Maple 2018 Questions and Posts

These are Posts and Questions associated with the product, Maple 2018

Hi,

I'm trying to create an agent vehicle which drives along a path of a uniform width, and finds the distance to the edge of the path directly ahead of it. Like this:

The aim is to somewhat simulate how far the agent can see down the road.

Since the thickness of a plot curve is unrelated to the units of the axis, and has no means of interacting with objects this would be no use.

I also considered shadebetween function, however this only can shade between the y values of 2 functions, so for a vertical curve it cannot produce any width to the path.

I then realised using parametric equations of form (x(t), y(t)) would likely make most sense and wrote some code which roughly gets the boundarys at a fixed distance from the centre path equation, by adding the x-y components of the reciprocal of the gradient:

For certain simple path equations such as this one, it roughly works other than the areas between which the boundary curves overlap themselves (I would need to find these points of intersection and break the curves up to remove these squigly inner bits). Any advice on this would be much appreciated cause this seems like it will be tricky, if not computationally heavy.

 

More annoyingly, due to the nature of the trig functions involved, for more complex graphs which include a vertical turning point, the left and right boundaries seem to swap over:

and

Clearly this is not the behaviour I had in mind.. and I'm not sure what I can do to fix it, I think maybe using piecewise trig may be a potential solution to avoid the jumping from + to -, though I'm not sure where I would put these breakpoints (I've tried just using abs(arctan(...)) with no luck).

 

If anyone could help wih this that would be really appreciated, or even suggest a better approach to this problem!

Thanks

 

[code] agentpath.mw

Hello, 

I am doing a regression analysis, but some of my model says: Warning, model is not of full rank. Can anyone help what to do with that? 

Rok := Vector([2013, 2014, 2015, 2016, 2017, 2018], datatype = float);

TrzbyCelkemEmco := Vector([1028155, 1134120, 1004758, 929584, 995716, 1152042], datatype = float);

KubickaTrzby = Statistics:-PolynomialFit(3, Rok, TrzbyCelkemEmco, x);


 

 

Thank you :)  

 

 

 

I am trying to solve a set of equations

Why are the results not the same as the following results?

Is there any other way to get the correct answer?


 

NULL

T[1] := 3*a__0*a__1^2*q = 0

3*a__0*a__1^2*q = 0

(1)

T[2] := 2*a__1*k^2*m^2+a__1^3*q = 0

2*a__1*k^2*m^2+a__1^3*q = 0

(2)

T[3] := -a__1*b__1*k^2*m^2+3*a__1^2*b__1^2*q+3*a__0^2*a__1*b__1-a__1*b__1*k^2+a__1*b__1*p = 0

-a__1*b__1*k^2*m^2+3*a__1^2*b__1^2*q+3*a__0^2*a__1*b__1-a__1*b__1*k^2+a__1*b__1*p = 0

(3)

T[4] := a__0^3*q+6*a__0*a__1*b__1*q+a__0*p = 0

a__0^3*q+6*a__0*a__1*b__1*q+a__0*p = 0

(4)

T[5] := b__1^3*q+2*b__1*k^2 = 0

b__1^3*q+2*b__1*k^2 = 0

(5)

vars := {a__0, a__1, b__1, k}

{a__0, a__1, b__1, k}

(6)

sys1 := {}; SolsT := {}; for i to 5 do sys1 := `union`(sys1, {T[i]}) end do; sys := sys1

{}

 

{}

 

{3*a__0*a__1^2*q = 0, b__1^3*q+2*b__1*k^2 = 0, 2*a__1*k^2*m^2+a__1^3*q = 0, a__0^3*q+6*a__0*a__1*b__1*q+a__0*p = 0, -a__1*b__1*k^2*m^2+3*a__1^2*b__1^2*q+3*a__0^2*a__1*b__1-a__1*b__1*k^2+a__1*b__1*p = 0}

(7)

``

for i to 5 do indets(T[i]) end do

{a__0, a__1, q}

 

{a__1, k, m, q}

 

{a__0, a__1, b__1, k, m, p, q}

 

{a__0, a__1, b__1, p, q}

 

{b__1, k, q}

(8)

Solll := [solve(sys, vars, explicit)]

