Unanswered Questions

This page lists MaplePrimes questions that have not yet received an answer


could you please help me ,the maple code for this given series.

restart

U[0](x) := x;

x

(1)

"U[k+1](x):=solve((k+1)*U[k+1](x)+(x*(-1)^((k-1)/(2)))/(k!)-x^(2)*((e)^(x))/(10){6/(k!)-sum((2^(k[1]))/(k[1!])(5*delta[k[]-k[1]](x)+(2^(k-k[1])*(-1)^((k-k[1])/(2)))/((k-k[1])!)+(2^(k-k[1]+1)*(-1)^((k-k[1]-1)/(2)))/((k-k[1])!)),k[1]=0..k)}-(cos^(2)(x)+sin^()(x))*((∂)^2)/((∂)^( )x^2) [U[k](x)]-(e)^(x)[sum(1/(k[1]!){1/(k-k[1])(sum(sum(1/(k[3]!)*U[k[2]-k[3]](x)*U[k-k[1]-k[2]-1](x)},k[1]=0..k),k[2]=0..k-k[1]-1),k[3]=0..k[2])),U[k+1](x)];  od;"

Error, unable to match delimiters

"U[k+1](x):=solve((k+1)*U[k+1](x)+(x*(-1)^((k-1)/2))/(k!)-x^2*((e)^x)/10{6/(k!)-sum((2^(k[1]))/(k[1!])(5*delta[k-k[1]](x)+(2^(k-k[1])*(-1)^((k-k[1])/2))/((k-k[1])!)+(2^(k-k[1]+1)*(-1)^((k-k[1]-1)/2))/((k-k[1])!)),k[1]=0..k)}-(cos^2(x)+sin(x))*((∂)^2)/(∂x^2) [U[k](x)]-(e)^x[sum(1/(k[1]!){1/(k-k[1])(sum(sum(1/(k[3]!)*U[k[2]-k[3]](x)*U[k-k[1]-k[2]-1](x)},k[1]=0..k),k[2]=0..k-k[1]-1),k[3]=0..k[2])),U[k+1](x)];  od;"

 

``


 

Download Chapter_6-Example-6.5.4.mw

Hi! Do you know maybe how to solve equation with Laplace operator in Maple like BZ equation?

restart;
a := 0.75;
rho := u(t) + v(t) + w(t);
ode := diff(u(t), t) = 10*Delta(u(t)) + u*(-a*v - rho + 1);
ode1 := diff(v(t), t) = 10*Delta(v(t)) + v*(-a*w - rho + 1);
ode2 := diff(w(t), t) = 10*Delta(w(t)) + w*(-a*u - rho + 1);

 

Edit: Sorry I guess it should be function of three variables so u,v,w depends on (x,y,z) not strictle from time

I am wondering how to animate something like this from BZ equation:

Hi seniors, I am trying to generate results related to sensitivity analysis by uisng response surface methodology of a published paper but do not get the idea how to implement. could any one hel me to write about this.fr help please hape look on attached pdf.

Hydrodynamics and sensitivity analysis of calendaring process of a viscoelastic material

Let the curves y=2x^3-x^2-5x   and 𝑦=−𝑥^2+3𝑥be given.
a) Plot both curves on the same 𝑥y −axis.
b) Shade the region (between the curves).
c) Calculate the area of the region enclosed by the curves given.

I get this error when typing a sigma symbol with some subscripts.

Is there anyway to get rid of it?

If mapleflow doesn't allow typing in this way, how can I type it in an unexcutable Math format like document mode in Maple?

Hi everyone! I'd really appreciate if I could get pointed in the right direction as I am a brand new maple user.

So im trying to solve this constrainted optimization problem (See picture) using Maple symbollically. I believe I should have a closed form solution given I can substitute the one constraint into the objective function. Specifically closed form solutions for the three phi variables.

