Unanswered Questions

This page lists MaplePrimes questions that have not yet received an answer

restart;
read "C:/Program Files/Maple 2020/lib/ASP v4.6.3.txt";

    DESOLVII_V5R5 (March 2011)(c), by Dr. K. T. Vu, Dr. J.

       Carminati and Miss G. Jefferson

 

The authors kindly request that this software be referenced, if

   it is used in work eventuating in a publication, by citing

   the article:


  K.T. Vu, G.F. Jefferson, J. Carminati, Finding generalised

     symmetries of differential equations


  using the MAPLE package DESOLVII,Comput. Phys. Commun. 183

     (2012) 1044-1054.

 

                         -------------

 ASP (November 2011), by Miss G. Jefferson and Dr. J. Carminati


The authors kindly request that this software be referenced, if

   it is used in work eventuating in a publication, by citing

   the article:


     G.F. Jefferson, J. Carminati, ASP: Automated Symbolic

        Computation of Approximate Symmetries


   of Differential Equations, Comput. Phys. Comm. 184 (2013)

      1045-1063.

 

 [classify, comtab, defeqn, deteq_split, extgenerator, gendef,

   genvec, icde_cons, liesolve, mod_eq, originalVar, pdesolv,

   reduceVar, reduceVargen, symmetry, varchange]


                     ASP := _m2229977204928

with(ASP);
       [ApproximateSymmetry, applygenerator, commutator]

with(desolv);
 [classify, comtab, defeqn, deteq_split, extgenerator, gendef,

   genvec, icde_cons, liesolve, mod_eq, originalVar, pdesolv,

   reduceVar, reduceVargen, symmetry, varchange]


read "C:/Program Files/Maple 2020/lib/FracSym.v1.16.txt";
FracSym (April 2013), by Miss G. Jefferson and Dr. J. Carminati


The authors kindly request that this software be referenced, if

   it is used in work eventuating in a publication, by citing:


   G.F. Jefferson, J. Carminati, FracSym: Automated symbolic

      computation of Lie symmetries


   of fractional differential equations, Comput. Phys. Comm.

      Submitted May 2013.

 

with(FracSym);
[Rfracdiff, TotalD, applyFracgen, evalTotalD, expandsum, fracDet,

  fracGen, split]


Rfracdiff(u(x, t), t, alpha);
                          alpha          
                       D[t     ](u(x, t))

Rfracdiff(u(x, t) &* v(x, t), t, alpha);
infinity                                                          
 -----                                                            
  \                                                               
   )                          (alpha - n)              n          
  /     binomial(alpha, n) D[t           ](u(x, t)) D[t ](v(x, t))
 -----                                                            
 n = 0                                                            

Rfracdiff(v(x, t) &* u(x, t), t, alpha);
infinity                                                          
 -----                                                            
  \                                                               
   )                          (alpha - n)              n          
  /     binomial(alpha, n) D[t           ](v(x, t)) D[t ](u(x, t))
 -----                                                            
 n = 0                                                            

Rfracdiff(u(x, t) &* v(x, t), t, 2);
     /  2         \                                        
     | d          |             / d         \ / d         \
     |---- u(x, t)| v(x, t) + 2 |--- u(x, t)| |--- v(x, t)|
     |   2        |             \ dt        / \ dt        /
     \ dt         /                                        

                  /  2         \
                  | d          |
        + u(x, t) |---- v(x, t)|
                  |   2        |
                  \ dt         /


TotalD(xi[x](x, y), x, 2);
                          2              
                       D[x ](xi[x](x, y))

evalTotalD([%], [y], [x]);
     [     /  2             \     /   2              \    
     [   2 | d              |     |  d               |    
     [y_x  |---- xi[x](x, y)| + 2 |------ xi[x](x, y)| y_x
     [     |   2            |     \ dy dx            /    
     [     \ dy             /                             

                                   /  2             \]
               / d             \   | d              |]
        + y_xx |--- xi[x](x, y)| + |---- xi[x](x, y)|]
               \ dy            /   |   2            |]
                                   \ dx             /]


fde1 := Rfracdiff(u(x, t), t, alpha) = -u(x, t)*diff(u(x, t), x) - diff(u(x, t), x, x) - diff(u(x, t), x, x, x) - diff(u(x, t), x, x, x, x);
                alpha                      / d         \
     fde1 := D[t     ](u(x, t)) = -u(x, t) |--- u(x, t)|
                                           \ dx        /

          /  2         \   /  3         \   /  4         \
          | d          |   | d          |   | d          |
        - |---- u(x, t)| - |---- u(x, t)| - |---- u(x, t)|
          |   2        |   |   3        |   |   4        |
          \ dx         /   \ dx         /   \ dx         /


deteqs := fracDet([fde1], [u], [x, t], 2);
  Intervals/values considered for the fractional derivative/s:

                     {0 < alpha, alpha < 1}

          [                                           
          [                                           
          [[  2                                       
          [[ d                     d                  
deteqs := [[---- eta[u](x, t, u), --- xi[t](x, t, u),
          [[   2                   du                 
          [[ du                                       

   d                   d                   d                  
  --- xi[t](x, t, u), --- xi[t](x, t, u), --- xi[x](x, t, u),
   du                  dx                  du                 

                        2                    2                  
   d                   d                    d                   
  --- xi[x](x, t, u), ---- xi[t](x, t, u), ---- xi[t](x, t, u),
   du                    2                    2                 
                       du                   du                  

    2                                              
   d                         / d                \  
  ---- xi[t](x, t, u), alpha |--- xi[x](x, t, u)|,
     2                       \ dt               /  
   du                                              

                                2                  
        / d                \   d                   
  alpha |--- xi[x](x, t, u)|, ---- xi[t](x, t, u),
        \ du               /     2                 
                               du                  