[{a__0 = 0, a__1 = a__1, b__1 = 0, k = (1/2)*(-2*q)^(1/2)*a__1/m}, {a__0 = 0, a__1 = a__1, b__1 = 0, k = -(1/2)*(-2*q)^(1/2)*a__1/m}, {a__0 = (-q*p)^(1/2)/q, a__1 = 0, b__1 = b__1, k = (1/2)*(-2*q)^(1/2)*b__1}, {a__0 = -(-q*p)^(1/2)/q, a__1 = 0, b__1 = b__1, k = (1/2)*(-2*q)^(1/2)*b__1}, {a__0 = (-q*p)^(1/2)/q, a__1 = 0, b__1 = b__1, k = -(1/2)*(-2*q)^(1/2)*b__1}, {a__0 = -(-q*p)^(1/2)/q, a__1 = 0, b__1 = b__1, k = -(1/2)*(-2*q)^(1/2)*b__1}, {a__0 = (-q*p)^(1/2)/q, a__1 = 0, b__1 = 0, k = k}, {a__0 = -(-q*p)^(1/2)/q, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (1/2)*(-2*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(1/2)*(-2*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*q*(m^2-6*m+1)*p)^(1/2)*m/(q*(m^2-6*m+1)), b__1 = -(-2*q*(m^2-6*m+1)*p)^(1/2)/(q*(m^2-6*m+1)), k = ((m^2-6*m+1)*p)^(1/2)/(m^2-6*m+1)}, {a__0 = 0, a__1 = -(-2*q*(m^2-6*m+1)*p)^(1/2)*m/(q*(m^2-6*m+1)), b__1 = (-2*q*(m^2-6*m+1)*p)^(1/2)/(q*(m^2-6*m+1)), k = ((m^2-6*m+1)*p)^(1/2)/(m^2-6*m+1)}, {a__0 = 0, a__1 = (-2*q*(m^2-6*m+1)*p)^(1/2)*m/(q*(m^2-6*m+1)), b__1 = -(-2*q*(m^2-6*m+1)*p)^(1/2)/(q*(m^2-6*m+1)), k = -((m^2-6*m+1)*p)^(1/2)/(m^2-6*m+1)}, {a__0 = 0, a__1 = -(-2*q*(m^2-6*m+1)*p)^(1/2)*m/(q*(m^2-6*m+1)), b__1 = (-2*q*(m^2-6*m+1)*p)^(1/2)/(q*(m^2-6*m+1)), k = -((m^2-6*m+1)*p)^(1/2)/(m^2-6*m+1)}, {a__0 = 0, a__1 = (-2*q*(m^2+6*m+1)*p)^(1/2)*m/(q*(m^2+6*m+1)), b__1 = (-2*q*(m^2+6*m+1)*p)^(1/2)/(q*(m^2+6*m+1)), k = ((m^2+6*m+1)*p)^(1/2)/(m^2+6*m+1)}, {a__0 = 0, a__1 = -(-2*q*(m^2+6*m+1)*p)^(1/2)*m/(q*(m^2+6*m+1)), b__1 = -(-2*q*(m^2+6*m+1)*p)^(1/2)/(q*(m^2+6*m+1)), k = ((m^2+6*m+1)*p)^(1/2)/(m^2+6*m+1)}, {a__0 = 0, a__1 = (-2*q*(m^2+6*m+1)*p)^(1/2)*m/(q*(m^2+6*m+1)), b__1 = (-2*q*(m^2+6*m+1)*p)^(1/2)/(q*(m^2+6*m+1)), k = -((m^2+6*m+1)*p)^(1/2)/(m^2+6*m+1)}, {a__0 = 0, a__1 = -(-2*q*(m^2+6*m+1)*p)^(1/2)*m/(q*(m^2+6*m+1)), b__1 = -(-2*q*(m^2+6*m+1)*p)^(1/2)/(q*(m^2+6*m+1)), k = -((m^2+6*m+1)*p)^(1/2)/(m^2+6*m+1)}]

(9)

for i to nops(Solll) do SOlls[i] := simplify(Solll[i], 'symbolic') end do

{a__0 = 0, a__1 = a__1, b__1 = 0, k = ((1/2)*I)*2^(1/2)*q^(1/2)*a__1/m}

 

{a__0 = 0, a__1 = a__1, b__1 = 0, k = -((1/2)*I)*2^(1/2)*q^(1/2)*a__1/m}

 

{a__0 = I*p^(1/2)/q^(1/2), a__1 = 0, b__1 = b__1, k = ((1/2)*I)*2^(1/2)*q^(1/2)*b__1}

