Unanswered Questions

This page lists MaplePrimes questions that have not yet received an answer

every thing is correct but i dont know why my PDE is not be zero, i did by another way is satidy but i change whole equation by sabstitutiin then i did ode test is satisfy by putting case in equation and solution with condition but when i want to use pdetest  test in pde is not satisfy ?

restart

_local(gamma)

with(PDEtools)

NULL

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

declare(Omega(x, t)); declare(U(xi)); declare(V(xi)); declare(Theta(x, t))

Omega(x, t)*`will now be displayed as`*Omega

 

U(xi)*`will now be displayed as`*U

 

V(xi)*`will now be displayed as`*V

 

Theta(x, t)*`will now be displayed as`*Theta

(2)

xi := -t*tau+x

-t*tau+x

(3)

NULL

NULL

lambda := -tau/c; epsilon := -tau/c; delta := (2*c^2-gamma*tau)/(gamma-2*tau)

-tau/c

 

-tau/c

 

(2*c^2-gamma*tau)/(gamma-2*tau)

(4)

NULL

case1 := [c = RootOf(-gamma^3*tau+2*_Z^2+2*gamma*tau-4*tau^2)/gamma, A[0] = 0, A[1] = RootOf(_Z^2*gamma+2*tau), B[1] = 0]

[c = RootOf(-gamma^3*tau+2*_Z^2+2*gamma*tau-4*tau^2)/gamma, A[0] = 0, A[1] = RootOf(_Z^2*gamma+2*tau), B[1] = 0]

(5)

K := Omega(x, t) = RootOf(_Z^2*gamma+2*tau)*tanh(xi)*exp(I*gamma*(delta*t+x))

Omega(x, t) = -RootOf(_Z^2*gamma+2*tau)*tanh(t*tau-x)*exp(I*gamma*((2*c^2-gamma*tau)*t/(gamma-2*tau)+x))

(6)

NULL

pde1 := I*(diff(Omega(x, t), `$`(t, 2))-c^2*(diff(Omega(x, t), `$`(x, 2))))+diff(U(-t*tau+x)^2*Omega(x, t), t)-lambda*c*(diff(U(-t*tau+x)^2*Omega(x, t), x))+(1/2)*(diff(Omega(x, t), `$`(x, 2), t))-(1/2)*epsilon*c*(diff(Omega(x, t), `$`(x, 3))) = 0

I*(diff(diff(Omega(x, t), t), t)-c^2*(diff(diff(Omega(x, t), x), x)))-2*U(-t*tau+x)*Omega(x, t)*(D(U))(-t*tau+x)*tau+U(-t*tau+x)^2*(diff(Omega(x, t), t))+tau*(2*U(-t*tau+x)*Omega(x, t)*(D(U))(-t*tau+x)+U(-t*tau+x)^2*(diff(Omega(x, t), x)))+(1/2)*(diff(diff(diff(Omega(x, t), t), x), x))+(1/2)*tau*(diff(diff(diff(Omega(x, t), x), x), x)) = 0

(7)

NULL

subs(case1, pde1)

I*(diff(diff(Omega(x, t), t), t)-RootOf(-gamma^3*tau+2*_Z^2+2*gamma*tau-4*tau^2)^2*(diff(diff(Omega(x, t), x), x))/gamma^2)-2*U(-t*tau+x)*Omega(x, t)*(D(U))(-t*tau+x)*tau+U(-t*tau+x)^2*(diff(Omega(x, t), t))+tau*(2*U(-t*tau+x)*Omega(x, t)*(D(U))(-t*tau+x)+U(-t*tau+x)^2*(diff(Omega(x, t), x)))+(1/2)*(diff(diff(diff(Omega(x, t), t), x), x))+(1/2)*tau*(diff(diff(diff(Omega(x, t), x), x), x)) = 0

(8)

T := simplify(I*(diff(diff(Omega(x, t), t), t)-RootOf(-gamma^3*tau+2*_Z^2+2*gamma*tau-4*tau^2)^2*(diff(diff(Omega(x, t), x), x))/gamma^2)-2*U(-t*tau+x)*Omega(x, t)*(D(U))(-t*tau+x)*tau+U(-t*tau+x)^2*(diff(Omega(x, t), t))+tau*(2*U(-t*tau+x)*Omega(x, t)*(D(U))(-t*tau+x)+U(-t*tau+x)^2*(diff(Omega(x, t), x)))+(1/2)*(diff(diff(diff(Omega(x, t), t), x), x))+(1/2)*tau*(diff(diff(diff(Omega(x, t), x), x), x)) = 0)

(1/2)*(2*gamma^2*(tau*(diff(Omega(x, t), x))+diff(Omega(x, t), t))*U(-t*tau+x)^2+(diff(diff(diff(Omega(x, t), t), x), x))*gamma^2+tau*(diff(diff(diff(Omega(x, t), x), x), x))*gamma^2-(4*I)*((1/4)*gamma^3+tau-(1/2)*gamma)*tau*(diff(diff(Omega(x, t), x), x))+(2*I)*(diff(diff(Omega(x, t), t), t))*gamma^2)/gamma^2 = 0

(9)

pdetest(K, T)

-(1/2)*2^(1/2)*(-tau/gamma)^(1/2)*(-32*gamma^4*tau^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))+16*gamma^5*c^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))-8*gamma^6*tau*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))+32*gamma^5*tau^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))-32*gamma^4*tau^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))+16*gamma^4*tau*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))-96*gamma^3*tau^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))+192*gamma^2*tau^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))-128*tau^4*gamma*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))+16*gamma^4*tau*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))-96*gamma^3*tau^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))+192*gamma^2*tau^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))-128*tau^4*gamma*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))+16*gamma^5*c^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))-8*gamma^6*tau*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))-(4*I)*U(-t*tau+x)^2*gamma^4*c^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*x*gamma-12*x*tau)/(gamma-2*tau))+(4*I)*U(-t*tau+x)^2*gamma^4*tau^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*x*gamma-12*x*tau)/(gamma-2*tau))-(8*I)*U(-t*tau+x)^2*gamma^3*tau^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*x*gamma-12*x*tau)/(gamma-2*tau))-(12*I)*gamma^5*c^2*tau*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*x*gamma-12*x*tau)/(gamma-2*tau))+(4*I)*U(-t*tau+x)^2*gamma^4*c^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*gamma*t*tau-12*t*tau^2)/(gamma-2*tau))-(4*I)*U(-t*tau+x)^2*gamma^4*tau^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*gamma*t*tau-12*t*tau^2)/(gamma-2*tau))+(8*I)*U(-t*tau+x)^2*gamma^3*tau^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*gamma*t*tau-12*t*tau^2)/(gamma-2*tau))+(12*I)*gamma^5*c^2*tau*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*gamma*t*tau-12*t*tau^2)/(gamma-2*tau))+(4*I)*U(-t*tau+x)^2*gamma^4*c^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))-(4*I)*U(-t*tau+x)^2*gamma^4*tau^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))+(8*I)*U(-t*tau+x)^2*gamma^3*tau^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))+(12*I)*gamma^5*c^2*tau*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))-(4*I)*U(-t*tau+x)^2*gamma^4*c^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))+(4*I)*U(-t*tau+x)^2*gamma^4*tau^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))-(8*I)*U(-t*tau+x)^2*gamma^3*tau^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))-(12*I)*gamma^5*c^2*tau*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))+(32*I)*gamma^3*c^2*tau*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))-(32*I)*gamma^3*c^2*tau*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))-64*gamma^4*c^2*tau*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))+64*gamma^3*tau^2*c^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))+I*tau*gamma^7*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))-64*gamma^4*c^2*tau*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))+64*gamma^3*tau^2*c^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))+I*tau*gamma^7*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*gamma*t*tau-12*t*tau^2)/(gamma-2*tau))+(192*I)*tau^3*gamma*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))-(8*I)*c^4*gamma^4*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))-(2*I)*c^2*gamma^6*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))-(4*I)*tau^2*gamma^6*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))+(8*I)*c^4*gamma^4*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))+(2*I)*c^2*gamma^6*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))-I*tau*gamma^7*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))+(4*I)*tau^2*gamma^6*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))-(16*I)*gamma^4*c^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))+(6*I)*tau*gamma^5*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))-(20*I)*gamma^4*tau^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))+(40*I)*gamma^3*tau^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))-(48*I)*gamma^2*tau^4*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))+(16*I)*gamma^4*c^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))-(6*I)*tau*gamma^5*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))+(20*I)*gamma^4*tau^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))-(40*I)*gamma^3*tau^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))+(48*I)*gamma^2*tau^4*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))-(16*I)*gamma^3*tau*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))+(96*I)*gamma^2*tau^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))-(192*I)*tau^3*gamma*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))+(16*I)*gamma^3*tau*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))-(96*I)*gamma^2*tau^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))-I*tau*gamma^7*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*x*gamma-12*x*tau)/(gamma-2*tau))+(4*I)*tau^2*gamma^6*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*x*gamma-12*x*tau)/(gamma-2*tau))-(8*I)*c^4*gamma^4*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*gamma*t*tau-12*t*tau^2)/(gamma-2*tau))-(2*I)*c^2*gamma^6*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*gamma*t*tau-12*t*tau^2)/(gamma-2*tau))-(4*I)*tau^2*gamma^6*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*gamma*t*tau-12*t*tau^2)/(gamma-2*tau))+(8*I)*c^4*gamma^4*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*x*gamma-12*x*tau)/(gamma-2*tau))+(2*I)*tau*gamma^5*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*x*gamma-12*x*tau)/(gamma-2*tau))-(12*I)*gamma^4*tau^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*x*gamma-12*x*tau)/(gamma-2*tau))+(24*I)*gamma^3*tau^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*x*gamma-12*x*tau)/(gamma-2*tau))-(16*I)*gamma^2*tau^4*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*x*gamma-12*x*tau)/(gamma-2*tau))-(2*I)*tau*gamma^5*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*gamma*t*tau-12*t*tau^2)/(gamma-2*tau))+(12*I)*gamma^4*tau^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*gamma*t*tau-12*t*tau^2)/(gamma-2*tau))-(24*I)*gamma^3*tau^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*gamma*t*tau-12*t*tau^2)/(gamma-2*tau))+(16*I)*gamma^2*tau^4*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*gamma*t*tau-12*t*tau^2)/(gamma-2*tau))+(2*I)*c^2*gamma^6*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*x*gamma-12*x*tau)/(gamma-2*tau))+32*gamma^5*tau^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))+(128*I)*tau^4*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))-(128*I)*tau^4*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))-(8*I)*tau*c^2*U(-t*tau+x)^2*gamma^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*gamma*t*tau-12*t*tau^2)/(gamma-2*tau))+(8*I)*tau*c^2*U(-t*tau+x)^2*gamma^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*x*gamma-12*x*tau)/(gamma-2*tau))-(8*I)*tau*c^2*U(-t*tau+x)^2*gamma^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))+(8*I)*tau*c^2*U(-t*tau+x)^2*gamma^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau)))/(gamma^2*(gamma-2*tau)^2*(exp(2*t*tau)+exp(2*x))^3)

