Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

How can I calculate the Euler-Lagrange equation from the Lagrangian density from Gauged Baby Skyrme model in maple using the physics package? Here, the rules of the operation in the inner space are the same that of the vectors conventional: dot and cross products, etc...
Following below the Lagrangian density.


If I used factor, it didn't simplify to 0. As you may notice that this value should be 0.


every time I input a formula I get:

Typesetting:-mparsed(x^2 +5 -2,x^2+3; "_noterminate")

I can't get rid of this error: this is very basic, what happened?

TIA, Roberto


I get the following errors when attempting to use the Sockets package to interface with the serial input and output for a USB device connected and reported to have no known problems by Windows 10:

Error, could not determine determine port number for service "busboy"


Errror, cannot  determine "tcp"  service on port 998

server :=
proc (sid)
Sockets:-Write(sid, sprintf("Hello %s on port %d, from %s\r\n", Sockets:-GetPeerHost(sid), Sockets:-GetPeerPort(sid), Sockets:-GetHostName()))
end proc;

Sockets:-Serve(GetPeerPort(sid), server);
Error, (in Sockets:-GetPeerHost) Unknown error

sid := Open("localhost", "echo");

Sockets:-Serve(GetPeerPort(sid), server);

Error, (in Sockets:-Serve) cannot bind address: Unknown error

How can we solve the following pde by Maple? 

where v is velocity, v with dot is acceleration. (So, I think we will assume that acceleration is fixed.) And \delta is Dirac distribution.  E,I,m, M , g are fixed numbers.

Boundary conditions are:

Initial conditions are:


You can find the equation in the code:


I have a problem with my maple. 


corrupt file 

Is there anybody who can help me solve this problem. 


i want to gain diff(p(t), t) and diff(q(t), t) and Jacobian matrix
 according to the attached pdf file.

please help me.


k := diff(a(t), t) = -mu*a(t)-(1/4)*alpha6*a(t)*sin(gamma(t))

diff(a(t), t) = -mu*a(t)-(1/4)*alpha6*a(t)*sin(gamma(t))


j := a(t)*(diff(gamma(t), t)) = 2*a(t)*sigma-(6*(1/8))*(alpha1-alpha2+(1/3)*alpha3)*a(t)^3-(1/2)*alpha6*a(t)*cos(gamma(t))

a(t)*(diff(gamma(t), t)) = 2*a(t)*sigma-(3/4)*(alpha1-alpha2+(1/3)*alpha3)*a(t)^3-(1/2)*alpha6*a(t)*cos(gamma(t))



proc (t) options operator, arrow, function_assign; a(t)*cos(gamma(t)) end proc



proc (t) options operator, arrow, function_assign; a(t)*sin(gamma(t)) end proc


diff(p(t), t)

(diff(a(t), t))*cos(gamma(t))-a(t)*(diff(gamma(t), t))*sin(gamma(t))





diff(p(t), t)








Hi, I'm using Maple 2018 and I tried to run coding from

however, it said : unable to parse. I figured out that the problem maybe is in the if loop. though it seems perfectly fine, but it has some goto commands that i cannot search on maple website. does this mean that the goto cannot be used here and should be replaced? if yes, then how? 

i am still learning on how to use maple. any help would be much appreciated. thank you!

this is the coding for if loop:





printf("%5d (%8.4f,%8.4f)",numIter,rv[1],rv[2]);




if(mg<tol or numIter>=max) then












printf(" (%8.4f,%8.4f)%13.4f\n",x1pt,x2pt,lam);







printf("\n\n Approximate Solution: ");

printf(" (%8.4f,%8.4f)\n",x1pt,x2pt);


printf(" Maximum Functional Value: ");


printf("\n Number gradient evaluations:");


printf("\n Number function evaluations:");






I am fairly new to using the Maple software, so I apologize if my question is completely idiotic. Apologies, also, because I could not manage to enter my code as code. When I pressed the button it made the whole text as a code. 