 

{a__0 = -I*p^(1/2)/q^(1/2), a__1 = 0, b__1 = b__1, k = ((1/2)*I)*2^(1/2)*q^(1/2)*b__1}

 

{a__0 = I*p^(1/2)/q^(1/2), a__1 = 0, b__1 = b__1, k = -((1/2)*I)*2^(1/2)*q^(1/2)*b__1}

 

{a__0 = -I*p^(1/2)/q^(1/2), a__1 = 0, b__1 = b__1, k = -((1/2)*I)*2^(1/2)*q^(1/2)*b__1}

 

{a__0 = I*p^(1/2)/q^(1/2), a__1 = 0, b__1 = 0, k = k}

 

{a__0 = -I*p^(1/2)/q^(1/2), a__1 = 0, b__1 = 0, k = k}

 

{a__0 = 0, a__1 = 0, b__1 = b__1, k = ((1/2)*I)*2^(1/2)*q^(1/2)*b__1}

 

{a__0 = 0, a__1 = 0, b__1 = b__1, k = -((1/2)*I)*2^(1/2)*q^(1/2)*b__1}

 

{a__0 = 0, a__1 = 0, b__1 = 0, k = k}

 

{a__0 = 0, a__1 = I*2^(1/2)*p^(1/2)*m/(q^(1/2)*(m^2-6*m+1)^(1/2)), b__1 = -I*2^(1/2)*p^(1/2)/(q^(1/2)*(m^2-6*m+1)^(1/2)), k = p^(1/2)/(m^2-6*m+1)^(1/2)}

 

{a__0 = 0, a__1 = -I*2^(1/2)*p^(1/2)*m/(q^(1/2)*(m^2-6*m+1)^(1/2)), b__1 = I*2^(1/2)*p^(1/2)/(q^(1/2)*(m^2-6*m+1)^(1/2)), k = p^(1/2)/(m^2-6*m+1)^(1/2)}

 

{a__0 = 0, a__1 = I*2^(1/2)*p^(1/2)*m/(q^(1/2)*(m^2-6*m+1)^(1/2)), b__1 = -I*2^(1/2)*p^(1/2)/(q^(1/2)*(m^2-6*m+1)^(1/2)), k = -p^(1/2)/(m^2-6*m+1)^(1/2)}

 

{a__0 = 0, a__1 = -I*2^(1/2)*p^(1/2)*m/(q^(1/2)*(m^2-6*m+1)^(1/2)), b__1 = I*2^(1/2)*p^(1/2)/(q^(1/2)*(m^2-6*m+1)^(1/2)), k = -p^(1/2)/(m^2-6*m+1)^(1/2)}

 

{a__0 = 0, a__1 = I*2^(1/2)*p^(1/2)*m/(q^(1/2)*(m^2+6*m+1)^(1/2)), b__1 = I*2^(1/2)*p^(1/2)/(q^(1/2)*(m^2+6*m+1)^(1/2)), k = p^(1/2)/(m^2+6*m+1)^(1/2)}

 

{a__0 = 0, a__1 = -I*2^(1/2)*p^(1/2)*m/(q^(1/2)*(m^2+6*m+1)^(1/2)), b__1 = -I*2^(1/2)*p^(1/2)/(q^(1/2)*(m^2+6*m+1)^(1/2)), k = p^(1/2)/(m^2+6*m+1)^(1/2)}

 

{a__0 = 0, a__1 = I*2^(1/2)*p^(1/2)*m/(q^(1/2)*(m^2+6*m+1)^(1/2)), b__1 = I*2^(1/2)*p^(1/2)/(q^(1/2)*(m^2+6*m+1)^(1/2)), k = -p^(1/2)/(m^2+6*m+1)^(1/2)}

 

{a__0 = 0, a__1 = -I*2^(1/2)*p^(1/2)*m/(q^(1/2)*(m^2+6*m+1)^(1/2)), b__1 = -I*2^(1/2)*p^(1/2)/(q^(1/2)*(m^2+6*m+1)^(1/2)), k = -p^(1/2)/(m^2+6*m+1)^(1/2)}

(10)

 

Solsys := [allvalues([solve(sys, vars)])]

[[{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}]]

(11)

``


 

Download


 

Analysis of the semiclassical (SC) momentum rate equations

Plotting the ICs and BCs and examining sensitivity to the Re and Im forces

MRB: 24/2/2020, 27/2/2020, 2/3/2020.