(10)

simplify(-(1/2)*2^(1/2)*(-tau/gamma)^(1/2)*((8*I)*tau*c^2*U(-t*tau+x)^2*gamma^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*x*gamma-12*x*tau)/(gamma-2*tau))+(8*I)*tau*c^2*U(-t*tau+x)^2*gamma^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))-(8*I)*tau*c^2*U(-t*tau+x)^2*gamma^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*gamma*t*tau-12*t*tau^2)/(gamma-2*tau))-(8*I)*tau*c^2*U(-t*tau+x)^2*gamma^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))-(128*I)*tau^4*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))+32*gamma^5*tau^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))+192*gamma^2*tau^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))-128*tau^4*gamma*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))+16*gamma^5*c^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))-8*gamma^6*tau*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))+32*gamma^5*tau^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))-32*gamma^4*tau^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))+16*gamma^4*tau*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))-96*gamma^3*tau^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))+192*gamma^2*tau^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))-128*tau^4*gamma*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))+16*gamma^4*tau*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))-96*gamma^3*tau^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))+(128*I)*tau^4*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))-32*gamma^4*tau^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))+16*gamma^5*c^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))-8*gamma^6*tau*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))-(32*I)*gamma^3*c^2*tau*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))+(4*I)*U(-t*tau+x)^2*gamma^4*tau^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*x*gamma-12*x*tau)/(gamma-2*tau))+(4*I)*U(-t*tau+x)^2*gamma^4*c^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*gamma*t*tau-12*t*tau^2)/(gamma-2*tau))+(8*I)*U(-t*tau+x)^2*gamma^3*tau^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*gamma*t*tau-12*t*tau^2)/(gamma-2*tau))+(12*I)*gamma^5*c^2*tau*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*gamma*t*tau-12*t*tau^2)/(gamma-2*tau))+(4*I)*U(-t*tau+x)^2*gamma^4*c^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))+(8*I)*U(-t*tau+x)^2*gamma^3*tau^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))+(12*I)*gamma^5*c^2*tau*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))+(4*I)*U(-t*tau+x)^2*gamma^4*tau^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))+(32*I)*gamma^3*c^2*tau*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))-(4*I)*U(-t*tau+x)^2*gamma^4*c^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*x*gamma-12*x*tau)/(gamma-2*tau))-(8*I)*U(-t*tau+x)^2*gamma^3*tau^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*x*gamma-12*x*tau)/(gamma-2*tau))-(12*I)*gamma^5*c^2*tau*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*x*gamma-12*x*tau)/(gamma-2*tau))-(4*I)*U(-t*tau+x)^2*gamma^4*tau^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*gamma*t*tau-12*t*tau^2)/(gamma-2*tau))-(4*I)*U(-t*tau+x)^2*gamma^4*tau^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))-(4*I)*U(-t*tau+x)^2*gamma^4*c^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))-(8*I)*U(-t*tau+x)^2*gamma^3*tau^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))-(12*I)*gamma^5*c^2*tau*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))-(8*I)*c^4*gamma^4*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))-(2*I)*c^2*gamma^6*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))-(4*I)*tau^2*gamma^6*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))-I*tau*gamma^7*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))-(16*I)*gamma^4*c^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))-(20*I)*gamma^4*tau^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))-(48*I)*gamma^2*tau^4*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))-(6*I)*tau*gamma^5*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))-(40*I)*gamma^3*tau^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))-(16*I)*gamma^3*tau*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))-(192*I)*tau^3*gamma*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))-(96*I)*gamma^2*tau^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))-I*tau*gamma^7*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*x*gamma-12*x*tau)/(gamma-2*tau))-(8*I)*c^4*gamma^4*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*gamma*t*tau-12*t*tau^2)/(gamma-2*tau))-(2*I)*c^2*gamma^6*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*gamma*t*tau-12*t*tau^2)/(gamma-2*tau))-(4*I)*tau^2*gamma^6*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*gamma*t*tau-12*t*tau^2)/(gamma-2*tau))-(12*I)*gamma^4*tau^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*x*gamma-12*x*tau)/(gamma-2*tau))-(16*I)*gamma^2*tau^4*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*x*gamma-12*x*tau)/(gamma-2*tau))-(2*I)*tau*gamma^5*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*gamma*t*tau-12*t*tau^2)/(gamma-2*tau))-(24*I)*gamma^3*tau^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*gamma*t*tau-12*t*tau^2)/(gamma-2*tau))-64*gamma^4*c^2*tau*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))+64*gamma^3*tau^2*c^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))-64*gamma^4*c^2*tau*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))+64*gamma^3*tau^2*c^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))+(8*I)*c^4*gamma^4*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*x*gamma-12*x*tau)/(gamma-2*tau))+(2*I)*tau*gamma^5*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*x*gamma-12*x*tau)/(gamma-2*tau))+(24*I)*gamma^3*tau^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*x*gamma-12*x*tau)/(gamma-2*tau))+(12*I)*gamma^4*tau^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*gamma*t*tau-12*t*tau^2)/(gamma-2*tau))+(16*I)*gamma^2*tau^4*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*gamma*t*tau-12*t*tau^2)/(gamma-2*tau))+(2*I)*c^2*gamma^6*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*x*gamma-12*x*tau)/(gamma-2*tau))+(48*I)*gamma^2*tau^4*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))+(96*I)*gamma^2*tau^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))+(16*I)*gamma^3*tau*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))+(4*I)*tau^2*gamma^6*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*x*gamma-12*x*tau)/(gamma-2*tau))+(2*I)*c^2*gamma^6*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))+(4*I)*tau^2*gamma^6*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))+(6*I)*tau*gamma^5*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))+(40*I)*gamma^3*tau^3*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))+(16*I)*gamma^4*c^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))+(20*I)*gamma^4*tau^2*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))+I*tau*gamma^7*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+4*gamma*t*tau-8*t*tau^2+2*x*gamma-4*x*tau)/(gamma-2*tau))+I*tau*gamma^7*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+6*gamma*t*tau-12*t*tau^2)/(gamma-2*tau))+(192*I)*tau^3*gamma*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau))+(8*I)*c^4*gamma^4*exp(((2*I)*gamma*c^2*t-I*gamma^2*t*tau+I*x*gamma^2-(2*I)*gamma*x*tau+2*gamma*t*tau-4*t*tau^2+4*x*gamma-8*x*tau)/(gamma-2*tau)))/(gamma^2*(gamma-2*tau)^2*(exp(2*tau*t)+exp(2*x))^3))

