Maple 2018 Questions and Posts

These are Posts and Questions associated with the product, Maple 2018

Hi

I am woking on a pharmo model for a freind, and it includes a variable called depot that needs to jump up by 150 every 24 hours.
currently I have written it as:

diff(Depot(t), t) = piecewise(t = 0, -Ka*Depot(t)+150, t = 24, -Ka*Depot(t)+150, -Ka*Depot(t))

clearly thats wrong though, as the +150 s don't make it jump up by 150 because of the small step size.


(at t=0, it adds 150*a small step size, at 24 it looks like it adds 150* a vastly smaller step size, what I want would be much closer to a series of pulses each decaying to almost 0 and then getting boosted to just over 150)

My intuition is that i need to use the dirac delta function but in such a way that its integral adds 150 instantaneoulsy every 24 hours. I have no idea how to do that!

Lindas_signal_transduction_model_2.mw

[Edit:
I've just realised that this ode has an obvious solution, so you can trivially make a function that adds 150 every 24 hours and exponentially decays in between.  However there are other models that hopefully i'll being doing similar work on, that don't have nice solutions]

 

Hello

When i export an animation as a gif the dimensions are (by default it seems) 400x400 pixels (w x h).

But my slide show requires a dimension of 1920 x 1080 pixels.

How to I tell maple to export a gif of predefined dimensions?

I can manually adjust the dimensions of the animation by grabbing a corner and pulling it right and down and then export it, but its hit and miss.

Here is an example animation written by Kitonum

restart;
with(DEtools):
rho := 0.1:
w0 := 2:
sys := a->[diff(x(t),t) = y(t),diff(y(t),t) = -2*rho*y(t) - w0^2*(x(t)+a)];
P:=a->DEplot(sys(a), [x(t),y(t)], t = 0 .. 20-2*a, x=-2..2, y=-1.9..1.7, [[x(0) = cos(a)-a, y(0) = sin(a)]], scene = [x(t),y(t)], linecolor=blue, numpoints=1000):
plots:-animate(plots:-display,['P'(a), size=[600,300]], a=-0.7..1.4, frames=90);

 

 

Hi i was trying to numerically integrate my freinds model with dsolve, and i am sure that I have put all the right components in the command as described in the help page, but it doesn't work. (Here is a worksheet with the model Lindas_signal_transduction_model.mw )

What is the problem with the way I have called the function?
Does anyone have a mental checklist that they use for dsolve commands? because I often struggle with making them work.

 

 

Hello all
I'm working on calculating the conservation laws for a Gardner equation
During calculation interface problem using []

The problem is that this function only works for integer exponents

Is there another way to overcome this

 


 

``

restart; with(PDEtools); declare(u(t, x), A(t), B(t), F(t))

` u`(t, x)*`will now be displayed as`*u

 

` A`(t)*`will now be displayed as`*A

 

` B`(t)*`will now be displayed as`*B

 

` F`(t)*`will now be displayed as`*F

(1)