    2                    2                    3                  
   d                    d                    d                   
  ---- xi[x](x, t, u), ---- xi[x](x, t, u), ---- xi[t](x, t, u),
     2                    2                    3                 
   du                   du                   du                  

    3                    3                    4                  
   d                    d                    d                   
  ---- xi[t](x, t, u), ---- xi[x](x, t, u), ---- xi[t](x, t, u),
     3                    3                    4                 
   du                   du                   du                  

    4                  
   d                   
  ---- xi[x](x, t, u),
     4                 
   du                  

     /  2                \                           
     | d                 |     / d                \  
  -6 |---- xi[t](x, t, u)| - 3 |--- xi[t](x, t, u)|,
     |   2               |     \ dx               /  
     \ dx                /                           

        / d                \     / d                \  
  alpha |--- xi[t](x, t, u)| - 4 |--- xi[x](x, t, u)|,
        \ dt               /     \ dx               /  

  / d                \              
  |--- xi[t](x, t, u)| (alpha - 1),
  \ du               /              

                               /   2                 \  
     / d                \      |  d                  |  
  -3 |--- xi[t](x, t, u)| - 12 |------ xi[t](x, t, u)|,
     \ du               /      \ dx du               /  

        / d                \              
  alpha |--- xi[t](x, t, u)| (alpha - 1),
        \ du               /              

        / d                \              
  alpha |--- xi[x](x, t, u)| (alpha - 1),
        \ du               /              

     /  2                \      /   3                  \  
     | d                 |      |  d                   |  
  -3 |---- xi[t](x, t, u)| - 12 |------- xi[t](x, t, u)|,
     |   2               |      |      2               |  
     \ du                /      \ dx du                /  

        /   2                 \              
        |  d                  |              
  alpha |------ xi[t](x, t, u)| (alpha - 1),
        \ du dt               /              

        /   2                 \              
        |  d                  |              
  alpha |------ xi[x](x, t, u)| (alpha - 1),
        \ du dt               /              

        /  2                \              
        | d                 |              
  alpha |---- xi[t](x, t, u)| (alpha - 1),
        |   2               |              
        \ du                /              

        /  2                \              
        | d                 |              
  alpha |---- xi[x](x, t, u)| (alpha - 1),
        |   2               |              
        \ dt                /              

        /  2                \              
        | d                 |              
  alpha |---- xi[x](x, t, u)| (alpha - 1),
        |   2               |              
        \ du                /              

   /  3                \     /   4                  \  
   | d                 |     |  d                   |  
  -|---- xi[t](x, t, u)| - 4 |------- xi[t](x, t, u)|,
   |   3               |     |      3               |  
   \ du                /     \ dx du                /  
                          /   2                 \
 / d                \     |  d                  |
-|--- xi[t](x, t, u)| - 4 |------ xi[t](x, t, u)|
 \ du               /     \ dx du               /

           / d                \     / d                \
   + alpha |--- xi[t](x, t, u)|, -4 |--- xi[x](x, t, u)|
           \ du               /     \ du               /

       /  2                 \      /   2                 \  
       | d                  |      |  d                  |  
   + 4 |---- eta[u](x, t, u)| - 16 |------ xi[x](x, t, u)|,
       |   2                |      \ dx du               /  
       \ du                 /                               
                            /  2                 \
   / d                \     | d                  |
-3 |--- xi[x](x, t, u)| + 3 |---- eta[u](x, t, u)|
   \ du               /     |   2                |
                            \ du                 /

        /   2                 \     /  3                \
        |  d                  |     | d                 |
   - 12 |------ xi[x](x, t, u)|, -4 |---- xi[t](x, t, u)|
        \ dx du               /     |   3               |
                                    \ dx                /

                                /  2                \  
       / d                \     | d                 |  
   - 2 |--- xi[t](x, t, u)| - 3 |---- xi[t](x, t, u)|,
       \ dx               /     |   2               |  
                                \ dx                /  
   /   2                 \      /   3                  \
   |  d                  |      |  d                   |
-6 |------ xi[t](x, t, u)| - 12 |------- xi[t](x, t, u)|
   \ dx du               /      |   2                  |
                                \ dx  du               /

       / d                \  
   - 2 |--- xi[t](x, t, u)|,
       \ du               /  

        / d                \                          
  alpha |--- xi[t](x, t, u)| (alpha - 1) (alpha - 2),
        \ du               /                          
   /  2                \     /  3                 \
   | d                 |     | d                  |
-6 |---- xi[x](x, t, u)| + 6 |---- eta[u](x, t, u)|
   |   2               |     |   3                |
   \ du                /     \ du                 /

        /   3                  \     /   3                  \
        |  d                   |     |  d                   |
   - 24 |------- xi[x](x, t, u)|, -3 |------- xi[t](x, t, u)|
        |      2               |     |      2               |
        \ dx du                /     \ dx du                /

       /    4                  \   /  2                \         
       |   d                   |   | d                 |        /
   - 6 |-------- xi[t](x, t, u)| - |---- xi[t](x, t, u)|, alpha |
       |   2   2               |   |   2               |        \
       \ dx  du                /   \ du                /         

   d                \     / d                \
  --- xi[t](x, t, u)| - 3 |--- xi[x](x, t, u)|
   dt               /     \ dx               /

       /   2                  \     /  2                \  
       |  d                   |     | d                 |  
   + 4 |------ eta[u](x, t, u)| - 6 |---- xi[x](x, t, u)|,
       \ dx du                /     |   2               |  
                                    \ dx                /  

        /   2                 \                          
        |  d                  |                          
  alpha |------ xi[t](x, t, u)| (alpha - 1) (alpha - 2),
        \ du dt               /                          