I run the following code to seek -if there are any- analytic solutions for the following differential equation.

odeplus := (r^2+L^2)^(5/2)*(diff(f(r), `$`(r, 2)))+((15/4)*r*(r^2+L^2)^(1/2)+3*(r^2+L^2)^(5/2)/r)*(diff(f(r), r))+M^2*f(r)/(r^2+L^2)^(5/2)-((5/2)*((r^2+L^2)^(1/2))(l-1)+(55/64)*r^2/(r^2+L^2)^(3/2)+(r^2+L^2)^(5/2)*(l^2+3*l+3/2)/r^2)*f(r)+(((r^2+L^2)^(1/2))(5+(5/2)*l)+(5/8)*r^2/(r^2+L^2)^(3/2)-(r^2+L^2)^(5/2)*(3/2+l)/r^2)*f(r) = 0

and then I do 

dsolve(odeplus, f(r))

The solutions that Maple returns is given in terms of DESol. Could anyone try and break it down for me? What is this telling me and if I can indeed from the output obtain analytic solutions? Is this some sort of operator acting on something? 

Thank you in advance. 


According to the fhgure attaceh how i can gain the equation (2-27) . I write the equation (2-26) in maple but I couldnot to gain that result.

If possible to reach equation via maple?



FC := (1/2)*W_m^2*(c1*x^2+c2*y^2)+(E.(h^2))*W_m^2*(sum(An*((sinh(n*Pi/lambda)+n*Pi*cosh(n*Pi/lambda)/lambda)*cosh(2*n*Pi*y/a)-2*n*Pi*y*sinh(n*Pi/lambda)*sinh(2*n*Pi*y/a)/a)*cos(2*n*Pi*x/a)/(n^2*(sinh(n*Pi/lambda)*cosh(n*Pi/lambda)+n*Pi/lambda))+Bn*((sinh(n*Pi*lambda)+n*Pi*lambda*cosh(n*Pi*lambda))*cosh(2*n*Pi*x/b)-2*n*Pi*x*sinh(n*Pi*lambda)*sinh(2*n*Pi*x/b)/b)*cos(2*n*Pi*y/b)/(lambda^2*n^2*(sinh(n*Pi*lambda)*cosh(n*Pi*lambda)+n*Pi*lambda)), n = 1 .. n))

Warning,  computation interrupted


S := diff(FC, x); SS := diff(S, x)

g := subs(x = (1/2)*a, SS)



coeff(g, sinh(n*Pi/lambda))






I tried the example in BodePlot help.

sys := TransferFunction( 1/(s-10) ):

That works OK. But, if I invoke Syrup, the example no longer works.

ckt := [V, Rsrc(50), C1(15e-9), L1(15e-6), C2(22e-9), L2(15e-6), C3(22e-9), L3(15e-6), C4(15e-9), 1, Rload(50)];

TF := subs(other, V=1, v[Rload]);
sys := TransferFunction(TF);

I get a message "not a valid plot structure".  OK, try the example, again.

sys := TransferFunction( 1/(s-10) ):
I also get the "not a valid plot structure" message.

What am I doing wrong?

Respected sir,

I have attached a file that contain integration . Sir I am unable to solve please give me some hint.

PLease note followings 

1. I want to get final expression , want to get the value of constant from boundary condition.

2.I want to get the final expression (.......+c1)

3.I will put boundary condition to determine the value of c1

Can somebody please help me with this assignment?
Struggling a bit with the Euler-method from task d) and further.

When i am running a code in maple worksheet , one error is shown by maple. My code and error (in bold) is below

Instructional workheet for the FracSym package
G. F. Jefferson and J. Carminati

Read in accompanying packages: ASP, DESOLVII and initialise using the with command:

read `ASP v4.6.3.txt`:

DESOLVII_V5R5 (March 2011)(c), by Dr. K. T. Vu, Dr. J. Carminati and Miss G. 


 The authors kindly request that this software be referenced, if it is used 

    in work eventuating in a publication, by citing the article:
  K.T. Vu, G.F. Jefferson, J. Carminati, Finding generalised symmetries of 

     differential equations
using the MAPLE package DESOLVII,Comput. Phys. Commun. 183 (2012) 1044-1054.

       ASP (November 2011), by Miss G. Jefferson and Dr. J. Carminati

 The authors kindly request that this software be referenced, if it is used 

    in work eventuating in a publication, by citing the article:
    G.F. Jefferson, J. Carminati, ASP: Automated Symbolic Computation of 

       Approximate Symmetries
    of Differential Equations, Comput. Phys. Comm. 184 (2013) 1045-1063.