-(-tau/gamma)^(1/2)*((I*gamma^3*(-(1/2)*gamma+tau)*(c-tau)*(c+tau)*U(-t*tau+x)^2-((1/8)*I)*tau*gamma^7+(((1/4)*I)*c^2+((1/2)*I)*tau^2-tau)*gamma^6+(4*tau^2+(-((3/2)*I)*c^2-(3/4)*I)*tau+2*c^2)*gamma^5+(-4*tau^3+((5/2)*I)*tau^2+(-8*c^2+2)*tau+I*(c^2+2)*c^2)*gamma^4-4*(((5/4)*I)*tau^2+(-2*c^2+3)*tau+I*c^2-(1/2)*I)*tau*gamma^3+6*(I*tau^2-2*I+4*tau)*tau^2*gamma^2+((24*I)*tau^3-16*tau^4)*gamma-(16*I)*tau^4)*exp((I*(t*tau-x)*gamma^2+2*((I*x-t)*tau-I*c^2*t-2*x)*gamma+4*t*tau^2+8*x*tau)/(-gamma+2*tau))+(-I*gamma^3*(-(1/2)*gamma+tau)*(c-tau)*(c+tau)*U(-t*tau+x)^2+((1/8)*I)*tau*gamma^7+(-((1/4)*I)*c^2-((1/2)*I)*tau^2-tau)*gamma^6+(4*tau^2+(((3/2)*I)*c^2+(3/4)*I)*tau+2*c^2)*gamma^5+(-4*tau^3-((5/2)*I)*tau^2+(-8*c^2+2)*tau-I*(c^2+2)*c^2)*gamma^4+4*(((5/4)*I)*tau^2+tau*(2*c^2-3)+I*c^2-(1/2)*I)*tau*gamma^3-6*(I*tau^2-2*I-4*tau)*tau^2*gamma^2+(-(24*I)*tau^3-16*tau^4)*gamma+(16*I)*tau^4)*exp((I*(t*tau-x)*gamma^2+2*((I*x-2*t)*tau-I*c^2*t-x)*gamma+8*t*tau^2+4*x*tau)/(-gamma+2*tau))+I*gamma^2*(exp((I*(t*tau-x)*gamma^2+2*(-I*c^2*t+I*x*tau-3*x)*gamma+12*x*tau)/(-gamma+2*tau))-exp((I*(t*tau-x)*gamma^2+2*((I*x-3*t)*tau-I*c^2*t)*gamma+12*t*tau^2)/(-gamma+2*tau)))*(gamma*(-(1/2)*gamma+tau)*(c-tau)*(c+tau)*U(-t*tau+x)^2-(1/8)*tau*gamma^5+((1/4)*c^2+(1/2)*tau^2)*gamma^4+tau*(-(3/2)*c^2+1/4)*gamma^3+(c^4-(3/2)*tau^2)*gamma^2+3*tau^3*gamma-2*tau^4))*2^(1/2)/(gamma^2*(exp(2*t*tau)+exp(2*x))^3*(-(1/2)*gamma+tau)^2)

(11)
 

 

Download pdetest.mw

I have a system of 4 nonlinear equations in 4 lambda variables. I cannot obtain a solution using solve():

4_nonlinear_equations.mw

I can sometimes simplify similar systems by rescaling equations to reduce parameters. With only 3 parameters (sigma_v, sigma_d, sigma_d3) in this case, complexity arises from the interactions of the 4 lambdas in the 4 equations. Upon examining the equations (highlighted in yellow), I suspect hidden symmetries. Is it possible to solve the system by rewriting the equations in terms of each other to find an equivalent system? I am exploring if a smarter and simpler reformulation could lead to a solution. Thank you.

I can do that for a cylinder (in green below) but not for a box geometry.

Box_geometry_and_pendulum.msim

 

i want to factoring the (m+G'/G) in my long equation but i use some trick but still i can't get the exactly system and still G will remain in my system what should i factoring for remove this G(xi) from my system is all about factoring , my system of equation are wrong contain G(xi) How i can remove it by taking a factoring or any other technique,

not parameter is arbitrary except V and sigma''

restart

with(PDEtools)

with(LinearAlgebra)

with(Physics)

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

_local(gamma)

Warning, A new binding for the name `gamma` has been created. The global instance of this name is still accessible using the :- prefix, :-`gamma`.  See ?protect for details.

 

declare(Omega(x, t)); declare(U(xi)); declare(u(x, y, z, t)); declare(Q(xi)); declare(V(xi))

Omega(x, t)*`will now be displayed as`*Omega

 

U(xi)*`will now be displayed as`*U

 

u(x, y, z, t)*`will now be displayed as`*u

 

Q(xi)*`will now be displayed as`*Q

 

V(xi)*`will now be displayed as`*V

(2)

NULL

ode := (-V*a[2]+a[1])*(diff(diff(U(xi), xi), xi))+U(xi)*(((-gamma+sigma)*k+b)*U(xi)^2-a[1]*k^2+(w*a[2]-alpha)*k-w) = 0

(-V*a[2]+a[1])*(diff(diff(U(xi), xi), xi))+U(xi)*(((-gamma+sigma)*k+b)*U(xi)^2-a[1]*k^2+(w*a[2]-alpha)*k-w) = 0

(3)

F := sum(e[i]*(m+(diff(G(xi), xi))/G(xi))^i, i = -1 .. 1)

e[-1]/(m+(diff(G(xi), xi))/G(xi))+e[0]+e[1]*(m+(diff(G(xi), xi))/G(xi))

(4)

D1 := diff(F, xi)

-e[-1]*((diff(diff(G(xi), xi), xi))/G(xi)-(diff(G(xi), xi))^2/G(xi)^2)/(m+(diff(G(xi), xi))/G(xi))^2+e[1]*((diff(diff(G(xi), xi), xi))/G(xi)-(diff(G(xi), xi))^2/G(xi)^2)

(5)

NULL

S := diff(G(xi), `$`(xi, 2)) = -(2*m*mu+lambda)*(diff(G(xi), xi))-mu

diff(diff(G(xi), xi), xi) = -(2*m*mu+lambda)*(diff(G(xi), xi))-mu

(6)

E1 := subs(S, D1)

-e[-1]*((-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)-(diff(G(xi), xi))^2/G(xi)^2)/(m+(diff(G(xi), xi))/G(xi))^2+e[1]*((-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)-(diff(G(xi), xi))^2/G(xi)^2)

(7)

D2 := diff(E1, xi)

2*e[-1]*((-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)-(diff(G(xi), xi))^2/G(xi)^2)*((diff(diff(G(xi), xi), xi))/G(xi)-(diff(G(xi), xi))^2/G(xi)^2)/(m+(diff(G(xi), xi))/G(xi))^3-e[-1]*(-(2*m*mu+lambda)*(diff(diff(G(xi), xi), xi))/G(xi)-(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))/G(xi)^2-2*(diff(G(xi), xi))*(diff(diff(G(xi), xi), xi))/G(xi)^2+2*(diff(G(xi), xi))^3/G(xi)^3)/(m+(diff(G(xi), xi))/G(xi))^2+e[1]*(-(2*m*mu+lambda)*(diff(diff(G(xi), xi), xi))/G(xi)-(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))/G(xi)^2-2*(diff(G(xi), xi))*(diff(diff(G(xi), xi), xi))/G(xi)^2+2*(diff(G(xi), xi))^3/G(xi)^3)

(8)

E2 := subs(S, D2)

2*e[-1]*((-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)-(diff(G(xi), xi))^2/G(xi)^2)^2/(m+(diff(G(xi), xi))/G(xi))^3-e[-1]*(-(2*m*mu+lambda)*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)-3*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))/G(xi)^2+2*(diff(G(xi), xi))^3/G(xi)^3)/(m+(diff(G(xi), xi))/G(xi))^2+e[1]*(-(2*m*mu+lambda)*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)-3*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))/G(xi)^2+2*(diff(G(xi), xi))^3/G(xi)^3)

(9)

D3 := diff(E2, xi)

-6*e[-1]*((-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)-(diff(G(xi), xi))^2/G(xi)^2)^2*((diff(diff(G(xi), xi), xi))/G(xi)-(diff(G(xi), xi))^2/G(xi)^2)/(m+(diff(G(xi), xi))/G(xi))^4+4*e[-1]*((-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)-(diff(G(xi), xi))^2/G(xi)^2)*(-(2*m*mu+lambda)*(diff(diff(G(xi), xi), xi))/G(xi)-(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))/G(xi)^2-2*(diff(G(xi), xi))*(diff(diff(G(xi), xi), xi))/G(xi)^2+2*(diff(G(xi), xi))^3/G(xi)^3)/(m+(diff(G(xi), xi))/G(xi))^3+2*e[-1]*(-(2*m*mu+lambda)*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)-3*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))/G(xi)^2+2*(diff(G(xi), xi))^3/G(xi)^3)*((diff(diff(G(xi), xi), xi))/G(xi)-(diff(G(xi), xi))^2/G(xi)^2)/(m+(diff(G(xi), xi))/G(xi))^3-e[-1]*((2*m*mu+lambda)^2*(diff(diff(G(xi), xi), xi))/G(xi)+(2*m*mu+lambda)*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))/G(xi)^2+3*(2*m*mu+lambda)*(diff(diff(G(xi), xi), xi))*(diff(G(xi), xi))/G(xi)^2+6*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))^2/G(xi)^3-3*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(diff(G(xi), xi), xi))/G(xi)^2+6*(diff(G(xi), xi))^2*(diff(diff(G(xi), xi), xi))/G(xi)^3-6*(diff(G(xi), xi))^4/G(xi)^4)/(m+(diff(G(xi), xi))/G(xi))^2+e[1]*((2*m*mu+lambda)^2*(diff(diff(G(xi), xi), xi))/G(xi)+(2*m*mu+lambda)*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))/G(xi)^2+3*(2*m*mu+lambda)*(diff(diff(G(xi), xi), xi))*(diff(G(xi), xi))/G(xi)^2+6*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))^2/G(xi)^3-3*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(diff(G(xi), xi), xi))/G(xi)^2+6*(diff(G(xi), xi))^2*(diff(diff(G(xi), xi), xi))/G(xi)^3-6*(diff(G(xi), xi))^4/G(xi)^4)

(10)

E3 := subs(S, D3)