        /  2                \                          
        | d                 |                          
  alpha |---- xi[t](x, t, u)| (alpha - 1) (alpha - 2),
        |   2               |                          
        \ du                /                          
   /   2                 \     /   3                  \
   |  d                  |     |  d                   |
-3 |------ xi[t](x, t, u)| - 6 |------- xi[t](x, t, u)|
   \ dx du               /     |   2                  |
                               \ dx  du               /

                                                              /
     / d                \         / d                \        |
   - |--- xi[t](x, t, u)| + alpha |--- xi[t](x, t, u)|, alpha |
     \ du               /         \ du               /        |
                                                              \
       /  2                \     /   2                  \
       | d                 |     |  d                   |
-alpha |---- xi[t](x, t, u)| + 2 |------ eta[u](x, t, u)|
       |   2               |     \ du dt                /
       \ dt                /                             

     /  2                \\   /  3                \
     | d                 ||   | d                 |
   + |---- xi[t](x, t, u)||, -|---- xi[x](x, t, u)|
     |   2               ||   |   3               |
     \ dt                //   \ du                /

       /   4                  \   /  4                 \  
       |  d                   |   | d                  |  
   - 4 |------- xi[x](x, t, u)| + |---- eta[u](x, t, u)|,
       |      3               |   |   4                |  
       \ dx du                /   \ du                 /  
                          /  2                \
   / d                \   | d                 |
-u |--- xi[t](x, t, u)| - |---- xi[t](x, t, u)|
   \ dx               /   |   2               |
                          \ dx                /

     /  3                \   /  4                \  
     | d                 |   | d                 |  
   - |---- xi[t](x, t, u)| - |---- xi[t](x, t, u)|,
     |   3               |   |   4               |  
     \ dx                /   \ dx                /  

        /   3                  \                          
        |  d                   |                          
  alpha |------- xi[t](x, t, u)| (alpha - 1) (alpha - 2),
        |      2               |                          
        \ du dt                /                          

        /   3                  \                          
        |  d                   |                          
  alpha |------- xi[t](x, t, u)| (alpha - 1) (alpha - 2),
        |   2                  |                          
        \ du  dt               /                          

        /  3                \                          
        | d                 |                          
  alpha |---- xi[t](x, t, u)| (alpha - 1) (alpha - 2),
        |   3               |                          
        \ du                /                          
                            /  2                 \
   / d                \     | d                  |
-3 |--- xi[x](x, t, u)| + 3 |---- eta[u](x, t, u)|
   \ du               /     |   2                |
                            \ du                 /

       /   2                 \      /   3                   \
       |  d                  |      |  d                    |
   - 9 |------ xi[x](x, t, u)| + 12 |------- eta[u](x, t, u)|
       \ dx du               /      |      2                |
                                    \ dx du                 /

        /   3                  \                              
        |  d                   |        / d                \  
   - 18 |------- xi[x](x, t, u)|, alpha |--- xi[t](x, t, u)| u
        |   2                  |        \ du               /  
        \ dx  du               /                              

       /   3                  \     /   4                  \
       |  d                   |     |  d                   |
   - 3 |------- xi[t](x, t, u)| - 4 |------- xi[t](x, t, u)|
       |   2                  |     |   3                  |
       \ dx  du               /     \ dx  du               /

       /   2                 \                                  
       |  d                  |   / d                \          /
   - 2 |------ xi[t](x, t, u)| - |--- xi[t](x, t, u)| u, alpha |
       \ dx du               /   \ du               /          \

                          /  3                \
   d                \     | d                 |
  --- xi[t](x, t, u)| - 4 |---- xi[x](x, t, u)|
   dt               /     |   3               |
                          \ dx                /

       /  2                \                         
       | d                 |     / d                \
   - 3 |---- xi[x](x, t, u)| - 2 |--- xi[x](x, t, u)|
       |   2               |     \ dx               /
       \ dx                /                         

       /   3                   \     /   2                  \  
       |  d                    |     |  d                   |  
   + 6 |------- eta[u](x, t, u)| + 3 |------ eta[u](x, t, u)|,
       |   2                   |     \ dx du                /  
       \ dx  du                /                               
 /  2                \   /  3                 \
 | d                 |   | d                  |
-|---- xi[x](x, t, u)| + |---- eta[u](x, t, u)|
 |   2               |   |   3                |
 \ du                /   \ du                 /

       /   3                  \     /   4                   \
       |  d                   |     |  d                    |
   - 3 |------- xi[x](x, t, u)| + 4 |------- eta[u](x, t, u)|
       |      2               |     |      3                |
       \ dx du                /     \ dx du                 /

       /    4                  \              /
       |   d                   |              |
   - 6 |-------- xi[x](x, t, u)|, (alpha - 1) |
       |   2   2               |              |
       \ dx  du                /              \
       /  3                \     /   3                   \
       | d                 |     |  d                    |
-alpha |---- xi[t](x, t, u)| + 3 |------- eta[u](x, t, u)|
       |   3               |     |      2                |
       \ dt                /     \ du dt                 /

       /  3                \\                               
       | d                 ||           / d                \
   + 2 |---- xi[t](x, t, u)|| alpha, -u |--- xi[x](x, t, u)|
       |   3               ||           \ du               /
       \ dt                //                               

     /  2                 \     /   2                 \
     | d                  |     |  d                  |
   + |---- eta[u](x, t, u)| - 2 |------ xi[x](x, t, u)|
     |   2                |     \ dx du               /
     \ du                 /                            

       /   3                   \     /   3                  \
       |  d                    |     |  d                   |
   + 3 |------- eta[u](x, t, u)| - 3 |------- xi[x](x, t, u)|
       |      2                |     |   2                  |
       \ dx du                 /     \ dx  du               /

       /   4                  \     /    4                   \  
       |  d                   |     |   d                    |  
   - 4 |------- xi[x](x, t, u)| + 6 |-------- eta[u](x, t, u)|,
       |   3                  |     |   2   2                |  
       \ dx  du               /     \ dx  du                 /  
   / d                \                  
-u |--- xi[x](x, t, u)| + eta[u](x, t, u)
   \ dx               /                  