Can someone point me in the right direction as to how I should go about this? I've already taken first order conditions and tried to using the solve() function to no avail, realizing my sytem of equations weren't linear );. 

How to plot this equation with explore or animation

E[1]:=Sum((GAMMA(((beta+1)n-gamma(nu-1))+k))/(GAMMA(((beta+1)n-gamma(nu-1)))*GAMMA(rho*k + (nu(1-mu)+mu(2 n+1))))*((omega*t^(p))^(k))/(k!),k=0..5);  E[2] :=Sum((GAMMA((gamma(n+1)-beta *n)+k))/(GAMMA((gamma(n+1)-beta *n))*GAMMA(rho*k + (mu(2 n+1))))*((omega*t^(p))^(k))/(k!),k=0..5);    y(p):=Sum(c*gamma^(n)*t^(nu*(1-mu)+mu+2*mu*n-1)*E[1]+gamma^(n)t^(mu(2 n+1)-1)*E[2]*g, n=0..5);

with the conditions

mu, nu \in (0, 1); omega \in R; rho > 0; gamma, beta > or = 0; c & g are constant

I got a solution to use D as a symbol that prints well in italic. For convienience I like to have it in my favorite palette.
When I drag `&D;` from a Maple Input line to the favorites palette, the ampersand and the statement operator are removed. Copy and paste have the same effect on the pasted selection. If  these characters are removed, `&D;` becomes the differential operator D. That's not what I want.
Is it possible at all to get `&D;` or simliar expressions using special characters within left single quotes into the favorite palette?

How to solve the following system of ode analytically in maple?

diff(s(t), t) = gamma*s(t) + eta*s(t) + sigma*m(t)*s(t) - kappa*s(t) - phi*s(t), diff(g(t), t) = -alpha*g(t)*m(t) + mu*g(t) + delta*s(t)*g(t), diff(m(t), t) = beta*s(t) - alpha_1*g(t)*m(t)

Hi there.

There is some floating bug in Thread-Seq.

Maple is crashing sometimes (not always, 50/50) after running the script below:

thread-seq_error.mw

What's going on?

Hi,all

I am new in Maple,when I execute the "InversePlot" command ,all functions were correct except for exp(x), error occurs as follows, can anyone tell me what mistake I took?

Tks in advance!

restart;
with(Student[Calculus1]);

InversePlot(exp(x), -1 .. 1);
Error, (in Student:-Calculus1:-InversePlot) module does not export `IsTrigProc`

 

Tks for all you guys. 

I have uninstall Maple and deleted the installed directory ,clear the register,reinstall Maple 2022, now all works well.

I think the problem is I installed Maple 2022 in the old directory of 2021for keeping my configuration,this caused much unexpected problem

primes_integrale_exp.mwThe integral in x of 

exp(-sqrt(x^2 + c))

was done by Maple 11 but return unevaluated in Maple 2021,

see attached worksheet 

Please help me solve the following problem about complex numbers with Maple: w= (3+zi)/(2+z) whose geometric representation in the "oxy" plane is a straight line. Calculate module of z. Thank you so much.

This worksheet animates part of the motion of the classic ladder sliding down a wall.

Please answer the two questions posed in the opening text.

Respondents will need to establish their own link to the DirectSearch package

Slide_Ladder.mw

restart;
u := (H(x, t, z)+sqrt(R))*exp(I*R*x);
                /              (1/2)\           
                \H(x, t, z) + R     / exp(I R x)

I*(Diff(u, z))+Diff(u, `$`(x, 2))+Diff(u, `$`(t, 2))+(abs(u)*abs(u))*u-((abs(u)*abs(u))*abs(u)*abs(u))*u;
  / d  //              (1/2)\           \\
I |--- \\H(x, t, z) + R     / exp(I R x)/|
  \ dz                                   /

     / 2                                   \
     |d  //              (1/2)\           \|
   + |-- \\H(x, t, z) + R     / exp(I R x)/|
     \                                     /