              [ApproximateSymmetry, applygenerator, commutator]
[classify, comtab, defeqn, deteq_split, extgenerator, gendef, genvec, 

  icde_cons, liesolve, mod_eq, originalVar, pdesolv, reduceVar, reduceVargen, 

  symmetry, varchange]

Read in FracSym and initialise using the with command:
read `FracSym.v1.16.txt`;
       FracSym (April 2013), by Miss G. Jefferson and Dr. J. Carminati

 The authors kindly request that this software be referenced, if it is used 

    in work eventuating in a publication, by citing:
G.F. Jefferson, J. Carminati, FracSym: Automated symbolic computation of Lie 

of fractional differential equations, Comput. Phys. Comm. Submitted May 2013.

 [Rfracdiff, TotalD, applyFracgen, evalTotalD, expandsum, fracDet, fracGen, 



The Riemann-Liouville fractional derivatives is expressed in "inert" form using the FracSym routine Rfracdiff.
The explicit formula for the form of these fractional derivatives may be found in I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, some methods of their solution and some of their applications, San Diego, 1999.)

Rfracdiff(u(x, t),t,alpha);
                             D[t     ](u(x, t))

If the fractional derivative is taken for a product, the generalised Leibnitz rule is used to express the result (the product operator used is &* and is non-commutative). 
Rfracdiff(u(x, t)&*v(x,t),t,alpha);
        )                          (alpha - n)              n          
       /     binomial(alpha, n) D[t           ](u(x, t)) D[t ](v(x, t))
      n = 0                                                            
Rfracdiff(v(x, t)&*u(x,t),t,alpha);
        )                          (alpha - n)              n          
       /     binomial(alpha, n) D[t           ](v(x, t)) D[t ](u(x, t))
      n = 0                                                            

Fractional derivatives of integer order revert to the MAPLE diff routine.

Rfracdiff(u(x, t)&*v(x,t),t,2);
         / d  / d         \\             / d         \ / d         \
         |--- |--- u(x, t)|| v(x, t) + 2 |--- u(x, t)| |--- v(x, t)|
         \ dt \ dt        //             \ dt        / \ dt        /

                      / d  / d         \\
            + u(x, t) |--- |--- v(x, t)||
                      \ dt \ dt        //

The FracSym rouine TotalD may also be used to find total derivatives. evalTotalD is then used to evaluate the result (in jet notation). For example, 

TotalD(xi[x](x, y),x,2);
                             D[x ](xi[x](x, y))
        [     / d             \      2 / d  / d             \\
        [y_xx |--- xi[x](x, y)| + y_x  |--- |--- xi[x](x, y)||
        [     \ dy            /        \ dy \ dy            //

               / d  / d             \\       / d  / d             \\]
           + 2 |--- |--- xi[x](x, y)|| y_x + |--- |--- xi[x](x, y)||]
               \ dy \ dx            //       \ dx \ dx            //]


Consider the fractional PDE from: R. Sahadevan, T. Bakkyaraj, Invariant analysis of time fractional generalized Burgers and Korteweg-de Vries equations, J. Math. Anal. Appl. 393 (2012) 341-347.

We use the Rfracdiff routine to express the 
 fractional derivative with respect to t:
fde1:=Rfracdiff(u(x, t),t,alpha) = (diff(u(x, t), x,x))+n*(u(x, t))^p*(diff(u(x, t),  x));
        alpha             / d  / d         \\            p / d         \
     D[t     ](u(x, t)) = |--- |--- u(x, t)|| + n u(x, t)  |--- u(x, t)|
                          \ dx \ dx        //              \ dx        /

sys1:=[Rfracdiff(u(x, t),t,alpha) = (diff(v(x, t), x)), Rfracdiff(v(x, t),t,alpha) = -u(x, t)*diff(u(x, t),x)];
[   alpha              d              alpha                      / d         \]
[D[t     ](u(x, t)) = --- v(x, t), D[t     ](v(x, t)) = -u(x, t) |--- u(x, t)|]
[                      dx                                        \ dx        /]

We use the the FracSym routine fracDet to find the determining equations for the symmetry for fde1. 
NOTE: The fourth argument (some integer at least 1) corresponds to the number of terms to be "peeled off" from the sums which occur in the extended infintesimal function for the fractional derivative. A value of 2 provides a good balance between information for solution of determining equations and speed.

deteqs:=fracDet([sys1], [u, v],[x, t], 2, alpha=(0.1)..1);
Error, (in desolv/PickLHSDerivative) Cannot pick out the left hand side derivatives

Please suggest what problem it may be?

would like to point to graph then it highlight graph with virtical line

and mark 1 in one of row in one of column in table like data 

just like define feature manually for machine learning but using graph

First 9 10 11 12 13 14 15 Last Page 11 of 1553