-6*e[-1]*((-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)-(diff(G(xi), xi))^2/G(xi)^2)^3/(m+(diff(G(xi), xi))/G(xi))^4+6*e[-1]*((-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)-(diff(G(xi), xi))^2/G(xi)^2)*(-(2*m*mu+lambda)*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)-3*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))/G(xi)^2+2*(diff(G(xi), xi))^3/G(xi)^3)/(m+(diff(G(xi), xi))/G(xi))^3-e[-1]*((2*m*mu+lambda)^2*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)+4*(2*m*mu+lambda)*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))/G(xi)^2+12*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))^2/G(xi)^3-3*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)^2/G(xi)^2-6*(diff(G(xi), xi))^4/G(xi)^4)/(m+(diff(G(xi), xi))/G(xi))^2+e[1]*((2*m*mu+lambda)^2*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)+4*(2*m*mu+lambda)*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))/G(xi)^2+12*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))^2/G(xi)^3-3*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)^2/G(xi)^2-6*(diff(G(xi), xi))^4/G(xi)^4)

(11)

NULL

NULL

K := U(xi) = F

K1 := diff(U(xi), xi) = E1

K2 := diff(U(xi), `$`(xi, 2)) = E2

K3 := diff(U(xi), `$`(xi, 3)) = E3

NULL

L := eval(ode, {K, K1, K2, K3})

(-V*a[2]+a[1])*(2*e[-1]*((-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)-(diff(G(xi), xi))^2/G(xi)^2)^2/(m+(diff(G(xi), xi))/G(xi))^3-e[-1]*(-(2*m*mu+lambda)*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)-3*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))/G(xi)^2+2*(diff(G(xi), xi))^3/G(xi)^3)/(m+(diff(G(xi), xi))/G(xi))^2+e[1]*(-(2*m*mu+lambda)*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)/G(xi)-3*(-(2*m*mu+lambda)*(diff(G(xi), xi))-mu)*(diff(G(xi), xi))/G(xi)^2+2*(diff(G(xi), xi))^3/G(xi)^3))+(e[-1]/(m+(diff(G(xi), xi))/G(xi))+e[0]+e[1]*(m+(diff(G(xi), xi))/G(xi)))*(((-gamma+sigma)*k+b)*(e[-1]/(m+(diff(G(xi), xi))/G(xi))+e[0]+e[1]*(m+(diff(G(xi), xi))/G(xi)))^2-a[1]*k^2+(w*a[2]-alpha)*k-w) = 0

(12)

NULL

# rewritting rule

RR := isolate(m+diff(G(xi), xi)/(G(xi))=Phi, diff(G(xi), xi)/G(xi));

(diff(G(xi), xi))/G(xi) = Phi-m

(13)

# Apply RR and collect wrt Phi

subs(RR, L):
normal(%):
PhiN := collect(numer(lhs(%)), phi):
PhiD := denom(lhs(%%));

Phi^3*G(xi)^4

(14)



with(LargeExpressions):

LLE := collect(PhiN, Phi, Veil[phi] ):
LLE / PhiD = 0;

(Phi^6*phi[1]+3*Phi^5*phi[2]-Phi^4*phi[3]-Phi^3*phi[4]-Phi^2*phi[5]+Phi*phi[6]-phi[7])/(Phi^3*G(xi)^4) = 0

(15)

# phi[i] coefficients


phis := [ seq( phi[i] = simplify(Unveil[phi](phi[i]), size), i=1..LastUsed[phi] ) ]:

print~( phis ):

phi[1] = G(xi)^4*e[1]^3*((-gamma+sigma)*k+b)

 

phi[2] = e[1]^2*G(xi)^4*e[0]*((-gamma+sigma)*k+b)

 

phi[3] = -3*e[1]*G(xi)^4*(-(1/3)*a[1]*k^2+(-e[-1]*(gamma-sigma)*e[1]+(-gamma+sigma)*e[0]^2+(1/3)*w*a[2]-(1/3)*alpha)*k+b*e[-1]*e[1]+b*e[0]^2-(1/3)*w)

 

phi[4] = (2*e[1]*(V*a[2]-a[1])*(diff(G(xi), xi))^3+3*e[1]*G(xi)*(2*m*mu+lambda)*(V*a[2]-a[1])*(diff(G(xi), xi))^2+e[1]*(V*a[2]-a[1])*G(xi)*((2*m*mu+lambda)^2*G(xi)+3*mu)*(diff(G(xi), xi))+G(xi)^2*(-(6*e[-1]*((-gamma+sigma)*k+b)*e[1]-a[1]*k^2+k*w*a[2]+((-gamma+sigma)*k+b)*e[0]^2-k*alpha-w)*e[0]*G(xi)+e[1]*mu*(2*m*mu+lambda)*(V*a[2]-a[1])))*G(xi)

 

phi[5] = -3*e[-1]*G(xi)^4*(-(1/3)*a[1]*k^2+(-e[-1]*(gamma-sigma)*e[1]+(-gamma+sigma)*e[0]^2+(1/3)*w*a[2]-(1/3)*alpha)*k+b*e[-1]*e[1]+b*e[0]^2-(1/3)*w)

 

phi[6] = 4*((1/2)*(V*a[2]-a[1])*(diff(G(xi), xi))^3+(3/2)*(V*a[2]-a[1])*(m*mu+(1/2)*lambda)*G(xi)*(diff(G(xi), xi))^2+(V*a[2]-a[1])*((m*mu+(1/2)*lambda)^2*G(xi)+(3/4)*mu)*G(xi)*(diff(G(xi), xi))+(1/2)*((3/2)*e[0]*((-gamma+sigma)*k+b)*e[-1]*G(xi)+(V*a[2]-a[1])*(m*mu+(1/2)*lambda)*mu)*G(xi)^2)*e[-1]*G(xi)

 

phi[7] = 8*e[-1]*((1/4)*(V*a[2]-a[1])*(diff(G(xi), xi))^4+(V*a[2]-a[1])*(m*mu+(1/2)*lambda)*G(xi)*(diff(G(xi), xi))^3+(V*a[2]-a[1])*((m*mu+(1/2)*lambda)^2*G(xi)+(1/2)*mu)*G(xi)*(diff(G(xi), xi))^2+(V*a[2]-a[1])*(m*mu+(1/2)*lambda)*mu*G(xi)^2*(diff(G(xi), xi))+(1/4)*(-(1/2)*((-gamma+sigma)*k+b)*e[-1]^2*G(xi)^2+mu^2*(V*a[2]-a[1]))*G(xi)^2)

(16)

# WATCHOUT: you have 9 coefficients and so its desirable to have the same number of unknowns

unknowns := indets(rhs~(phis), {e[-1],e[0],e[1],'identical'(mu),'identical'(lambda),'identical'(a[1]),'identical'(alpha)});

COEFFS := solve(rhs~(phis), unknowns)

{alpha, lambda, mu, a[1], e[-1], e[0], e[1]}

 