     / 2                                   \                    
     |d  //              (1/2)\           \|                  2 
   + |-- \\H(x, t, z) + R     / exp(I R x)/| + (exp(-Im(R x)))  
     \                                     /                    

                       2                                    
  |              (1/2)|  /              (1/2)\              
  |H(x, t, z) + R     |  \H(x, t, z) + R     / exp(I R x) - 

                                        4                       
                 4 |              (1/2)|  /              (1/2)\ 
  (exp(-Im(R x)))  |H(x, t, z) + R     |  \H(x, t, z) + R     / 

  exp(I R x)
value(%);
  / d            \              / d  / d            \\           
I |--- H(x, t, z)| exp(I R x) + |--- |--- H(x, t, z)|| exp(I R x)
  \ dz           /              \ dx \ dx           //           

         / d            \             
   + 2 I |--- H(x, t, z)| R exp(I R x)
         \ dx           /             

     /              (1/2)\  2           
   - \H(x, t, z) + R     / R  exp(I R x)

     / d  / d            \\                             2 
   + |--- |--- H(x, t, z)|| exp(I R x) + (exp(-Im(R x)))  
     \ dt \ dt           //                               

                       2                                    
  |              (1/2)|  /              (1/2)\              
  |H(x, t, z) + R     |  \H(x, t, z) + R     / exp(I R x) - 

                                        4                       
                 4 |              (1/2)|  /              (1/2)\ 
  (exp(-Im(R x)))  |H(x, t, z) + R     |  \H(x, t, z) + R     / 

  exp(I R x)
simplify(%);
  / d            \              / d  / d            \\           
I |--- H(x, t, z)| exp(I R x) + |--- |--- H(x, t, z)|| exp(I R x)
  \ dz           /              \ dx \ dx           //           

         / d            \                 2                      
   + 2 I |--- H(x, t, z)| R exp(I R x) - R  exp(I R x) H(x, t, z)
         \ dx           /                                        

      (5/2)              / d  / d            \\           
   - R      exp(I R x) + |--- |--- H(x, t, z)|| exp(I R x)
                         \ dt \ dt           //           

                                                  2           
                             |              (1/2)|            
   + exp(-2 Im(R x) + I R x) |H(x, t, z) + R     |  H(x, t, z)

                                                  2       
                             |              (1/2)|   (1/2)
   + exp(-2 Im(R x) + I R x) |H(x, t, z) + R     |  R     

                                                  4           
                             |              (1/2)|            
   - exp(-4 Im(R x) + I R x) |H(x, t, z) + R     |  H(x, t, z)

                                                  4       
                             |              (1/2)|   (1/2)
   - exp(-4 Im(R x) + I R x) |H(x, t, z) + R     |  R     
collect(%, exp(I*R*x));
 /  (5/2)       / d            \      2           
 |-R      + 2 I |--- H(x, t, z)| R - R  H(x, t, z)
 \              \ dx           /                  

        / d            \   / d  / d            \\
    + I |--- H(x, t, z)| + |--- |--- H(x, t, z)||
        \ dz           /   \ dx \ dx           //

      / d  / d            \\\           
    + |--- |--- H(x, t, z)||| exp(I R x)
      \ dt \ dt           ///           

                                                   2           
                              |              (1/2)|            
    + exp(-2 Im(R x) + I R x) |H(x, t, z) + R     |  H(x, t, z)

                                                   2       
                              |              (1/2)|   (1/2)
    + exp(-2 Im(R x) + I R x) |H(x, t, z) + R     |  R     

                                                   4           
                              |              (1/2)|            
    - exp(-4 Im(R x) + I R x) |H(x, t, z) + R     |  H(x, t, z)

                                                   4       
                              |              (1/2)|   (1/2)
    - exp(-4 Im(R x) + I R x) |H(x, t, z) + R     |  R     
 

1 2 3 4 5 6 7 Last Page 3 of 298