:=2:b1:=1.41:na:=0.7:we:=0.5:eta[1]:=4*0.1:d:=0.5/1:xi:=0.1:m:=na:ea:=0.5:pr:=21: gr:=0.1:

R:=0.9323556933;

.9323556933

(2)

PDE1 :=ra*(diff(f(x,t),t))=+b1*(1+ea*cos(t))+(1/(R^2))*((diff(f(x,t),x,x))+(1/x)*diff(f(x,t),x));

2*(diff(f(x, t), t)) = 1.41+.705*cos(t)+1.150367877*(diff(diff(f(x, t), x), x))+1.150367877*(diff(f(x, t), x))/x

(3)

IBC := {D[1](f)(0,t)=0,f(1,t)=0,f(x,0)=0};

{f(1, t) = 0, f(x, 0) = 0, (D[1](f))(0, t) = 0}

(4)

sol :=  pdsolve({PDE1}, IBC, numeric,spacestep = 0.025, timestep=0.0001) ;

module () local INFO; export plot, plot3d, animate, value, settings; option `Copyright (c) 2001 by Waterloo Maple Inc. All rights reserved.`; end module

(5)

sol:-plot[display](f(x, t), t = 1.2, linestyle = "solid", title = "Velocity Profile", labels = ["r", "f"]);

 

``


 

Download JVB.mw

 

Dear maple users 

Greetings.

I hope you are all fine.

In this code, I am solving the PDEs via pdsolve with numeric.

There is some mistake in the boundary condition and pdsolve.

Kindly help me that to get the solution for this PDE.

Waiting for your reply.

In this problem h(z) is piecewise 

 

Bc:   

code:JVB.mw

 

Note: z=0.5:

Hi everyone, i want to draw 3d graphics of fractional solution with given by Mittag Leffler function in cantor sets. I want to see like this graphic. I added maple file. Thanks in advance.

3D_graphic.mw3D_graphic.mw

How to simplify the product of 4x4 matrices and how can we take out the expression that appears in each entry of the matrix?

MLM-1.mw

Hi, dear community,
I have a Maple package "rath" for finding the traveling wave solution of differential equations. But I am not able to loading in Maple 18. Please see this attached zip folder and need help in this regard.
Kind regard

inform.txt,

PaperExp.mws

rath.txt

How to plot u(t)= z'(t) with respect to x, y, z?

  Here,  z(t)=y'(t), y(t)=x'(t).

where, x(t)= z^3(t), y(t)= z^3(t)/2, z(t) = (a- b), a, b are time interval.

Trajectories.mw

How to solve the matrix for u(t) and plot phase trajector?

I have the following expresion:

G_{ik}=|u_{i} - u_{k}|-(u_{i}-u_{k})^2

 

Where i, k=1,2,3,4. How can I write this expresion in maple? I want to be able to write G_{1 2} and in the RHS

How to solve this differential equation numerically

eq:=diff(f(tau), tau) =Af(tau) +Lf(tau) +C+Bf(tau)


 

restart

R := .46+9.1625*t^alpha/(GAMMA*(alpha+1))+8.8318*t^(2*alpha)/(GAMMA*(2*alpha+1))+11.6888*t^(3*alpha)/(GAMMA*(3*alpha+1));

.46+9.1625*t^alpha/(GAMMA*(alpha+1))+8.8318*t^(2*alpha)/(GAMMA*(2*alpha+1))+11.6888*t^(3*alpha)/(GAMMA*(3*alpha+1))

 

.32+0.9282e-1*t^alpha/(GAMMA*(alpha+1))+2.1126*t^(2*alpha)/(GAMMA*(2*alpha+1))+3.9028*t^(3*alpha)/(GAMMA*(3*alpha+1))

 

.52+0.569e-1*t^alpha/(GAMMA*(alpha+1))+0.243e-1*t^(2*alpha)/(GAMMA*(2*alpha+1))+1.3102*t^(3*alpha)/(GAMMA*(3*alpha+1))

 

.46+9.1625*t^alpha/(GAMMA*(alpha+1))+8.8137*t^(2*alpha)/(GAMMA*(2*alpha+1))+8.8450*t^(3*alpha)/(GAMMA*(3*alpha+1))

 

.32+0.9282e-1*t^alpha/(GAMMA*(alpha+1))+2.1126*t^(2*alpha)/(GAMMA*(2*alpha+1))+1.9472*t^(3*alpha)/(GAMMA*(3*alpha+1))

 

.46+0.569e-1*t^alpha/(GAMMA*(alpha+1))+0.243e-1*t^(2*alpha)/(GAMMA*(2*alpha+1))+.6551*t^(3*alpha)/(GAMMA*(3*alpha+1))

(1)

``


 

 

1 2 3 4 5 6 7 Last Page 1 of 74