{alpha = alpha, lambda = lambda, mu = mu, a[1] = a[1], e[-1] = 0, e[0] = 0, e[1] = 0}, {alpha = alpha, lambda = lambda, mu = mu, a[1] = -(gamma*k*e[0]^2-k*sigma*e[0]^2-b*e[0]^2-k*w*a[2]+alpha*k+w)/k^2, e[-1] = 0, e[0] = e[0], e[1] = 0}, {alpha = (1/2)*(-G(xi)^4*gamma*k^3*e[-1]^2+G(xi)^4*k^3*sigma*e[-1]^2-4*G(xi)^2*(diff(G(xi), xi))*V*k^2*m*mu^2*a[2]+4*G(xi)*(diff(G(xi), xi))^3*V*k^2*m*mu*a[2]+G(xi)^4*b*k^2*e[-1]^2+4*G(xi)^2*(diff(G(xi), xi))*k*m*mu^2*w*a[2]-4*G(xi)*(diff(G(xi), xi))^3*k*m*mu*w*a[2]-2*G(xi)^2*V*k^2*mu^2*a[2]+2*G(xi)*(diff(G(xi), xi))^2*V*k^2*mu*a[2]-2*G(xi)*(diff(G(xi), xi))*RootOf(4*m^2*mu^2*(diff(G(xi), xi))*G(xi)^2+2*m*mu^2*G(xi)^2+6*m*mu*(diff(G(xi), xi))^2*G(xi)+3*mu*(diff(G(xi), xi))*G(xi)+2*(diff(G(xi), xi))^3+(4*m*mu*(diff(G(xi), xi))*G(xi)+mu*G(xi)+3*(diff(G(xi), xi))^2)*_Z+(diff(G(xi), xi))*_Z^2)*V*k^2*mu*a[2]+2*(diff(G(xi), xi))^4*V*k^2*a[2]+2*(diff(G(xi), xi))^3*RootOf(4*m^2*mu^2*(diff(G(xi), xi))*G(xi)^2+2*m*mu^2*G(xi)^2+6*m*mu*(diff(G(xi), xi))^2*G(xi)+3*mu*(diff(G(xi), xi))*G(xi)+2*(diff(G(xi), xi))^3+(4*m*mu*(diff(G(xi), xi))*G(xi)+mu*G(xi)+3*(diff(G(xi), xi))^2)*_Z+(diff(G(xi), xi))*_Z^2)*V*k^2*a[2]-4*G(xi)^2*(diff(G(xi), xi))*m*mu^2*w+2*G(xi)^2*k*mu^2*w*a[2]+4*G(xi)*(diff(G(xi), xi))^3*m*mu*w-2*G(xi)*(diff(G(xi), xi))^2*k*mu*w*a[2]+2*G(xi)*(diff(G(xi), xi))*RootOf(4*m^2*mu^2*(diff(G(xi), xi))*G(xi)^2+2*m*mu^2*G(xi)^2+6*m*mu*(diff(G(xi), xi))^2*G(xi)+3*mu*(diff(G(xi), xi))*G(xi)+2*(diff(G(xi), xi))^3+(4*m*mu*(diff(G(xi), xi))*G(xi)+mu*G(xi)+3*(diff(G(xi), xi))^2)*_Z+(diff(G(xi), xi))*_Z^2)*k*mu*w*a[2]-2*(diff(G(xi), xi))^4*k*w*a[2]-2*(diff(G(xi), xi))^3*RootOf(4*m^2*mu^2*(diff(G(xi), xi))*G(xi)^2+2*m*mu^2*G(xi)^2+6*m*mu*(diff(G(xi), xi))^2*G(xi)+3*mu*(diff(G(xi), xi))*G(xi)+2*(diff(G(xi), xi))^3+(4*m*mu*(diff(G(xi), xi))*G(xi)+mu*G(xi)+3*(diff(G(xi), xi))^2)*_Z+(diff(G(xi), xi))*_Z^2)*k*w*a[2]-2*G(xi)^2*mu^2*w+2*G(xi)*(diff(G(xi), xi))^2*mu*w-2*G(xi)*(diff(G(xi), xi))*RootOf(4*m^2*mu^2*(diff(G(xi), xi))*G(xi)^2+2*m*mu^2*G(xi)^2+6*m*mu*(diff(G(xi), xi))^2*G(xi)+3*mu*(diff(G(xi), xi))*G(xi)+2*(diff(G(xi), xi))^3+(4*m*mu*(diff(G(xi), xi))*G(xi)+mu*G(xi)+3*(diff(G(xi), xi))^2)*_Z+(diff(G(xi), xi))*_Z^2)*mu*w+2*(diff(G(xi), xi))^4*w+2*(diff(G(xi), xi))^3*RootOf(4*m^2*mu^2*(diff(G(xi), xi))*G(xi)^2+2*m*mu^2*G(xi)^2+6*m*mu*(diff(G(xi), xi))^2*G(xi)+3*mu*(diff(G(xi), xi))*G(xi)+2*(diff(G(xi), xi))^3+(4*m*mu*(diff(G(xi), xi))*G(xi)+mu*G(xi)+3*(diff(G(xi), xi))^2)*_Z+(diff(G(xi), xi))*_Z^2)*w)/((2*m*mu^2*(diff(G(xi), xi))*G(xi)^2-2*m*mu*(diff(G(xi), xi))^3*G(xi)+mu*(diff(G(xi), xi))*G(xi)*RootOf(4*m^2*mu^2*(diff(G(xi), xi))*G(xi)^2+2*m*mu^2*G(xi)^2+6*m*mu*(diff(G(xi), xi))^2*G(xi)+3*mu*(diff(G(xi), xi))*G(xi)+2*(diff(G(xi), xi))^3+(4*m*mu*(diff(G(xi), xi))*G(xi)+mu*G(xi)+3*(diff(G(xi), xi))^2)*_Z+(diff(G(xi), xi))*_Z^2)-(diff(G(xi), xi))^3*RootOf(4*m^2*mu^2*(diff(G(xi), xi))*G(xi)^2+2*m*mu^2*G(xi)^2+6*m*mu*(diff(G(xi), xi))^2*G(xi)+3*mu*(diff(G(xi), xi))*G(xi)+2*(diff(G(xi), xi))^3+(4*m*mu*(diff(G(xi), xi))*G(xi)+mu*G(xi)+3*(diff(G(xi), xi))^2)*_Z+(diff(G(xi), xi))*_Z^2)+mu^2*G(xi)^2-mu*(diff(G(xi), xi))^2*G(xi)-(diff(G(xi), xi))^4)*k), lambda = RootOf(4*m^2*mu^2*(diff(G(xi), xi))*G(xi)^2+2*m*mu^2*G(xi)^2+6*m*mu*(diff(G(xi), xi))^2*G(xi)+3*mu*(diff(G(xi), xi))*G(xi)+2*(diff(G(xi), xi))^3+(4*m*mu*(diff(G(xi), xi))*G(xi)+mu*G(xi)+3*(diff(G(xi), xi))^2)*_Z+(diff(G(xi), xi))*_Z^2)/G(xi), mu = mu, a[1] = -(1/2)*(-G(xi)^4*gamma*k*e[-1]^2+G(xi)^4*k*sigma*e[-1]^2-4*G(xi)^2*(diff(G(xi), xi))*V*m*mu^2*a[2]+4*G(xi)*(diff(G(xi), xi))^3*V*m*mu*a[2]+G(xi)^4*b*e[-1]^2-2*G(xi)^2*V*mu^2*a[2]+2*G(xi)*(diff(G(xi), xi))^2*V*mu*a[2]-2*mu*G(xi)*(diff(G(xi), xi))*V*RootOf(4*m^2*mu^2*(diff(G(xi), xi))*G(xi)^2+2*m*mu^2*G(xi)^2+6*m*mu*(diff(G(xi), xi))^2*G(xi)+3*mu*(diff(G(xi), xi))*G(xi)+2*(diff(G(xi), xi))^3+(4*m*mu*(diff(G(xi), xi))*G(xi)+mu*G(xi)+3*(diff(G(xi), xi))^2)*_Z+(diff(G(xi), xi))*_Z^2)*a[2]+2*(diff(G(xi), xi))^4*V*a[2]+2*(diff(G(xi), xi))^3*V*RootOf(4*m^2*mu^2*(diff(G(xi), xi))*G(xi)^2+2*m*mu^2*G(xi)^2+6*m*mu*(diff(G(xi), xi))^2*G(xi)+3*mu*(diff(G(xi), xi))*G(xi)+2*(diff(G(xi), xi))^3+(4*m*mu*(diff(G(xi), xi))*G(xi)+mu*G(xi)+3*(diff(G(xi), xi))^2)*_Z+(diff(G(xi), xi))*_Z^2)*a[2])/(2*m*mu^2*(diff(G(xi), xi))*G(xi)^2-2*m*mu*(diff(G(xi), xi))^3*G(xi)+mu*(diff(G(xi), xi))*G(xi)*RootOf(4*m^2*mu^2*(diff(G(xi), xi))*G(xi)^2+2*m*mu^2*G(xi)^2+6*m*mu*(diff(G(xi), xi))^2*G(xi)+3*mu*(diff(G(xi), xi))*G(xi)+2*(diff(G(xi), xi))^3+(4*m*mu*(diff(G(xi), xi))*G(xi)+mu*G(xi)+3*(diff(G(xi), xi))^2)*_Z+(diff(G(xi), xi))*_Z^2)-(diff(G(xi), xi))^3*RootOf(4*m^2*mu^2*(diff(G(xi), xi))*G(xi)^2+2*m*mu^2*G(xi)^2+6*m*mu*(diff(G(xi), xi))^2*G(xi)+3*mu*(diff(G(xi), xi))*G(xi)+2*(diff(G(xi), xi))^3+(4*m*mu*(diff(G(xi), xi))*G(xi)+mu*G(xi)+3*(diff(G(xi), xi))^2)*_Z+(diff(G(xi), xi))*_Z^2)+mu^2*G(xi)^2-mu*(diff(G(xi), xi))^2*G(xi)-(diff(G(xi), xi))^4), e[-1] = e[-1], e[0] = 0, e[1] = 0}

(17)

case1 := COEFFS[2]

{alpha = alpha, lambda = lambda, mu = mu, a[1] = -(gamma*k*e[0]^2-k*sigma*e[0]^2-b*e[0]^2-k*w*a[2]+alpha*k+w)/k^2, e[-1] = 0, e[0] = e[0], e[1] = 0}

(18)

NULL

F1 := subs(case1, F)

e[0]

(19)

F2 := subs(case1, ode)

(-a[2]*V-(gamma*k*e[0]^2-k*sigma*e[0]^2-b*e[0]^2-k*w*a[2]+alpha*k+w)/k^2)*(diff(diff(U(xi), xi), xi))+U(xi)*(((-gamma+sigma)*k+b)*U(xi)^2+k*e[0]^2*gamma-k*e[0]^2*sigma-b*e[0]^2-k*w*a[2]+k*alpha+(w*a[2]-alpha)*k) = 0

(20)

W := U(xi) = F1

U(xi) = e[0]

(21)

NULL

E := diff(G(xi), xi) = -(-2*m*mu-lambda)*exp(-(2*m*mu+lambda)*xi)*c__1/(2*m*mu+lambda)-mu/(2*m*mu+lambda)

diff(G(xi), xi) = -(-2*m*mu-lambda)*exp(-(2*m*mu+lambda)*xi)*c__1/(2*m*mu+lambda)-mu/(2*m*mu+lambda)

(22)

W1 := subs(E, W)

U(xi) = e[0]

(23)

W2 := subs(case1, W1)

U(xi) = e[0]

(24)

W3 := rhs(U(xi) = e[0])

e[0]

(25)

W4 := convert(W3, trig)

e[0]

(26)

W5 := W4

e[0]

(27)

odetest(W2, F2)

0

(28)

Download G-factoring.mw

I found that convert(ode,y_x) converts the input ode, when it is NOT an equation, to an equation.  

sometimes and sometimes not.