                                      /   2                  \
           / d                \       |  d                   |
   + alpha |--- xi[t](x, t, u)| u + 2 |------ eta[u](x, t, u)|
           \ dt               /       \ dx du                /

     /  2                \     /   3                   \
     | d                 |     |  d                    |
   - |---- xi[x](x, t, u)| + 3 |------- eta[u](x, t, u)|
     |   2               |     |   2                   |
     \ dx                /     \ dx  du                /

     /  3                \     /   4                   \
     | d                 |     |  d                    |
   - |---- xi[x](x, t, u)| + 4 |------- eta[u](x, t, u)|
     |   3               |     |   3                   |
     \ dx                /     \ dx  du                /

                             [                          
                             [                          
     /  4                \]  [                          
     | d                 |]  [                          
   - |---- xi[x](x, t, u)|], [xi[t](x, 0, u) = 0, (Diff(
     |   4               |]  [                          
     \ dx                /]  [                          

                                   / d                 \
  eta[u](x, t, u), t $ alpha)) + u |--- eta[u](x, t, u)|
                                   \ dx                /

       /    / d                            \\
   - u |Diff|--- eta[u](x, t, u), t $ alpha||
       \    \ du                           //

     /  3                 \   /  4                 \
     | d                  |   | d                  |
   + |---- eta[u](x, t, u)| + |---- eta[u](x, t, u)|
     |   3                |   |   4                |
     \ dx                 /   \ dx                 /

                             /infinity                             
                             | -----                               
     /  2                 \  |  \                                  
     | d                  |  |   )    /    1   /                   
   + |---- eta[u](x, t, u)|, |  /     |- ----- |binomial(alpha, n)
     |   2                |  | -----  \  n + 1 \                   
     \ dx                 /  \ n = 3                               

  /   (alpha - n)              (n + 1)                       
  |D[t           ](u(x, t)) D[t       ](xi[t](x, t, u)) alpha
  \                                                          

        (alpha - n)              (n + 1)                   
   - D[t           ](u(x, t)) D[t       ](xi[t](x, t, u)) n

        (alpha - n) / d         \    n                   
   + D[t           ]|--- u(x, t)| D[t ](xi[x](x, t, u)) n
                    \ dx        /                        

                                                          \   /Sum(
                                                          |   |    
                                                          |   |    
        (alpha - n) / d         \    n                 \\\|   |    
   + D[t           ]|--- u(x, t)| D[t ](xi[x](x, t, u))|||| + |    
                    \ dx        /                      ///|   |    
                                                          /   \    

                     /    / d                        \\
  binomial(alpha, n) |Diff|--- eta[u](x, t, u), t $ n||
                     \    \ du                       //

     (alpha - n) (u(x, t)), n = 3 .. infinity)\]  
  D[t           ]                             |]  
                                              |]  
                                              |]  
                                              |],
                                              |]  
                                              /]  

                                                              ]
                                                              ]
                                                              ]
                                                              ]
  [xi[x](x, t, u), xi[t](x, t, u), eta[u](x, t, u)], [x, t, u]]
                                                              ]
                                                              ]


sol1 := pdesolv(expand(deteqs[1]), deteqs[3], deteqs[4]);
Error, (in desolv/lderivx) cannot determine if this expression is true or false: 1 < x |C:/Program Files/Maple 2020/lib/ASP v4.6.3.txt:4312|

 

Hi there!

I'm working on implementing a custom Modelica Library in MapleSim 2021. I have Maple 2021 installed and my software is up to date. The library I have developed is in a single file (extension ".mo") which I developed on an IDE for Modelica i.e., I did not create the library using MapleSim. During the import into MapleSim, no errors appear in the system logs. All my components and models have been imported except for an "expandable connector". It appears that the problem is with the term "expandable".

Since this expandable connector does not appear among my library components, I attempted to create a custom component using the Modelica code editor in MapleSim. However, the file cannot be saved while I prefix the term "expandable" to "connector". The software allows me to save the file with the new code after dropping the "expandable" term.

I know that expandable connectors are used by Modelica. Here are the references I used during development:

https://mbe.modelica.university/components/architectures/expandable/

Working with Expandable Connectors - Claytex

However, there does not seem to be any information on expandable connectors in MapleSim. I'd appreciate it if any of you could throw some light on why I'm not able to import this component into MapleSim and fixes/suggestions on what I might be doing wrong. If any further information on my question is required, please do let me know.

  1. I use both Maple and Matlab
  2. I also install (a stripped down version of) Maple as the "symbolic toolbox" for Matlab using the executable MapleToolbox2022.0WindowsX64Installer.exe, which lives in C:\Program Files\Maple 2022. This gives me acces to (some) symbolic computation capability from within Matlab.
  3. This installation process has been working for as long as I remember, certainly more than 10 years
  4. With Maple 2022 and Matlab R2022a, this installation process ran with no problems and I can perform symbolic computation within Matlab
  5. However, although the Matlab help lists the Maple toolbox as supplemental software (as in all previous releases), I can no longer acces help for Maple from within Matlab - I just get a "Page not found" message
  6. The relevant Maple "help" is at the same place within the Matlab folder structure which is C:\Program Files\MATLAB\R2022a\toolbox\maple\html
  7. I have just spoken to support at Matlab and they claim tha this must be a Maple (or Maple toolbox installer issue) - so nothing to do with them!
  8. Has anyone else had a similar problem andd found a workaround?

Switching font to Arial apparently makes the sign disappear in MathContainers.

Vorzeichen.mw

If i want to do mathematical modelling for planetary motion, how can maple help me with it?

Does maple software support Benders decomposition technique for Mixed Integer Linear Programming? If no, how we can implement it in maple? Any suggestions. 