det_eqs := [2*(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx)) = 0, 2*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx), x))+2*uxx*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), ux), uxx), uxx))+2*ux*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx), uxx)) = 0, 2*(diff(Lambda1(t, x, u, ux, uxx), uxx))*B(t)+(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx))*B(t)*uxx+(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx))*F(t)*u+(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx))*A(t)*u^n*ux = 0, 2*(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx))*ux+2*(diff(diff(Lambda1(t, x, u, ux, uxx), ux), uxx))*uxx-2*(diff(Lambda1(t, x, u, ux, uxx), ux))+2*(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), x)) = 0, 3*(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx))*B(t)+(diff(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx), uxx))*B(t)*uxx+(diff(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx), uxx))*F(t)*u+(diff(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx), uxx))*A(t)*u^n*ux = 0, ux^2*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), u), uxx))+2*ux*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx), x))-ux*(diff(diff(Lambda1(t, x, u, ux, uxx), u), ux))-uxx*(diff(diff(Lambda1(t, x, u, ux, uxx), ux), ux))+uxx^2*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), ux), ux), uxx))+uxx*(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx))+2*uxx*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), ux), uxx), x))+2*uxx*ux*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), ux), uxx))-(diff(diff(Lambda1(t, x, u, ux, uxx), ux), x))+diff(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), x), x) = 0, 2*uxx*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), ux), uxx), uxx))*A(t)*u^n*ux+4*(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), x))*B(t)+4*(diff(diff(Lambda1(t, x, u, ux, uxx), ux), uxx))*B(t)*uxx+2*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), ux), uxx), uxx))*B(t)*uxx^2+4*ux*(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx))*B(t)+2*ux*(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx))*F(t)+2*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx), x))*B(t)*uxx+2*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx), x))*F(t)*u+2*(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx))*A(t)*u^n*n*ux^2/u+2*uxx*(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx))*A(t)*u^n+2*uxx*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), ux), uxx), uxx))*F(t)*u+2*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx), uxx))*A(t)*u^n*ux^2+2*ux*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx), uxx))*B(t)*uxx+2*ux*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx), uxx))*F(t)*u+2*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx), x))*A(t)*u^n*ux = 0, 2*ux*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx), x))*B(t)*uxx+2*ux*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx), x))*F(t)*u+(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), u), uxx))*A(t)*u^n*ux^3+ux^2*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), u), uxx))*B(t)*uxx+ux^2*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), u), uxx))*F(t)*u+2*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx), x))*A(t)*u^n*ux^2-(diff(diff(Lambda1(t, x, u, ux, uxx), u), ux))*A(t)*u^n*ux^2-ux*(diff(diff(Lambda1(t, x, u, ux, uxx), u), ux))*F(t)*u-2*uxx*(diff(Lambda1(t, x, u, ux, uxx), ux))*A(t)*u^n-(diff(Lambda1(t, x, u, ux, uxx), x))*A(t)*u^n+uxx*(diff(Lambda1(t, x, u, ux, uxx), uxx))*F(t)+(diff(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), x), x))*F(t)*u+2*ux^2*(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx))*F(t)+2*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), ux), uxx), x))*B(t)*uxx^2+2*ux*(diff(diff(Lambda1(t, x, u, ux, uxx), u), x))*B(t)+ux^2*(diff(diff(Lambda1(t, x, u, ux, uxx), u), u))*B(t)+2*ux*(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), x))*F(t)+(diff(diff(diff(Lambda1(t, x, u, ux, uxx), ux), ux), uxx))*B(t)*uxx^3-ux*(diff(Lambda1(t, x, u, ux, uxx), ux))*F(t)+(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx))*B(t)*uxx^2-uxx*(diff(diff(Lambda1(t, x, u, ux, uxx), ux), ux))*F(t)*u+uxx*ux*(diff(diff(Lambda1(t, x, u, ux, uxx), u), ux))*B(t)+2*uxx*ux*(diff(diff(Lambda1(t, x, u, ux, uxx), ux), uxx))*F(t)+2*uxx*(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), x))*A(t)*u^n+2*uxx*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), ux), uxx), x))*F(t)*u+2*uxx*(diff(diff(Lambda1(t, x, u, ux, uxx), ux), uxx))*A(t)*u^n*n*ux^2/u+3*uxx*(diff(Lambda1(t, x, u, ux, uxx), uxx))*A(t)*u^n*n*ux/u+3*uxx*(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx))*A(t)*u^n*ux+2*uxx*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), ux), uxx), x))*A(t)*u^n*ux+uxx^2*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), ux), ux), uxx))*A(t)*u^n*ux-uxx*(diff(diff(Lambda1(t, x, u, ux, uxx), ux), ux))*A(t)*u^n*ux+2*uxx*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), ux), uxx))*A(t)*u^n*ux^2+2*uxx*ux*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), ux), uxx))*F(t)*u-(diff(diff(Lambda1(t, x, u, ux, uxx), ux), x))*F(t)*u-(diff(Lambda1(t, x, u, ux, uxx), t))+2*ux*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), ux), uxx))*B(t)*uxx^2+2*uxx^2*(diff(diff(Lambda1(t, x, u, ux, uxx), ux), uxx))*A(t)*u^n+uxx^2*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), ux), ux), uxx))*F(t)*u+2*(diff(Lambda1(t, x, u, ux, uxx), u))*B(t)*uxx+(diff(diff(Lambda1(t, x, u, ux, uxx), ux), x))*B(t)*uxx+(diff(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), x), x))*B(t)*uxx+(diff(Lambda1(t, x, u, ux, uxx), u))*F(t)*u+(diff(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), x), x))*A(t)*u^n*ux-(diff(diff(Lambda1(t, x, u, ux, uxx), ux), x))*A(t)*u^n*ux+Lambda1(t, x, u, ux, uxx)*F(t)+(diff(diff(Lambda1(t, x, u, ux, uxx), x), x))*B(t)+uxx*(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx))*F(t)*u+2*(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx))*A(t)*u^n*n*ux^3/u+(diff(Lambda1(t, x, u, ux, uxx), uxx))*A(t)*u^n*n^2*ux^3/u^2-(diff(Lambda1(t, x, u, ux, uxx), uxx))*A(t)*u^n*n*ux^3/u^2+2*(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), x))*A(t)*u^n*n*ux^2/u-(diff(Lambda1(t, x, u, ux, uxx), ux))*A(t)*u^n*n*ux^2/u = 0, diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx) = 0, diff(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx), uxx) = 0]