For example,  convert(diff(y(t),t)+y(t)-t,y_x)  gives diff(t(y), y) = 1/(t(y) - y) 

Notice the input is not an equation. Maple adds = and makes an equation in the output. 

This can cause no problem if it works like this in all cases. But if the input has piecewise, then Maple no longer does the same and keep the output as not an equation.

I found this by accident, as my code was doing lhs() on the result of convert, and that always worked, except when I used an ode with piecewise.

This behaviour is not consistent. Maple should either always convert output to equation for all input or not convert. It should not do it for some input and not the other.

Actually, the best behaviour is for the software to reject the input in first place if it is not an equation.

Worksheet below.

interface(version);

`Standard Worksheet Interface, Maple 2024.2, Windows 10, October 29 2024 Build ID 1872373`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1841 and is the same as the version installed in this computer, created 2025, January 3, 8:59 hours Pacific Time.`

libname;

"C:\Users\Owner\maple\toolbox\2024\Physics Updates\lib", "C:\Program Files\Maple 2024\lib"

#this works even when there is no equation in input, but the result is equation
ode:=diff(y(t),t)+y(t)-t;
convert(ode,y_x,y(t))

diff(y(t), t)+y(t)-t

diff(t(y), y) = 1/(t(y)-y)

ode:=diff(y(t),t)+y(t)-t=0; #this gives same result as above.
convert(ode,y_x,y(t))

diff(y(t), t)+y(t)-t = 0

diff(t(y), y) = 1/(t(y)-y)

#but now if the input is not equation, the output is not equation. Why
#did it not do the same as above??
ode:=diff(y(t),t)+y(t)-piecewise(0<=t and t<=1,2,t>1,0);
convert(ode,y_x,y(t))

ode := diff(y(t), t)+y(t)-piecewise(0 <= t and t <= 1, 2, 1 < t, 0)

1/(diff(t(y), y))+y-piecewise(0 <= t(y) and t(y) <= 1, 2, 1 < t(y), 0)

 

 

Download strange_behaviour_of_convert_yx_jan_5_20225.mw

I’m trying to solve a stiff system 1-D PDEs numerically in Maple but I’m getting the following error:

“Error, (in pdsolve/numeric/match_PDEs_BCs) cannot handle systems with multiple PDE describing the time dependence of the same dependent variable, or having no time dependence”

I included a picture of the PDEs and their BCs in the attached maple file. For easy reading, the attached file includes highlighted sections for parameters and variables. You can skip those to PDEs, BCs and ICs sections at the end of the document to reach the error I’m facing.

For reference, I used another software to solve the system and I was able to get the results in few seconds, so I think it is solvable. However, personally I prefer to use Maple so any inputs, insights, workarounds that I could use to handle the system in Maple would be of great help to me. Thank you.

question.mw

Hi,

Is there any other way to interrupt a MapleFlow (2024.2) evaluation, other then the red circled ! icon?

Sometimes MF gets stuck in an "Evaluating" state and the red circled ! icon doesn´t work.

Thanks very much in advance for any help.

Hello

I programmed a sequence a(n). Up to a(42) Maple had no problem to calculate the term, but when calculating a(43), after a while appears the message

`System error, `, "bad id"

What does that mean and what can I do?
Thank you.

Using edit -> Find/Replace (or crtl-f) it is possible to earch for text composed of alpha numeric-characters. Maple finds all occurences in input an output.

For greek letters this works only for 1D Math input. Is there a way to find/search for greek symbols displayed on the GUI in 2D Math input and output like lambda in the below

?

I have been trying to figure out the method described, but my results don't match what is presented in the paper. Specifically, I am unsure why my outcomes differ from theirs. Additionally, I am trying to factor the two terms together as they did in the paper, but I'm struggling to understand the idea behind their approach. I am seeking insight into the reasoning or methodology they used to achieve this.

this is for more undrestanding the methodology


restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

"          with(Student[ODEs][Solve]):"

_local(gamma)

Warning, A new binding for the name `gamma` has been created. The global instance of this name is still accessible using the :- prefix, :-`gamma`.  See ?protect for details.

 

declare(Omega(x, t)); declare(U(xi)); declare(u(x, t)); declare(Q(xi)); declare(V(xi)); declare(W(xi))

Omega(x, t)*`will now be displayed as`*Omega

 

U(xi)*`will now be displayed as`*U

 

u(x, t)*`will now be displayed as`*u

 

Q(xi)*`will now be displayed as`*Q

 

V(xi)*`will now be displayed as`*V

 

W(xi)*`will now be displayed as`*W

(2)

ode := diff(diff(u(x, t), `$`(x, 2))-alpha*u(x, t)+beta*u(x, t)^2, `$`(t, 2))+diff(u(x, t), `$`(x, 2)) = 0

diff(diff(diff(diff(u(x, t), t), t), x), x)-alpha*(diff(diff(u(x, t), t), t))+2*beta*(diff(u(x, t), t))^2+2*beta*u(x, t)*(diff(diff(u(x, t), t), t))+diff(diff(u(x, t), x), x) = 0

(3)

T := xi = mu*(-c*t+x); T1 := u(x, t) = U(mu*(-c*t+x))

xi = mu*(-c*t+x)

 

u(x, t) = U(mu*(-c*t+x))

(4)

G1 := U(mu*(-c*t+x)) = U(xi); G2 := (D(U))(mu*(-c*t+x)) = diff(U(xi), xi); G3 := ((D@@2)(U))(mu*(-c*t+x)) = diff(U(xi), `$`(xi, 2)); G4 := ((D@@3)(U))(mu*(-c*t+x)) = diff(U(xi), `$`(xi, 3)); G5 := ((D@@4)(U))(mu*(-c*t+x)) = diff(U(xi), `$`(xi, 4))

U(mu*(-c*t+x)) = U(xi)

 

(D(U))(mu*(-c*t+x)) = diff(U(xi), xi)

 

((D@@2)(U))(mu*(-c*t+x)) = diff(diff(U(xi), xi), xi)

 

((D@@3)(U))(mu*(-c*t+x)) = diff(diff(diff(U(xi), xi), xi), xi)

 

((D@@4)(U))(mu*(-c*t+x)) = diff(diff(diff(diff(U(xi), xi), xi), xi), xi)

(5)

NULL

P := eval(ode, {T, T1})

((D@@4)(U))(mu*(-c*t+x))*mu^4*c^2-alpha*((D@@2)(U))(mu*(-c*t+x))*mu^2*c^2+2*beta*(D(U))(mu*(-c*t+x))^2*mu^2*c^2+2*beta*U(mu*(-c*t+x))*((D@@2)(U))(mu*(-c*t+x))*mu^2*c^2+((D@@2)(U))(mu*(-c*t+x))*mu^2 = 0

(6)

P1 := subs({G1, G2, G3, G4, G5}, P)

(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*mu^4*c^2-alpha*(diff(diff(U(xi), xi), xi))*mu^2*c^2+2*beta*(diff(U(xi), xi))^2*mu^2*c^2+2*beta*U(xi)*(diff(diff(U(xi), xi), xi))*mu^2*c^2+(diff(diff(U(xi), xi), xi))*mu^2 = 0

(7)

map(int, (diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*mu^4*c^2-alpha*(diff(diff(U(xi), xi), xi))*mu^2*c^2+2*beta*(diff(U(xi), xi))^2*mu^2*c^2+2*beta*U(xi)*(diff(diff(U(xi), xi), xi))*mu^2*c^2+(diff(diff(U(xi), xi), xi))*mu^2 = 0, xi)

(2*beta*U(xi)/mu^2-alpha/mu^2+1/(mu^2*c^2))*(diff(U(xi), xi))*mu^4*c^2+(diff(diff(diff(U(xi), xi), xi), xi))*mu^4*c^2 = 0

(8)

map(int, (2*beta*U(xi)/mu^2-alpha/mu^2+1/(mu^2*c^2))*(diff(U(xi), xi))*mu^4*c^2+(diff(diff(diff(U(xi), xi), xi), xi))*mu^4*c^2 = 0, xi)

mu^4*c^2*(diff(diff(U(xi), xi), xi))+mu^2*(beta*U(xi)^2*c^2-alpha*c^2*U(xi)+U(xi)) = 0

(9)

simplify(mu^4*c^2*(diff(diff(U(xi), xi), xi))+mu^2*(beta*U(xi)^2*c^2-alpha*c^2*U(xi)+U(xi)) = 0)

mu^2*(beta*U(xi)^2*c^2+mu^2*c^2*(diff(diff(U(xi), xi), xi))-alpha*c^2*U(xi)+U(xi)) = 0

(10)

%/mu^2

beta*U(xi)^2*c^2+mu^2*c^2*(diff(diff(U(xi), xi), xi))-alpha*c^2*U(xi)+U(xi) = 0

(11)

ode1 := collect(%, U(xi))

beta*U(xi)^2*c^2+(-alpha*c^2+1)*U(xi)+mu^2*c^2*(diff(diff(U(xi), xi), xi)) = 0

(12)

n := 2

2

(13)