Thank you

hello 
i have a Table in my worksheet; 

it countains 3 coulmns, and each coulmns cointains a loop that requires about a day to evaluate. 

is there a way to excute the 3 coulmns in parallel, there is no interaction between them and i cant seprete them into different worksheets.

thanks in advance.

Anyone experience a delay in typing as the screen fills with text/math etc.?

I'm using Maple 2021 and as the space is filled typing slows. I can finish typing and watch the last 4 keys enter on the screen.


Hi !

Looks like there is a bug in the inert "Diff" command.

I have Maple 2018 on Windows 10 ,64 bits.

Does Maple consider Diff(f(x),x) to be equal to Diff(f(x),[x]) ?

It should be the same.

Maple displays  that it is equal but keeps in memory something else.

In the attached file, I give a very simple example.

I don't like to say this but my old version of Maple V Release V (1997) is more consistent i.e.

this version shows it's different and  keeps in memory that difference.

diff-problem.mw

 

I wonder if newer versions have this problem ?


Best regards !

When using the built-in fsolve function to find the roots of a polynomial, how does exponentiation occur? For example, x3 is found​​​​​​first, and then to find x4, will he start again from the beginning, that is, x*x*x*x, or will he take the value of x3​​​​​​ and multiply by x? The teacher is interested in finding out this, but I don't know how to find out myself. 

Hello Everyone;

Hope you are fine. I am solving system of odes using rk-4 method. For this purpose I formulate the "residual" (on maple file) which is further function of "x" and "y". With the help of discritization point further I convert "residual" into system of ode's. Then i used "sys111 := solve(odes_Combine, `~`[diff](var, t))" to simplify the system. Finnally i applied RK-1. Code is pasted and attached. This all process is for "N=4". When i increase the value of "N", number of Odes increase accordingly. With increasing value of "N" the comand "sys111 := solve(odes_Combine, `~`[diff](var, t))" taking a lot of time due to heavy computation. Is that any way to proceed without this comand for rk-1?

Question1.mw

 


 

restart; with(PDEtools, Solve); with(LinearAlgebra); with(plots); DD := 30; Digits := DD; N := 4; nu := 1.0; t0, tf := 0, 1; Ntt := 10; h := evalf((tf-t0)/(Ntt-1)); xmin := 0; xmax := Pi; `&Delta;xx` := 1.0*xmax/N; ymin := 0; ymax := xmax; `&Delta;yy` := 1.0*ymax/N

0, 1

 

.111111111111111111111111111111

 

.785398163397448309615660845820

 

.785398163397448309615660845820

(1)

residual := 1.000000000*(diff(A[0, 0](t), t))-32.00000000*A[2, 0](t)-32.00000002*A[0, 2](t)+(diff(A[1, 1](t), t))*(4.000000001-8.000000003*y-8.000000003*x+16.00000000*x*y)+(diff(A[1, 0](t), t))*(-2.000000000+4.000000000*x)+(diff(A[0, 3](t), t))*(-4.000000000+40.00000000*y-95.99999994*y^2+64.00000001*y^3)+(diff(A[0, 2](t), t))*(3.000000000-16.00000001*y+16.00000001*y^2)+(diff(A[0, 1](t), t))*(-2.000000001+4.000000000*y)-A[3, 3](t)*(768.0000000-7680.000000*y+18432.00000*y^2-12288.00000*y^3-1536.000000*x+15360.00000*x*y-36863.99998*x*y^2+24576.00000*x*y^3)-A[3, 2](t)*(-576.0000002+3072.000000*y-3072.000000*y^2+1152.000000*x-6144.000000*x*y+6144.000000*x*y^2)-A[3, 1](t)*(384.0000000-768.0000000*y-768.0000006*x+1536.000000*x*y)-A[3, 0](t)*(-192.0000000+384.0000000*x)-A[2, 3](t)*(-128.0000000+1280.000000*y-3072.000000*y^2+2048.000000*y^3)-A[2, 2](t)*(96.00000000-512.0000002*y+512.0000002*y^2)-A[2, 1](t)*(-64.00000002+128.0000000*y)-A[3, 3](t)*(767.9999998-1536.000000*y-7679.999998*x+15360.00000*x*y+18432.00000*x^2-36864.00000*x^2*y-12288.00000*x^3+24576.00000*x^3*y)-A[2, 3](t)*(-575.9999998+1152.000000*y+3072.000000*x-6144.000000*x*y-3072.000000*x^2+6144.000000*x^2*y)-A[3, 2](t)*(-128.0000000+1280.000000*x-3072.000000*x^2+2048.000000*x^3)-A[1, 2](t)*(-64.00000002+128.0000000*x)-A[1, 3](t)*(384.0000000-768.0000000*y-767.9999998*x+1536.000000*x*y)-A[2, 2](t)*(96.00000004-512.0000002*x+512.0000002*x^2)+(diff(A[3, 3](t), t))*(16.00000000-160.0000000*y+383.9999999*y^2-256.0000000*y^3-160.0000000*x+1600.000000*x*y-3839.999999*x*y^2+2560.000000*x*y^3+384.0000000*x^2-3840.000000*x^2*y+9215.999998*x^2*y^2-6144.000001*x^2*y^3-256.0000000*x^3+2560.000000*x^3*y-6143.999998*x^3*y^2+4096.000000*x^3*y^3)+(diff(A[3, 2](t), t))*(-12.00000000+64.00000002*y-64.00000002*y^2+120.0000000*x-640.0000002*x*y+640.0000002*x*y^2-288.0000001*x^2+1536.000000*x^2*y-1536.000000*x^2*y^2+192.0000000*x^3-1024.000000*x^3*y+1024.000000*x^3*y^2)+(diff(A[3, 1](t), t))*(8.000000003-16.00000000*y-80.00000003*x+160.0000000*x*y+192.0000000*x^2-384.0000000*x^2*y-128.0000001*x^3+256.0000000*x^3*y)-A[0, 3](t)*(-191.9999999+384.0000000*y)+(diff(A[3, 0](t), t))*(-4.000000000+40.00000000*x-96.00000002*x^2+64.00000001*x^3)+(diff(A[2, 3](t), t))*(-12.00000000+120.0000000*y-287.9999999*y^2+192.0000000*y^3+64.00000000*x-640.0000000*x*y+1536.000000*x*y^2-1024.000000*x*y^3-64.00000000*x^2+640.0000000*x^2*y-1536.000000*x^2*y^2+1024.000000*x^2*y^3)+(diff(A[2, 2](t), t))*(8.999999999-48.00000002*y+48.00000002*y^2-48.00000000*x+256.0000001*x*y-256.0000001*x*y^2+48.00000000*x^2-256.0000001*x^2*y+256.0000001*x^2*y^2)+(diff(A[2, 1](t), t))*(-6.000000002+12.00000000*y+32.00000001*x-64.00000000*x*y-32.00000001*x^2+64.00000000*x^2*y)+(diff(A[2, 0](t), t))*(3.000000000-16.00000000*x+16.00000000*x^2)+(diff(A[1, 3](t), t))*(8.000000003-80.00000003*y+192.0000000*y^2-128.0000000*y^3-16.00000000*x+160.0000000*x*y-383.9999999*x*y^2+256.0000000*x*y^3)+(diff(A[1, 2](t), t))*(-6.000000000+32.00000001*y-32.00000001*y^2+12.00000000*x-64.00000002*x*y+64.00000002*x*y^2):