[2*(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx)) = 0, 2*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx), x))+2*uxx*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), ux), uxx), uxx))+2*ux*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx), uxx)) = 0, 2*(diff(Lambda1(t, x, u, ux, uxx), uxx))*B(t)+(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx))*B(t)*uxx+(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx))*F(t)*u+(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx))*A(t)*u^n*ux = 0, 2*(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx))*ux+2*(diff(diff(Lambda1(t, x, u, ux, uxx), ux), uxx))*uxx-2*(diff(Lambda1(t, x, u, ux, uxx), ux))+2*(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), x)) = 0, 3*(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx))*B(t)+(diff(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx), uxx))*B(t)*uxx+(diff(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx), uxx))*F(t)*u+(diff(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx), uxx))*A(t)*u^n*ux = 0, ux^2*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), u), uxx))+2*ux*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx), x))-ux*(diff(diff(Lambda1(t, x, u, ux, uxx), u), ux))-uxx*(diff(diff(Lambda1(t, x, u, ux, uxx), ux), ux))+uxx^2*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), ux), ux), uxx))+uxx*(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx))+2*uxx*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), ux), uxx), x))+2*uxx*ux*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), ux), uxx))-(diff(diff(Lambda1(t, x, u, ux, uxx), ux), x))+diff(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), x), x) = 0, 2*uxx*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), ux), uxx), uxx))*A(t)*u^n*ux+4*(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), x))*B(t)+4*(diff(diff(Lambda1(t, x, u, ux, uxx), ux), uxx))*B(t)*uxx+2*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), ux), uxx), uxx))*B(t)*uxx^2+4*ux*(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx))*B(t)+2*ux*(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx))*F(t)+2*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx), x))*B(t)*uxx+2*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx), x))*F(t)*u+2*(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx))*A(t)*u^n*n*ux^2/u+2*uxx*(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx))*A(t)*u^n+2*uxx*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), ux), uxx), uxx))*F(t)*u+2*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx), uxx))*A(t)*u^n*ux^2+2*ux*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx), uxx))*B(t)*uxx+2*ux*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx), uxx))*F(t)*u+2*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx), x))*A(t)*u^n*ux = 0, (diff(Lambda1(t, x, u, ux, uxx), u))*F(t)*u-ux*(diff(Lambda1(t, x, u, ux, uxx), ux))*F(t)+uxx^2*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), ux), ux), uxx))*F(t)*u+(diff(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), x), x))*A(t)*u^n*ux-(diff(Lambda1(t, x, u, ux, uxx), x))*A(t)*u^n+2*ux*(diff(diff(Lambda1(t, x, u, ux, uxx), u), x))*B(t)+ux^2*(diff(diff(Lambda1(t, x, u, ux, uxx), u), u))*B(t)+(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx))*B(t)*uxx^2+(diff(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), x), x))*F(t)*u+2*(diff(Lambda1(t, x, u, ux, uxx), u))*B(t)*uxx-(diff(diff(Lambda1(t, x, u, ux, uxx), ux), x))*F(t)*u+2*ux*(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), x))*F(t)+uxx*(diff(Lambda1(t, x, u, ux, uxx), uxx))*F(t)+2*uxx*(diff(diff(Lambda1(t, x, u, ux, uxx), ux), uxx))*A(t)*u^n*n*ux^2/u+3*uxx*(diff(Lambda1(t, x, u, ux, uxx), uxx))*A(t)*u^n*n*ux/u-(diff(Lambda1(t, x, u, ux, uxx), t))+2*(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx))*A(t)*u^n*n*ux^3/u+(diff(Lambda1(t, x, u, ux, uxx), uxx))*A(t)*u^n*n^2*ux^3/u^2-(diff(Lambda1(t, x, u, ux, uxx), uxx))*A(t)*u^n*n*ux^3/u^2+2*(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), x))*A(t)*u^n*n*ux^2/u-(diff(Lambda1(t, x, u, ux, uxx), ux))*A(t)*u^n*n*ux^2/u+2*uxx^2*(diff(diff(Lambda1(t, x, u, ux, uxx), ux), uxx))*A(t)*u^n+2*uxx*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), ux), uxx), x))*F(t)*u+uxx*(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx))*F(t)*u+2*ux*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), ux), uxx))*B(t)*uxx^2+(diff(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), x), x))*B(t)*uxx+(diff(diff(Lambda1(t, x, u, ux, uxx), ux), x))*B(t)*uxx+uxx*ux*(diff(diff(Lambda1(t, x, u, ux, uxx), u), ux))*B(t)+2*uxx*ux*(diff(diff(Lambda1(t, x, u, ux, uxx), ux), uxx))*F(t)+2*uxx*(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), x))*A(t)*u^n+(diff(diff(diff(Lambda1(t, x, u, ux, uxx), ux), ux), uxx))*B(t)*uxx^3+2*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), ux), uxx), x))*B(t)*uxx^2+2*uxx*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), ux), uxx))*A(t)*u^n*ux^2+2*uxx*ux*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), ux), uxx))*F(t)*u+3*uxx*(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx))*A(t)*u^n*ux+2*uxx*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), ux), uxx), x))*A(t)*u^n*ux+uxx^2*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), ux), ux), uxx))*A(t)*u^n*ux-uxx*(diff(diff(Lambda1(t, x, u, ux, uxx), ux), ux))*A(t)*u^n*ux+2*ux^2*(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx))*F(t)-uxx*(diff(diff(Lambda1(t, x, u, ux, uxx), ux), ux))*F(t)*u-ux*(diff(diff(Lambda1(t, x, u, ux, uxx), u), ux))*F(t)*u-2*uxx*(diff(Lambda1(t, x, u, ux, uxx), ux))*A(t)*u^n+ux^2*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), u), uxx))*F(t)*u+2*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx), x))*A(t)*u^n*ux^2-(diff(diff(Lambda1(t, x, u, ux, uxx), u), ux))*A(t)*u^n*ux^2+2*ux*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx), x))*B(t)*uxx+2*ux*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), uxx), x))*F(t)*u+(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), u), uxx))*A(t)*u^n*ux^3+ux^2*(diff(diff(diff(Lambda1(t, x, u, ux, uxx), u), u), uxx))*B(t)*uxx-(diff(diff(Lambda1(t, x, u, ux, uxx), ux), x))*A(t)*u^n*ux+Lambda1(t, x, u, ux, uxx)*F(t)+(diff(diff(Lambda1(t, x, u, ux, uxx), x), x))*B(t) = 0, diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx) = 0, diff(diff(diff(Lambda1(t, x, u, ux, uxx), uxx), uxx), uxx) = 0]