We examine solution of the SC version of the momentum rate equations, in which O`ℏ`^2 terms for u(x, t) are removed. A high level of sensitivity to ICs and BCs makes solution finding difficult.

restart;

with(PDETools): with(CodeTools):with(plots):

We set up the initial conditions:

ICu := {u(x, 0) = .1*sin(2*Pi*x)}; ICv := {v(x, 0) = .2*sin(Pi*x)};

{u(x, 0) = .1*sin(2*Pi*x)}

 

{v(x, 0) = .2*sin(Pi*x)}

(1)

plot([0.1*sin(2*Pi*x),0.2*sin(Pi*x)],x = 0..2, title="ICs:\n u(x,0) (red), v(x,0) (blue)",color=[red,blue],gridlines=true);  

 

The above initial conditions represent a positive velocity field v(x, 0) (blue) and a colliding momentum field u(x, t)(red).

 

Here are the BCs

BCu := {u(0,t) = 0.5*(1-cos(2*Pi*t))};

{u(0, t) = .5-.5*cos(2*Pi*t)}

(2)

BCv := {v(0,t) = 0.5*sin(2*Pi*t),v(2,t)=-0.5*sin(2*Pi*t)};  

{v(0, t) = .5*sin(2*Pi*t), v(2, t) = -.5*sin(2*Pi*t)}

(3)

plot([0.5*(1-cos(2*Pi*t)),0.5*sin(2*Pi*t),-0.5*sin(2*Pi*t)],t=0..1,color=[red,blue,blue],linestyle=[dash,dash,dot],title="BCs:\n u(0,t) (red-dash),\n v(0,t) (blue-dash), v(1,t) (blue-dot)",gridlines=true);

 

 

We can now set up the PDEs for the semiclassical case.

hBar:= 1:m:= 1:Fu:= 0.2:Fv:= 0.1:#1.0,0.2

pdeu := diff(u(x,t),t)+u(x,t)/m*(diff(u(x,t),x)) = Fu;

diff(u(x, t), t)+u(x, t)*(diff(u(x, t), x)) = .2

(4)

pdev := diff(v(x,t),t)+u(x,t)/m*(diff(v(x,t),x))-hBar*(diff(u(x,t),x$2))/(2*m)+v(x,t)*(diff(u(x,t),x))/m = Fv;  

diff(v(x, t), t)+u(x, t)*(diff(v(x, t), x))-(1/2)*(diff(diff(u(x, t), x), x))+v(x, t)*(diff(u(x, t), x)) = .1

(5)

ICu:={u(x,0) = 0.1*sin(2*Pi*x)};  

{u(x, 0) = .1*sin(2*Pi*x)}

(6)

ICv:={v(x,0) = 0.2*sin(Pi*x/2)};  

{v(x, 0) = .2*sin((1/2)*Pi*x)}

(7)

IC := ICu union ICv;  

{u(x, 0) = .1*sin(2*Pi*x), v(x, 0) = .2*sin((1/2)*Pi*x)}

(8)

BCu := {u(0,t) = 0.5*(1-cos(2*Pi*t)), D[1](u)(2,t) = 0.1*cos(2*Pi*t)};

{u(0, t) = .5-.5*cos(2*Pi*t), (D[1](u))(2, t) = .1*cos(2*Pi*t)}

(9)

BCv := {v(0,t) = 0.2*(1-cos(2*Pi*t))};  

{v(0, t) = .2-.2*cos(2*Pi*t)}

(10)

BC := BCu union BCv;  

{u(0, t) = .5-.5*cos(2*Pi*t), v(0, t) = .2-.2*cos(2*Pi*t), (D[1](u))(2, t) = .1*cos(2*Pi*t)}

(11)

We now set up the PDE solver:

pds := pdsolve({pdeu,pdev},{BC[],IC[]},time = t,range = 0..2,numeric);#'numeric' solution

_m2592591229440

(12)

Cp:=pds:-animate({[u, color = red, linestyle = dash],[v,color = blue,linestyle = dash]},t = 30,frames = 400,numpoints = 400,title="Semiclassical momentum equations solution for Re and Im momenta u(x,t) (red) and v(x,t) (blue) \n under respective constant positive forces [0.2, 0.1] \n with sinusoidal boundary conditions at x = 0, 1 and sinusoidal initial conditions: \n time = %f ", gridlines = true,linestyle=solid):Cp;