for i2 from 0 while i2 <= N-1 do odes11[0, i2] := simplify(eval(residual, [x = 0, y = i2*ymax/(N-1)])) = 0; odes11[N-1, i2] := simplify(eval(residual, [x = xmax, y = i2*ymax/(N-1)])) = 0 end do:

8

(2)

odes_Combine := {seq(seq(odes11[i, j], i = 0 .. N-1), j = 0 .. N-1)}:

sys111 := solve(odes_Combine, `~`[diff](var, t)):

ICS1 := {A[0, 0](0) = .444104979341173495851499233536, A[0, 1](0) = .198590961107083475045046921568, A[0, 2](0) = -0.167999146492673347540059075790e-1, A[0, 3](0) = -0.869171705198864625153083083786e-3, A[1, 0](0) = .198590961107083475045046921567, A[1, 1](0) = 0.888041604305848495880917177172e-1, A[1, 2](0) = -0.751243816645416714455046298805e-2, A[1, 3](0) = -0.388668563362181391196975707953e-3, A[2, 0](0) = -0.167999146492673347540059075793e-1, A[2, 1](0) = -0.751243816645416714455046298835e-2, A[2, 2](0) = 0.635518954643030408055028178047e-3, A[2, 3](0) = 0.328796368925226898150257328603e-4, A[3, 0](0) = -0.869171705198864625153083083734e-3, A[3, 1](0) = -0.388668563362181391196975707910e-3, A[3, 2](0) = 0.328796368925226898150257328592e-4, A[3, 3](0) = 0.170108305076655667148638268230e-5}:

f, diffs := eval(GenerateMatrix(`~`[`-`](`~`[rhs](sys222), `~`[lhs](sys222)), var1))