(2)

CL_multipliers := [Lambda1(t, x, u, ux, uxx)]

[Lambda1(t, x, u, ux, uxx)]

(3)

simplified_eqs := DEtools[rifsimp](det_eqs, CL_multipliers, mindim = 1)

Error, (in DEtools/Rif/setup) simplification for integer exponents

 

``

``

``

 

 
 

Download question_for_rif

 

Hello

I found this example in the Help.

I'm wanting to export the encrypted file (the gibberish between local and end proc) to friend running another M2018, and want it to run.

I would need to rerieve "abc.mla" repository that we saved it in. But I cant find it. and if i did send it, he would be able to decrypt it surely?

Encrypt_Proc.mw

 

Hi,
I had written some help pages in Maple 18 that I just migrate in Maple 2018.
This seems correct except one single point: when I try ot access them from the help menu, their names are preceeded by a  "WS" label and, when I click on it, the help page appears in a new window of my Maple's session, not in the help window.
I guess "WS" means "WorkSheet" ?
How can I force the halp page of "my" function to appear in the main help page window?

(hope I was clear enough)

Thanks in advance
 

 

 

I want to calculate the voltage between phase 1 and phase N in an electrical circuit:

 

The vectorial formula is:

`#mover(mi("U"),mo("→"))`[L1-N]-`#mover(mi("ΔU",mathcolor = "blue"),mo("→",mathcolor = "blue"))`[L1]+`#mover(mi("ΔU",mathcolor = "#339966"),mo("→",mathcolor = "#339966"))`[N] = `#mover(mi("U",mathcolor = "red"),mo("→",mathcolor = "red"))`[L1-N]

 

Voltage drops are calculated with the current multiplied with the resistance: ΔU = I*Z[L]

 

i

 