F := U(xi) = sum(tanh(xi)^(i-1)*(B[i]*sech(xi)+A[i]*tanh(xi)), i = 1 .. n)+A[0]

U(xi) = B[1]*sech(xi)+A[1]*tanh(xi)+tanh(xi)*(B[2]*sech(xi)+A[2]*tanh(xi))+A[0]

(14)

NULL

M := U(xi) = sum(cos(W)^(i-1)*(B[i]*sin(W)+A[i]*cos(W)), i = 1 .. n)+A[0]

U(xi) = B[1]*sin(W)+A[1]*cos(W)+cos(W)*(B[2]*sin(W)+A[2]*cos(W))+A[0]

(15)

M1 := sum(cos(W)^(i-1)*(B[i]*sin(W)+A[i]*cos(W)), i = 1 .. n)+A[0]

B[1]*sin(W)+A[1]*cos(W)+cos(W)*(B[2]*sin(W)+A[2]*cos(W))+A[0]

(16)

diff(M1, `$`(W, 2))

-B[1]*sin(W)-A[1]*cos(W)-cos(W)*(B[2]*sin(W)+A[2]*cos(W))-2*sin(W)*(B[2]*cos(W)-A[2]*sin(W))+cos(W)*(-B[2]*sin(W)-A[2]*cos(W))

(17)

``

expand(eval(ode1, M))

2*cos(W)^3*sin(W)*beta*c^2*A[2]*B[2]+2*cos(W)^2*sin(W)*beta*c^2*A[1]*B[2]+2*cos(W)^2*sin(W)*beta*c^2*A[2]*B[1]+2*cos(W)*sin(W)^2*beta*c^2*B[1]*B[2]+2*cos(W)*sin(W)*beta*c^2*A[0]*B[2]+2*cos(W)*sin(W)*beta*c^2*A[1]*B[1]+cos(W)^4*beta*c^2*A[2]^2+cos(W)^2*beta*c^2*A[1]^2+sin(W)^2*beta*c^2*B[1]^2-cos(W)^2*alpha*c^2*A[2]-cos(W)*alpha*c^2*A[1]-sin(W)*alpha*c^2*B[1]+cos(W)*sin(W)*B[2]+beta*c^2*A[0]^2-alpha*c^2*A[0]+cos(W)^2*sin(W)^2*beta*c^2*B[2]^2+2*cos(W)^3*beta*c^2*A[1]*A[2]+2*cos(W)^2*beta*c^2*A[0]*A[2]-cos(W)*sin(W)*alpha*c^2*B[2]+2*cos(W)*beta*c^2*A[0]*A[1]+2*sin(W)*beta*c^2*A[0]*B[1]+A[0]+cos(W)^2*A[2]+B[1]*sin(W)+A[1]*cos(W) = 0

(18)

``


Download F-P-SG.mw

 

This is probaby more of a software request and I think it would be useful. 

You can obviously open two worksheets of maple and tile them vertically to give the effect of a split screen but then all the icons of each worksheet reduce the visible on screen real estate in which you can work.

It should work similar to how Excel does it when you split cells.  It would work nicely in situations where you have a diagram or picture you are referring to during the creation of your worksheet. 

Anyways just a request, I'm sure some people would find that functionality welcome. 

In the attached model I have tried (among other things) to simulate a disk pendulum without friction.

The simulation shows bouncing and angular lock.

There are also 3 warnings and an initialization problem that I could not fix.

How can the model be improved?

Disk_pendulum.msim

P.S.:

Rolling without friction worked fine here.

I do not remember if I reported this before or not. Can't find it. Just in case, I am posting this.

If someone find it is duplicate, feel free to delete this. But this is in latest Maple 2024.2. May be this can be fixed in time by Maple 2025 version.

restart;

interface(version);

`Standard Worksheet Interface, Maple 2024.2, Windows 10, October 29 2024 Build ID 1872373`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1840 and is the same as the version installed in this computer, created 2024, December 2, 10:11 hours Pacific Time.`

libname;

"C:\Users\Owner\maple\toolbox\2024\Physics Updates\lib", "C:\Program Files\Maple 2024\lib"

ode := diff(y(x),x)/y(x)-(3*(4*x^2+y(x)^2+1))/(2*x*(4*x^2+y(x)^2-2-2*x))=0;

(diff(y(x), x))/y(x)-(3/2)*(4*x^2+y(x)^2+1)/(x*(4*x^2+y(x)^2-2-2*x)) = 0

DEtools:-odeadvisor(ode);

[_rational]

dsolve(ode,y(x));

Error, (in dsolve) invalid subscript selector

restart;

infolevel[dsolve]:=5;

5

ode := diff(y(x),x)/y(x)-(3*(4*x^2+y(x)^2+1))/(2*x*(4*x^2+y(x)^2-2-2*x))=0:

dsolve(ode,y(x));

Methods for first order ODEs:

--- Trying classification methods ---

trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying Chini

differential order: 1; looking for linear symmetries

trying exact

Looking for potential symmetries

trying inverse_Riccati

trying an equivalence to an Abel ODE

equivalence obtained to this Abel ODE: diff(y(x),x) = 3/2*(4*x^2+1)/x/(2*x^2-x-1)*y(x)-(x^2+2*x+3)/x/(2*x^2-x-1)^2*y(x)^2+3/8*(2*x+3)/(2*x^2-x-1)^3/x*y(x)^3

trying to solve the Abel ODE ...

The relative invariant s3 is: -1/432*(8*x^4+40*x^3+45*x^2-270*x+135)/x^3/(x-1)^6/(2*x+1)^4

The first absolute invariant s5^3/s3^5 is: 729/16*(128*x^8+1152*x^7+3696*x^6+1744*x^5+8148*x^4-31500*x^3+6615*x^2-5670*x+8505)^3/(2*x+1)^4/(8*x^4+40*x^3+45*x^2-270*x+135)^5

The second absolute invariant s3*s7/s5^2 is: 1/3*(8*x^4+40*x^3+45*x^2-270*x+135)*(10240*x^12+133120*x^11+697600*x^10+1710080*x^9+3358592*x^8-1701568*x^7+6692592*x^6-18182448*x^5+2088072*x^4-7938000*x^3+2525985*x^2+1786050*x+2679075)/(128*x^8+1152*x^7+3696*x^6+1744*x^5+8148*x^4-31500*x^3+6615*x^2-5670*x+8505)^2

...checking Abel class AIL (45)

...checking Abel class AIL (310)

...checking Abel class AIR (36)

...checking Abel class AIL (301)

...checking Abel class AIL (1000)

...checking Abel class AIL (42)

...checking Abel class AIL (185)

...checking Abel class AIA (by Halphen)

...checking Abel class AIL (205)

...checking Abel class AIA (147)

...checking Abel class AIL (581)

...checking Abel class AIL (200)

...checking Abel class AIL (257)

...checking Abel class AIL (400)

...checking Abel class AIA (515)

...checking Abel class AIR (1001)

...checking Abel class AIA (201)

...checking Abel class AIA (815)

Looking for potential symmetries

... changing x -> 1/x, trying again

Looking for potential symmetries

The third absolute invariant s5*s7/s3^4 is: 243/16*(10240*x^12+133120*x^11+697600*x^10+1710080*x^9+3358592*x^8-1701568*x^7+6692592*x^6-18182448*x^5+2088072*x^4-7938000*x^3+2525985*x^2+1786050*x+2679075)/(2*x+1)^4*(128*x^8+1152*x^7+3696*x^6+1744*x^5+8148*x^4-31500*x^3+6615*x^2-5670*x+8505)/(8*x^4+40*x^3+45*x^2-270*x+135)^4

 ->         ======================================

 ->             ...checking Abel class D (by Appell)

 -> Step 1: checking for a disqualifying factor on F after evaluating x at a number

Trying x = 2

*** No disqualifying factor on F was found ***

 -> Step 2: calculating resultants to eliminate F and get candidates for C

*** Candidates for C are {4/27} ***

 -> Step 3: looking for a solution F depending on x

*** No solution F of x was found ***

 ->         ======================================

 ->             ...checking Abel class B (by Liouville)

 -> Step 1: checking for a disqualifying factor on F after evaluating x at a number

Trying x = 2

*** No disqualifying factor on F was found ***

 -> Step 2: calculating resultants to eliminate F and get candidates for C

*** Candidates for C are {1, 4, 1/4} ***

 -> Step 3: looking for a solution F depending on x

*** No solution F of x was found ***

 ->         ======================================

 ->             ...checking Abel class A (by Abel)

 -> Step 1: checking for a disqualifying factor on F after evaluating x at a number

Trying x = 2

*** No disqualifying factor on F was found ***

 -> Step 2: calculating resultants to eliminate F and get candidates for C

*** Candidates for C are {0, -1/4} ***

 -> Step 3: looking for a solution F depending on x

*** No solution F of x was found ***

 ->         ======================================

 ->             ...checking Abel class C (by Abel)

 -> Step 1: checking for a disqualifying factor on F after evaluating x at a number

Trying x = 2

*** No disqualifying factor on F was found ***

 -> Step 2: calculating resultants to eliminate F and get candidates for C

*** Candidates for C are {2, -11676447873119/75975070592769, 9/5, 15632211369872/75439744512117, 46273613050865/52325357771027, 75312059745574/25138886548531} ***