f, diffs := Matrix(16, 16, {(1, 1) = 0, (1, 2) = 0, (1, 3) = 32., (1, 4) = 0.494812294492356575865153049102e-27, (1, 5) = 0, (1, 6) = 0, (1, 7) = 0.120000000000000000001649374315e-7, (1, 8) = -0.107999999927999999998854228220e-6, (1, 9) = 32.0000000200000000000000000000, (1, 10) = -0.199999999999999999998350625685e-7, (1, 11) = 0.249999999859375000081951230025e-7, (1, 12) = -0.700000000203125000132933066388e-7, (1, 13) = 0.196000000000000000000494812294e-6, (1, 14) = 0.292000000072000000001204420404e-6, (1, 15) = -0.458000000726562499721923065316e-6, (1, 16) = 0.682900000453875000014432471170e-5, (2, 1) = 0, (2, 2) = 0, (2, 3) = 0, (2, 4) = -0.377561971763063776372092766396e-27, (2, 5) = 0, (2, 6) = 0, (2, 7) = 32.0000000000000000000000000000, (2, 8) = 0.719999999999999999998878327317e-7, (2, 9) = 0, (2, 10) = -0.125853990587687925457364255465e-27, (2, 11) = 0.906355783222184042180194163758e-27, (2, 12) = 0.135077431625990682476379737660e-25, (2, 13) = 96.0000000000000000000000000001, (2, 14) = 0.719999999999999999989394464730e-7, (2, 15) = -0.549999999914062500010607576813e-6, (2, 16) = 0.202000000048749999997617654955e-5, (3, 1) = 0, (3, 2) = 0, (3, 3) = 0, (3, 4) = 0.855583965847405137008732798371e-28, (3, 5) = 0, (3, 6) = 0, (3, 7) = -0.257808598553160159742093659020e-28, (3, 8) = -0.377264825438544618607975742790e-27, (3, 9) = 0, (3, 10) = 0.285194655282468379002910932790e-28, (3, 11) = 31.9999999925000000046874999970, (3, 12) = 0.326865301360930805043812804544e-26, (3, 13) = -0.773425795659480479226280977060e-28, (3, 14) = -0.313579545661510489918366218529e-27, (3, 15) = -0.149999999882812500075601322065e-6, (3, 16) = 0.324999999796875000093151106353e-6, (4, 1) = 0, (4, 2) = 0, (4, 3) = 0, (4, 4) = -0.384112032581666751703476763000e-29, (4, 5) = 0, (4, 6) = 0, (4, 7) = 0.265935771387910529598689301718e-29, (4, 8) = 0.399754551928273029196600976861e-28, (4, 9) = 0, (4, 10) = -0.128037344193888917234492254333e-29, (4, 11) = 0.173718566046259004921454811253e-28, (4, 12) = -0.553232882345597286403223410199e-27, (4, 13) = 0.797807314163731588796067905154e-29, (4, 14) = 0.427742792008362106477653509643e-28, (4, 15) = 31.9999999950000000007812499996, (4, 16) = 0.583137134641934297089284679036e-26, (5, 1) = 0, (5, 2) = 0, (5, 3) = 0, (5, 4) = 96.0000000000000000000000000001, (5, 5) = 0, (5, 6) = 0, (5, 7) = -0.125853990576278889372664086359e-27, (5, 8) = -0.780000000000000000003341913398e-7, (5, 9) = 0, (5, 10) = 32.0000000000000000000000000000, (5, 11) = 0.155215894719877680168982772333e-28, (5, 12) = 0.179999999957812500011610427218e-6, (5, 13) = -0.377561971728836668117992259076e-27, (5, 14) = 0.121999999999999999999928850210e-6, (5, 15) = 0.957742348838601502120463181878e-26, (5, 16) = 0.413250000106171874986265224797e-5, (6, 1) = 0, (6, 2) = 0, (6, 3) = 0, (6, 4) = -0.821348457439978150891092618719e-28, (6, 5) = 0, (6, 6) = 0, (6, 7) = -0.273782819058452669879599110853e-28, (6, 8) = 95.9999999999999999999999999997, (6, 9) = 0, (6, 10) = -0.273782819146659383630364206240e-28, (6, 11) = 0.294057068291966163490658104104e-27, (6, 12) = -0.253498333196688505804635565222e-27, (6, 13) = -0.821348457175358009638797332558e-28, (6, 14) = 95.9999999999999999999999999997, (6, 15) = 0.212121033252676198558579131631e-28, (6, 16) = 0.649999999999999999980740836208e-6, (7, 1) = 0, (7, 2) = 0, (7, 3) = 0, (7, 4) = 0.186123768597305842557431955743e-28, (7, 5) = 0, (7, 6) = 0, (7, 7) = 0.214460223691860703703477959545e-28, (7, 8) = 0.317673924810187018756335641686e-28, (7, 9) = 0, (7, 10) = 0.620412561991019475191439852476e-29, (7, 11) = 0.753895620987131323747484439705e-28, (7, 12) = 95.9999999700000000093749999970, (7, 13) = 0.643380671075582111110433878635e-28, (7, 14) = 0.348244413167432788858088750543e-30, (7, 15) = -0.195081345734130085456007896310e-26, (7, 16) = 0.162499999949218750020914346448e-6, (8, 1) = 0, (8, 2) = 0, (8, 3) = 0, (8, 4) = -0.835597462589282450911924283887e-30, (8, 5) = 0, (8, 6) = 0, (8, 7) = -0.168983990754200234313642237958e-29, (8, 8) = 0.255518912827614707211229660888e-30, (8, 9) = 0, (8, 10) = -0.278532487529760816970641427962e-30, (8, 11) = -0.912041057783558505972445866734e-29, (8, 12) = 0.152862192823148604497047654434e-28, (8, 13) = -0.506951972262600702940926713875e-29, (8, 14) = 0.212025424265299406832408057357e-29, (8, 15) = 0.158222957859551043617221056103e-27, (8, 16) = 96.0000000000000000000000000002, (9, 1) = 0, (9, 2) = 0, (9, 3) = 0, (9, 4) = -0.773425795970180636575593526265e-28, (9, 5) = 0, (9, 6) = 0, (9, 7) = 0.285194655390087477280223771532e-28, (9, 8) = -0.241100887243597349107036806234e-27, (9, 9) = 0, (9, 10) = -0.257808598656726878858531175422e-28, (9, 11) = 32.0000000125000000000000000004, (9, 12) = 0.999999999843750000174507862823e-8, (9, 13) = 0.855583966170262431840671314596e-28, (9, 14) = -0.104420360226003256663758222866e-27, (9, 15) = 0.600000000000000000027497059897e-7, (9, 16) = 0.900000000046874999977170328969e-6, (10, 1) = 0, (10, 2) = 0, (10, 3) = 0, (10, 4) = 0.643380671224932994877201196193e-28, (10, 5) = 0, (10, 6) = 0, (10, 7) = 0.620412562284547562356437593923e-29, (10, 8) = -0.782971264706294608812923943602e-28, (10, 9) = 0, (10, 10) = 0.214460223741644331625733732064e-28, (10, 11) = -0.117716452160171050903010422567e-27, (10, 12) = -0.324249553007268016939337229307e-26, (10, 13) = 0.186123768685364268706931278177e-28, (10, 14) = 0.210791990319339808396292213890e-27, (10, 15) = 95.9999999999999999999999999990, (10, 16) = 0.601289924118833452883693495332e-26, (11, 1) = 0, (11, 2) = 0, (11, 3) = 0, (11, 4) = -0.145794923079456919867181504653e-28, (11, 5) = 0, (11, 6) = 0, (11, 7) = -0.485983076931523066223938348837e-29, (11, 8) = 0.703045314344404024740114826873e-28, (11, 9) = 0, (11, 10) = -0.485983076931523066223938348844e-29, (11, 11) = 0.154061910958820937154327251969e-28, (11, 12) = 0.586431085917646726477197552134e-27, (11, 13) = -0.145794923079456919867181504651e-28, (11, 14) = 0.327116591013740734656854347967e-28, (11, 15) = 0.186427448215109472676159333906e-27, (11, 16) = 0.727156843809743343593213639608e-26, (12, 1) = 0, (12, 2) = 0, (12, 3) = 0, (12, 4) = 0.654542236344866764687318521378e-30, (12, 5) = 0, (12, 6) = 0, (12, 7) = 0.382930495785563772474113758933e-30, (12, 8) = -0.765771840140216030924576968705e-29, (12, 9) = 0, (12, 10) = 0.218180745448288921562439507126e-30, (12, 11) = -0.591357855581324858104400230586e-30, (12, 12) = 0.164090126078907967224367765176e-28, (12, 13) = 0.114879148735669131742234127680e-29, (12, 14) = -0.733606589050003370341598338138e-29, (12, 15) = 0.279365514914751130455040418258e-28, (12, 16) = -0.138821502091830040436688448298e-26, (13, 1) = 0, (13, 2) = 0, (13, 3) = 0, (13, 4) = 0.797807313447167969819086050522e-29, (13, 5) = 0, (13, 6) = 0, (13, 7) = -0.128037344212226672551029214969e-29, (13, 8) = 0.262885403001488132812902903311e-28, (13, 9) = 0, (13, 10) = 0.265935771149055989939695350174e-29, (13, 11) = -0.349411324204567081081722661297e-28, (13, 12) = 31.9999999950000000007812499995, (13, 13) = -0.384112032636680017653087644907e-29, (13, 14) = 0.119403167752948354510697994999e-28, (13, 15) = -0.452504513537780686847551220204e-27, (13, 16) = 0.149999999976562500006592455374e-6, (14, 1) = 0, (14, 2) = 0, (14, 3) = 0, (14, 4) = -0.506951972202161632959380608780e-29, (14, 5) = 0, (14, 6) = 0, (14, 7) = -0.278532487328297250365487744273e-30, (14, 8) = 0.100313589069551339782957918087e-28, (14, 9) = 0, (14, 10) = -0.168983990734053877653126869593e-29, (14, 11) = 0.876003797684675659527198447426e-29, (14, 12) = 0.309396538522635365039103628797e-27, (14, 13) = -0.835597461984891751096463232820e-30, (14, 14) = -0.169500948608311509445295032991e-28, (14, 15) = 0.104005614175784513152332127959e-27, (14, 16) = 95.9999999999999999999999999996, (15, 1) = 0, (15, 2) = 0, (15, 3) = 0, (15, 4) = 0.114879148750778899237620653952e-29, (15, 5) = 0, (15, 6) = 0, (15, 7) = 0.218180745498654813213727928025e-30, (15, 8) = -0.867251219227502985269662069579e-29, (15, 9) = 0, (15, 10) = 0.382930495835929664125402179841e-30, (15, 11) = -0.267864188359583543656192185112e-29, (15, 12) = -0.387791753042961333529856694716e-28, (15, 13) = 0.654542236495964439641183784074e-30, (15, 14) = -0.523627245808308931882255033583e-29, (15, 15) = 0.369199231034048272468531636165e-28, (15, 16) = -0.123439611085554953594747603640e-26, (16, 1) = 0, (16, 2) = 0, (16, 3) = 0, (16, 4) = -0.515746730509193430144544493936e-31, (16, 5) = 0, (16, 6) = 0, (16, 7) = -0.171915576836397810048181497977e-31, (16, 8) = 0.857347676859656256220355661580e-30, (16, 9) = 0, (16, 10) = -0.171915576836397810048181497979e-31, (16, 11) = 0.182597096197097886514765184582e-30, (16, 12) = -0.370616214664321329971866697584e-29, (16, 13) = -0.515746730509193430144544493932e-31, (16, 14) = 0.865925397235117524875431212196e-30, (16, 15) = -0.750058451906403875595888288641e-29, (16, 16) = 0.183460376006651920829411996611e-27}), Vector(16, {(1) = diff(A[0, 0](t), t), (2) = diff(A[0, 1](t), t), (3) = diff(A[0, 2](t), t), (4) = diff(A[0, 3](t), t), (5) = diff(A[1, 0](t), t), (6) = diff(A[1, 1](t), t), (7) = diff(A[1, 2](t), t), (8) = diff(A[1, 3](t), t), (9) = diff(A[2, 0](t), t), (10) = diff(A[2, 1](t), t), (11) = diff(A[2, 2](t), t), (12) = diff(A[2, 3](t), t), (13) = diff(A[3, 0](t), t), (14) = diff(A[3, 1](t), t), (15) = diff(A[3, 2](t), t), (16) = diff(A[3, 3](t), t)})