-`#mover(mi("I",mathcolor = "blue"),mo("→",mathcolor = "blue"))`[L1]*`#mover(mi("Z",mathcolor = "#ff99cc"),mo("→",mathcolor = "#ff99cc"))`[L]+`#mover(mi("I",mathcolor = "#339966"),mo("→",mathcolor = "#339966"))`[N]*`#mover(mi("Z",mathcolor = "#ff99cc"),mo("→",mathcolor = "#ff99cc"))`[L]+`#mover(mi("U"),mo("→"))`[L1-N] = `#mover(mi("U",mathcolor = "red"),mo("→",mathcolor = "red"))`[L1-N]NULL

This is a real example with realistic values and angles. Note that i have two different vectors with the same index.

This is on purpose and the vector is different. This is because the first vector is before the resistance in the wire and

the one i want to find, is after the resistance in the wire (the red one).:

``

"(U[L1-N])=230∠0°"

"(I[L1])=20∠-30°"

"(Z[L])=0.097∠7.2°"

"(I[N])=40∠-120°"

 

The negative angles is because i am using my reference which is in 0°. And are the vector to the right of my reference is the angle negative, and is it on the left of my reference is the angle negative. I dont want to explain the vectorial diagram, because i think it will do more confusion than explaining.

 

``

"230∠0°-(20∠-30°*0.097∠7.2°)+(40∠-120°*0.097∠7.2°)=(U[L1-N])"

 

My question is, if the formula above is possible to solve in maple?

 

 

The result is calculated on my CAS-calulator:

 

"(U[L1-N])=226 V∠-0.7°"``

``


The example in Maple:

Download Example_to_Mapleprimes.mw

 

I am having problems with the attached worksheet, in which I am attempting to solve a couple pair of PDEs, particularly in defining initial and boundary conditions.  See MapleExample1c.mw

Can anyone help?

Melvin

Hi,

I'm surprised by the result of the procedure VectorCalculus:-Curvature which is always a positive scalar quantity:
For instance
c := VectorCalculus:-Curvature(<x, sin(x)>, x):
plot(c, x=0..2*Pi) 
# c >=0 for all x in [0, 2*Pi]

In the help pages it's written that the (signed) curvature for a function y(x) is y''/(1+y' 2)(3/2).

y := sin(x):
c := diff(y, x$2) / (1+diff(y,x)^2)^(3/2):
plot(c,  x=0..2*Pi) 
# c < 0 if x in (0, Pi)  and  c > 0 if x in (Pi, 2*Pi)

Could you please help me to understand this?

Thank in advance

Hello,

How to calculate the derivative of modified Bessel fucntion of the first kind and order \alpha, such that \alpha>-1/2?

I need to calculate de general term of the derivative of modified Bessel function of the first kind and order \alpha.

 

Best regards 

Worm greeting to all

I use the following to plot two orthogonal vectors display(arrow(1,0), arrow(0,1)) as

 

  Now, I need to shift these two orthogonal vectors to another point.

In this question at here https://tex.stackexchange.com/questions/503745/how-can-i-get-correct-the-point-a-and-b-automatically-in-this-picture/503838?noredirect=1#comment1272706_503838
The points A and B lie on the circle is intersection of the sphere x^2 + y^2 + (z-3)^2 = 25 and the plane z = 0. 
How can I find coordinates of the points A and B by Maple?

 

unprotect(D); f := proc (x, y) options operator, arrow; (295849/5841396)*x^2-(29441/324522)*y*x+(33995/216348)*y^2-(5989/14751)*x+(3635/4917)*y+1 end proc; 295849 2 29441 33995 2 5989 f := (x, y) -> ------- x - ------ y x + ------ y - ----- x 5841396 324522 216348 14751 3635 + ---- y + 1 4917 coeffs(f(x, y)); -5989 3635 295849 33995 -29441 1, -----, ----, -------, ------, ------ 14751 4917 5841396 216348 324522 A, B, C, D, E, F := %; -5989 295849 33995 -29441 3635 A, B, C, D, E, F := 1, -----, -------, ------, ------, ---- 14751 5841396 216348 324522 4917

Hi,

In statistics a  "degree of freedom" is a strictly positive integer.

The three distributions ChiSquare, StudentT and FRatio from package Statistics have degrees of freedom as parameters. Nevertheless they accept any strictly positive real values for them.
(one can verify that their "Conditions" attribute is of the form [0 < n] instead of [n::posint]).

I think this ought to be corrected in future versions
 

1 2 3 4 5 6 7 Last Page 3 of 42