 -> Step 3: looking for a solution F depending on x

_____________________________

C = 9/5 leads to a useless solution (F does not depend on x)

*** No solution F of x was found ***

 ->         ======================================

 ->             ...checking Abel class AIL 1.6

 -> Step 1: checking for a disqualifying factor on F after evaluating x at a number

Trying x = 2

*** No disqualifying factor on F was found ***

 -> Step 2: calculating resultants to eliminate F and get candidates for C

*** Candidates for C are {-4, 16} ***

 -> Step 3: looking for a solution F depending on x

*** No solution F of x was found ***

 ->         ======================================

 ->             ...checking Abel class AIL 1.8

 -> Step 1: checking for a disqualifying factor on F after evaluating x at a number

Trying x = 2

*** No disqualifying factor on F was found ***

 -> Step 2: calculating resultants to eliminate F and get candidates for C

*** Candidates for C are {0, -116457391291688/45108305127449, -96869842492381/35485755507516, -36964550865207/94238117721032, -32286830321303/11596568583712, 32286830321303/11596568583712, 36964550865207/94238117721032, 96869842492381/35485755507516, 116457391291688/45108305127449} ***

 -> Step 3: looking for a solution F depending on x

*** No solution F of x was found ***

 ->         ======================================

 ->             ...checking Abel class AIL 1.9

 -> Step 1: checking for a disqualifying factor on F after evaluating x at a number

Trying x = 2

*** No disqualifying factor on F was found ***

 -> Step 2: calculating resultants to eliminate F and get candidates for C

*** Candidates for C are {-2/9, -1/9} ***

 -> Step 3: looking for a solution F depending on x

*** No solution F of x was found ***

 ->         ======================================

 ->             ...checking Abel class AIA 1.51

 -> Step 1: checking for a disqualifying factor on F after evaluating x at a number

Trying x = 2

*** No disqualifying factor on F was found ***

 -> Step 2: calculating resultants to eliminate F and get candidates for C

*** Candidates for C are {0, -94917840318055/84247876515289, -85939756880989/51399391393709, -82210125508529/36853933366676, -74381886667083/82545981233858, -41168492684238/33804146399567, -15658703496425/19275443365317, -9175348901453/101481647952193, 3/4, 15/4, 5568553686203/113599855351490, 12774469621703/63437040534358, 17836021821409/102823494563886, 39657708622139/74009717243016, 82495450887526/27663991325651, 86656182727564/45157560524183, 90074893410229/54954593917906, 100200889070747/32282555481919, 113612565327585/103754255779069} ***

 -> Step 3: looking for a solution F depending on x

_____________________________

C = 15/4 leads to a useless solution (F does not depend on x)

*** No solution F of x was found ***

 ->         ======================================

 ->             ...checking Abel class AIA 1.5

 -> Step 1: checking for a disqualifying factor on F after evaluating x at a number

Trying x = 2

*** No disqualifying factor on F was found ***

 -> Step 2: calculating resultants to eliminate F and get candidates for C

*** Candidates for C are {-1, 1, -113553630998996/78694251194667, -112790344818825/35834119404842, -104905620984375/18860524785743, -95409943222181/78810323073434, -77648002983645/31218435062578, -67259194033608/9576982470445, -46892223838816/86694928762723, -45901561561111/29768419326991, -34674701564566/6522678435631, 26154715634141/21099761863911, 42841215778132/81925179545457, 52638927823233/15127919203723, 54069389554571/5444364811188, 54445812264368/10328928623117, 56815569067370/40738034746481, 75614540760757/62881656939350, 76459718737483/64786816765621, 85896394925571/88677987470966, 90623073438172/24246571690325, 103628692054633/17857341616628, 117754725919014/60191028908095} ***

 -> Step 3: looking for a solution F depending on x

_____________________________

C = -1 leads to a useless solution (F does not depend on x)

_____________________________

C = -113553630998996/78694251194667 leads to a useless solution (F does not depend on x)

_____________________________

C = -112790344818825/35834119404842 leads to a useless solution (F does not depend on x)

_____________________________

C = -104905620984375/18860524785743 leads to a useless solution (F does not depend on x)

_____________________________

C = -95409943222181/78810323073434 leads to a useless solution (F does not depend on x)

_____________________________

C = -77648002983645/31218435062578 leads to a useless solution (F does not depend on x)

_____________________________

C = -67259194033608/9576982470445 leads to a useless solution (F does not depend on x)

_____________________________

C = -46892223838816/86694928762723 leads to a useless solution (F does not depend on x)

_____________________________

C = -45901561561111/29768419326991 leads to a useless solution (F does not depend on x)

_____________________________

C = -34674701564566/6522678435631 leads to a useless solution (F does not depend on x)

_____________________________

C = 26154715634141/21099761863911 leads to a useless solution (F does not depend on x)

_____________________________

C = 42841215778132/81925179545457 leads to a useless solution (F does not depend on x)

_____________________________

C = 52638927823233/15127919203723 leads to a useless solution (F does not depend on x)

_____________________________

C = 54069389554571/5444364811188 leads to a useless solution (F does not depend on x)

_____________________________

C = 54445812264368/10328928623117 leads to a useless solution (F does not depend on x)

_____________________________

C = 56815569067370/40738034746481 leads to a useless solution (F does not depend on x)

_____________________________

C = 75614540760757/62881656939350 leads to a useless solution (F does not depend on x)

_____________________________

C = 76459718737483/64786816765621 leads to a useless solution (F does not depend on x)

_____________________________

C = 85896394925571/88677987470966 leads to a useless solution (F does not depend on x)

_____________________________

C = 90623073438172/24246571690325 leads to a useless solution (F does not depend on x)

_____________________________

C = 103628692054633/17857341616628 leads to a useless solution (F does not depend on x)

_____________________________

C = 117754725919014/60191028908095 leads to a useless solution (F does not depend on x)

*** No solution F of x was found ***

 ->         ======================================

 ->             ...checking Abel class AIA 1.52

 -> Step 1: checking for a disqualifying factor on F after evaluating x at a number

Trying x = 2

*** No disqualifying factor on F was found ***

 -> Step 2: calculating resultants to eliminate F and get candidates for C

*** Candidates for C are {-5, -4, -3, 0, 1, 2, -3/2} ***

 -> Step 3: looking for a solution F depending on x

*** No solution F of x was found ***

 ->         ======================================

 ->             ...checking Abel class AIA 1.53

 -> Step 1: checking for a disqualifying factor on F after evaluating x at a number

Trying x = 2

*** No disqualifying factor on F was found ***

 -> Step 2: calculating resultants to eliminate F and get candidates for C

*** Candidates for C are {-3, -1, 1, 2, -3/2, -2/3, -1/2} ***

 -> Step 3: looking for a solution F depending on x

_____________________________

C = -3 leads to a useless solution (F does not depend on x)

_____________________________

C = -3/2 leads to a useless solution (F does not depend on x)

*** No solution F of x was found ***

trying to map the Abel into a solvable 2nd order ODE

...checking Abel class AIA 2-parameter, reducible to Riccati

Error, (in dsolve) invalid subscript selector

restart;

ode := diff(y(x),x)/y(x)-(3*(4*x^2+y(x)^2+1))/(2*x*(4*x^2+y(x)^2-2-2*x))=0:

dsolve(ode,y(x));

Error, (in dsolve) invalid subscript selector

tracelast;

Error, (in dsolve) invalid subscript selector

 

 

Download dsolve_invalid_subscript_dec_27_2024.mw

I am doing some work in Maple.  Specifically, I run the following commands in Maple worksheet mode:

with(Statistics);
L := abs(RandomVariable(UniformDistribution(0, 1)) - RandomVariable(UniformDistribution(0, 1)));
Export("LineDensity.jpg", DensityPlot(L));
PDF(L, x);

Everything works fine.  When I export these commands into an MPL script, I get the following:

with(Statistics);
L := abs(RandomVariable(UniformDistribution(0, 1)) - RandomVariable(UniformDistribution(0, 1)));
Export("LineDensity.jpg", DensityPlot(L));
PDF(L, x);
NULL;

When I execute this script, I get the following error message:

Warning: persistent store makes readlib obsolete
Error: (in Export) exported file LineDensity.jpg could not be created

I need to do the work in MPL script form so that I can have larger problems processed.  Does anyone know why I would be having this problem with the Export function?  

I did a lot  of time but this time i don't know why not run any one have idea?

restart

with(PDEtools)

with(LinearAlgebra)

with(Physics)

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

declare(u(x, t)); declare(U(xi)); declare(G(xi))

u(x, t)*`will now be displayed as`*u

 

U(xi)*`will now be displayed as`*U

 

G(xi)*`will now be displayed as`*G

(2)

T := xi = -V*t+x; T1 := u(x, t) = U(-V*t+x)*exp(I*(-k*x+t*w+theta))

xi = -V*t+x

 

u(x, t) = U(-V*t+x)*exp(I*(-k*x+t*w+theta))

(3)

P3 := diff(u(x, t), x, t)

``

(4)

P33 := diff(u(x, t), x)

diff(u(x, t), x)

(5)

P333 := diff(P33, t)

NULL

Download why.mw

1 2 3 4 5 6 7 Last Page 1 of 352