(3)

``

npts := Ntt:

``

``

``

``


 

Download Question1.mw

 

I'm running Maple Flow 2022 on a Win10 Pro PC...

When looking at a Maple Flow worksheet I press Ctl-F to search for something on the worksheet ...

The search seems to work but the "found text" turns white ... so it is hard to see ... any fix for this?

Also, Is Dark Mode available for Maple Flow?

Thanks for any help.

 

Let say, 

A= A1+A2+.....................+An

B=B1+B2+.....................+Bn,

C=C1+C2+.....................+Cn

And all the values of A1 to Cn may be both positive or Negative.

Then, how to program to find the Maximum Value of  (A^2+B^2+C^2+A.B+B.C+C.A)^(1/2).

Question 1: The Common Symbols palette referenced in the the section titled ... "Solution 2 - Use the Palettes" in Online Help HERE ...

Where is the Common Symbols palette in Maple Flow 2022 ... or is it missing?

Question 2: How can I add it if it  is missing as it looks very handy.

Question 3: Can you create custom Palettes and if so how?

Question 4: OT: Any chance of getting a spell checke for Forum Post ? :-)

Thanks for any help.

I have a student who then she uses tools/assistent/import data and then the file then Maple claims the Excel file is empty? She uses Maple 2021.2. File works on other my and other student computers. 

1 2 3 4 5 6 7 Last Page 1 of 298