Error, (in pdsolve/numeric/animate) unable to compute solution for t>HFloat(0.0):
Newton iteration is not converging

 

Cp

(13)

Observations on the quantum case:

The classical equation for u(x, t) is independent of the equation for v(x, t).  u(x, t) (red) is a solution of the classical Burgers equation subject to a force 0.2, but u(x, t) is NOT influenced by v(x, t).  On the otherhand, v(x, t) (blue) is a solution of the quantum dynamics equation subject to force 0.1 and is influenced by u(x, t).   This one way causality (u " implies v")  is a feature of the semiclassical case, and it emphasises the controlling influence of the classical u(x, t), which modulates the quantum solution for v(x, t).  Causally, we have u" implies v".

 

The initial conditions are of low momentum amplitude:"+/-"0.1 for the classical u(x, 0) (red) field and`&+-`(0).2 for v(x, 0) (blue)  but their influence is soon washed out by the boundary conditions "u(0,t) ~1, v(0,t)~0.5" and "v(1,t)~0.5" that drive the momentum dynamics.

 

The temporal frequency of the boundary condition on the v-field is twice that of the classical u-field. This is evident in the above blue transient plot. Moreover, the">=0" boundary condition on the classical u-momentum (red), drives that field in the positive direction, initially overtaking the quantum v(x, t) field, as consistent with the applied forces [0.2, 0.1]. NULLAlthough initially of greater amplitude than the classical u(x, t)field, the v(x, t) momentum field is asymptotically of the same amplitude as the u(x, t) field, but has greater spatial and temporal frequency, owing to the boundary conditions.

 

Referring to the semiclassical momentum rate equations, we note that the classical field u(x, t) (red) modulates the quantum momentum rate equation for v(x, t).

``

 

 

 


 

Download SC-plots.mw

I am having difficulty getting solutions to a pair of PDEs.  Would anyone like to cast an eye over the attached file, incase I am missing something.

Thanks

Melvin

f := proc (a, b) options operator, arrow; (1/2)*b+(1/2)*arccos(sin(2*a-b)/tan(b)) end proc; dis := proc (A, B) options operator, arrow; sqrt(inner(A-B, A-B)) end proc; bisA := proc (A, B, C) local b, c, M; b, c := dis(A, C), dis(A, B); M := (b*B+C*c)/(b+c); x*(A[2]-M[2])+y*(M[1]-A[1])+A[1]*M[2]-A[2]*M[1] end proc; P := proc (a0, b0) local a, b, c, p1, p2, p3, p4, r, II; a := evalf(a0); b := evalf(b0); c := f(a, b); if b0-0.1e-2

  I have read the article attached in the following

I wrote the code mentioned in the article in order to find the Hirota formula This is the code that I wrote For Hirota Method But when running the program it does not work well 

Could you help me to fix the mistake and run the program


 

restart; with(PDEtools); with(DEtools)

alias(u = u(x, t)); declare(u(x, t)); alias(f = f(x, t)); declare(f(x, t))

u, f

 

` u`(x, t)*`will now be displayed as`*u

 

u, f

 

` f`(x, t)*`will now be displayed as`*f

(1)

``

BD := proc (FF, DD) local f, g, x, m, opt; if nargs = 1 then return `*`(FF[]) end if; f, g := FF[]; x, m := DD[]; opt := args[3 .. -1]; if m = 0 then return procname(FF, opt) end if; procname([diff(f, x), g], [x, m-1], opt)-procname([f, diff(g, x)], [x, m-1], opt) end proc

BD([f(x, t), g(x, t)], [x, 1])

(diff(f(x, t), x))*g(x, t)-f(x, t)*(diff(g(x, t), x))

(2)

BD([f(x, t), g(x, t)], [t, 1])

(diff(f(x, t), t))*g(x, t)-f(x, t)*(diff(g(x, t), t))

(3)

BD([f(x, t), g(x, t)])

f(x, t)*g(x, t)

(4)

``

``

print_BD := proc (FF, DD) local f, g, x, m, i; f, g := FF[]; f := cat(f, '', g); g := product(D[args[i][1]]^args[i][2], i = 2 .. nargs); if g <> 1 then f := g*(`*`(f)) end if; f end proc

``